/F .\ ' J7
PI0E—d NN _JI1TTT
Fid il IIJlIJIIJIIIIIII'JI

Program a Game Engine from Scratch

Mark Claypool

Development Checkpoint #11

Sound & Music

This document is part of the book “Dragonfly — Program a Game Engine from Scratch”,
(Version 11.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright (©)2012-2025 Mark Claypool and WPI. All rights reserved.



4.14. Audio 196

4.14 Anudio

While sight and feel (interaction) are core elements of most games, sound is nearly as
important. Dragonfly supports audio® using the built-in capabilities of the Simple and Fast
Multimedia Library (SFML).

4.14.1 Simple and Fast Multimedia Library — Audio

SFML provides audio support and recognizes two distinct types: 1) sound effects, which
are typically small (fitting in the computer’s main memory) and, for games, are typically
played in response to a game action. Examples from Saucer Shoot (Section 3.3) include
the “fire” sound when the Hero shoots a Bullet and the “explode” sound when a Saucer is
destroyed. The class sf: :Sound supports this type of audio (i.e., sound effects). 2) music,
which is typically longer (e.g., an entire song) and, for games, is often played continuously
in the background, either during game loading screens or as game action takes place. An
example from Saucer Shoot is the background music that plays during the initial game start
screen. The class sf: :Music supports this type of audio. These differences between sound
effects and music influence how they are handled technically by the SFML classes. For
example, sound effects are usually small enough to load into memory, while music, being
larger, is streamed directly from disk. SFML supports most common audio file formats —
the full list can be found in online documentation. Note, <SFML/Audio.hpp> is needed as
an #include for all SFML audio.

For sf::Sound, the sound data is not stored directly in the object but via a separate
class called sf::SoundBuffer. The sound buffer holds the audio samples in an array of
16-bit integers. Each audio sample is the amplitude of the sound wave at a given point in
time. Sound data from a file (e.g., a .wav file) can be loaded into a sf: : SoundBuffer with
the method loadFromFile (). Use of this method is shown in the top part of Listing 4.170.

Once the audio data is loaded, the buffer can be assigned to an sf::Sound object via
setBuffer() and then played via play(). The latter half of Listing 4.170 shows a code
fragment to do this. Note, sounds can also be played simultaneously without any issues.

Listing 4.170: SFML playing a sound
#include <SFML/Audio.hpp>

sf::SoundBuffer buffer;
if (buffer.loadFromFile ("sound.wav’) == false)

// Error!

sf::Sound sound(buffer);
sound.play ();

Unlike sf: :Sound, sf: :Music does not pre-load audio data but instead streams directly
from a file. So, this means opening a file and then just playing it, as in Listing 4.171.

* Did you know (#11)7 Dragonflies cannot hear, at least not the same way humans can. However,
dragonflies do have receptors in their antennae and legs that are sensitive to pressure changes, such as air
pressure changes from sounds. These receptors supplement their vision. — Ann Cooper. Dragonflies — Q& A
Guide: Fascinating Facts About Their Life in the Wild, Stackpole Books, September 2014.

s

Ye

5
s




4.14. Audio 197

Listing 4.171: SFML playing music
#include <SFML/Audio.hpp>

sf::Music music;
if (music.openFromFile (" music.wav”) == false)
// Error!

music.play () ;

Looping for both sound and music can be done with setLooping(), indicating true to
loop (repeat) the audio from the beginning when at the end and false to stop the audio
when at the end. Both sounds and music can be stopped with stop() and paused with
pause().

One key difference between sf::Music and sf::Sound is that SFML does not allow
copying of sf::Music objects (presumably, this is to help SFML manage resources more
efficiently). To illustrate how this constrains use, the code samples in Listing 4.172 provide
examples of compile-time errors, if tried.

Listing 4.172: SFML sf::Music not copyable

sf::Music music;
sf::Music music_copy = music; // Error!/

void makeItSo(sf::Music music_parameter) {

}
makeItSo (music); // Error!

4.14.2 Dragonfly Audio

To add Dragonfly support for audio, SFML audio support is wrapped by two classes (Sound
and Music), with sound and and music assets managed by the ResourceManager. Wrapping
the SFML audio classes in this way provides for a simpler interface for game programming
and, equally important, means that if Dragonfly were to use an alternate library for audio
support, game code written for Dragonfly would not need to be changed. For game code
that wishes to exploit alternate features of SFML audio, the base SFML types (sf: :Sound
and sf::Music) are exposed.

4.14.2.1 The Sound Class

Dragonfly provides a Sound class for supporting basic sound effects, with the header file
shown in Listing 4.173. The primary attributes provide for a sf::Sound (sound) and a
sf::SoundBuffer (sound buffer). Note, the sf::Sound attribute is a pointer since the
sf::Sound allocation needs to allocated buffer upon instantiating. The attribute m_p_-
sound should be set to NULL in the Sound constructor. The method loadSound() calls
loadFromFile (), using the indicated filename and then allocates the sf::Sound and sets
the sound buffer. See Listing 4.170 for examples. The string label is text to identify
the sound for the game programmer, similar to the label used by the game programmer to
identify a Sprite (see Listing 4.119 on page 157). The methods setLabel () and getLabel ()

‘Oﬁﬁ,‘
.
* 0\




4.14. Audio 198

are used to set and get the label, respectively. The methods play(), stop(), and pause(),
call the corresponding methods on the sound object. The method play() has an option to
loop the sound, too, which is done via setLooping(). Looping is off by default. To allow
the game programmer to manipulate the sf::Sound object directly, getSound() returns
sound. The Sound destructor ("Sound()) should delete the sf::Sound object pointed to
by m_p_sound, if allocated.

Listing 4.173: Sound.h

ol // System includes.

1| #include <string>

2| #include <SFML/Audio.hpp>
3

|

class Sound {

6| private:

7 sf::Sound *m_p_sound; // The SFML sound.

8 sf::SoundBuffer m_sound_buffer; // SFML sound buffer associated with
sound .

9 std::string m_label; // Text label to identify sound.

10
11| public:

12 Sound () ;
13 “Sound () ;
14
15 // Load sound buffer from file.
16| // Return 0 if ok, else —1.

int loadSound (std::string filename);

P
© =

// Set label associated with sound.
void setLabel(std::string new_label);

N

// Get label associated with sound.
std::string getLabel() const;

NN N NN
TR WO =

// Play sound.
// If loop is true, repeat play when done.
void play(bool loop=false);

NN
® N o

N

// Stop sound.
30 void stop ();

32 // Pause sound.
33 void pause();

351 // Return SFML sound.
36 sf::Sound getSound () const;

371 };

4.14.2.2 The Music Class

Dragonfly provides a Music class for supporting music, with the header file shown in List-
ing 4.174. The primary attribute is sf::Music (music). The method loadMusic() calls

-

» 0%
e,
.

"\
\




4.14. Audio 199

openFromFile (), using the indicated filename. See Listing 4.171 for examples.

Note, as mentioned above, SFML does not allow copying of sf::Music objects (See
Listing 4.172). That is why the Music copy and assignment operators are private. As a
note, making the non-private can work, too, but then exposes potentially confusing SFML
errors to the game program when linking.

The string label is text to identify the music for the game programmer, as for Sounds
(see Listing 4.173) and Sprites (see Listing 4.119 on page 157). The methods setLabel ()
and getLabel() are used to set and get the label, respectively. The methods play(),
stop(), and pause(), call the corresponding methods on the music object. The method
play () has an option to loop the sound, too, which is done via setLooping(). Looping is
on by default. To allow the game programmer to manipulate the sf: :Music object directly,
getMusic() returns a pointer to music. A pointer is used because SFML does not allow
music to be copied.

Listing 4.174: Music.h

// System includes.
#include <string>
#include <SFML/Audio.hpp>

class Music {

private:

Music (Music const&) ; // SFML doesn’t allow music copy.

void operator=(Music const&); // SFML doesn’t allow music assignment.
sf::Music m_music; // The SFML music.

std::string m_label; // Text label to identify music.
public:

Music () ;

// Associate music buffer with file.
// Return 0 if ok, else —1.
int loadMusic (std::string filename) ;

// Set label associated with music.
void setLabel(std::string new_label);

// Get label associated with music.
std::string getLabel () const;

// Play music.
// If loop is true, repeat play when done.
void play(bool loop=true);

// Stop music.
void stop ();

// Pause music.
void pause();

// Return pointer to SFML music.
sf::Music *getMusic();




0

10

4.14. Audio 200

2 J

4.14.2.3 Extending the ResourceManager for Audio

With Sound and Music in place, the ResourceManager is extended to manage sound and
music resources. The needed extensions are shown in Listing 4.175. Audio is handled
similarly to Sprites, with fixed sized arrays for Sound and Music objects and count variables
for each. The counts should be initialized to 0 upon startUp(). The “load” methods load
the Sound and Music resources from files and the “unload” methods do the reverse. Two
“get” methods provide pointers to both Sound and Music objects identified by a label.

Listing 4.175: ResourceManager extensions to support audio

const int MAX_SOUNDS = 50;
const int MAX_MUSICS = 50;

private:

Sound m_sound [MAX_SOUNDS]; // Array of sound buffers.

int m_sound_count ; // Count of number of loaded sounds.
Music m_music [MAX_MUSICS]; // Array of music buffers.

int m_music_count; // Count of number of loaded musics.
public:

// Load Sound from file.
// Return 0 if ok, else —1.
int loadSound (std::string filename, std::string label);

// Remove Sound with indicated label.
// Return 0 if ok, else —1.
int unloadSound (std::string label);

// Find Sound with indicated label.
// Return pointer to it if found, else NULL.
Sound *getSound(std::string label);

// Associate file with Music.
// Return 0 if ok, else —1.
int loadMusic (std::string filename, std::string label);

// Remove label for Music with indicated label.
// Return 0 if ok, else —1.
int unloadMusic (std::string label);

// Find Music with indicated label.
// Return pointer to it if found, else NULL.

Music *getMusic (std::string label);

The loadSound () method to load a sound from a file is shown in Listing 4.176. Error
checking is done to ensure the sound array is not filled. On line 9, the call to Sound
loadSound () is made. If successful, the Sound is added to the array. Any error condition
returns -1, while success returns 0.

Listing 4.176: ResourceManager loadSound ()




~

16

4.14. Audio 201

// Load Sound from file .
// Return 0 if ok, else —1.

int ResourceManager ::loadSound (std::string filename, std::string label)

if m_sound_count is MAX_SOUNDS then
writeLog (" Sound array full.")
return error

end if

if m_sound[m_sound_count].loadSound (filename) is -1 then
writeLog (" Unable to load from file")
return error

end if

/) All is well.

m_sound [m_sound_count].setLabel (label)
increment m_sound_count

return ok

The complement of loadSound() is unloadSound(), shown in Listing 4.177. The
method loops through the Sounds in the ResourceManager. If the label being looked for
(1abel) matches the label of one of the Sounds (getLabel ()) then that is the Sound to be
unloaded. SFML does not have a method to actually free up memory for sounds, so the rest
of the Sounds in the array are moved down one. Lastly, the sound count is decremented by
one. If the loop terminates without a label match, the sound to be unloaded is not in the
ResourceManager and an error is returned.

Listing 4.177: ResourceManager unloadound|()

// Remove Sound with indicated label.
// Return 0 if ok, else —1.

int ResourceManager ::unloadSound (std::string label)

for i = 0 to sound_count-1
if label is sound[i].getLabel () then

// Scoot over remaining sounds

for j = i to sound_count-2
sound[j] = sound[j+1]
end for

decrement sound_count
return ok
end if
end for

return error // Sound not found.

The final method needed by the ResourceManager for sound is getSound (), with pseudo
code show in Listing 4.178. The method loops through all the Sounds in the ResourceMan-
“of,

\




w N = O

4.14. Audio 202

ager. The first Sound that matches label is returned. If line 10 is reached, the label was
not found and an error (NULL) is returned.

Listing 4.178: ResourceManager getSound|()
// Find Sound with indicated label.
// Return pointer to it if found, else NULL.
Sound *getSound(std::string label);

for i = 0 to sound_count-1
if label is sound[i].getLabel () then
return (&sound[i])
end if
end for

return NULL // Sound not found.

Methods to loadMusic (), unloadMusic () and getMusic() are similar to loadSound (),
unloadSound() and getSound(), respectively. The exception is that since Music is not
copyable, the elements cannot be “scooted over” in the array. Instead, the found label is
just set to empty (""). This means that the empty label is not allowed in loadMusic() to
distinguish from an unloaded Music.

4.14.3 Using Audio

At this point, the game programmer can load sounds and music into the ResourceManager
in a few simple steps. The first step is to obtain/create an audio file, such as those provided
by the Dragonfly tutorial (see Section 3). The second step is to load the audio file, as a
Sound or Music, into the ResourceManager so the game can make use of it. Example code
to load sound effects for Saucer Shoot is shown in Listing 3.7 on page 44 and example code
to load music is shown in Listing 3.9 on page 45.

Once loaded, the game programmer can play audio at an appropriate point. For example,
Saucer Shoot plays music during the game start screen (see Listing 3.8 on page 44) and
plays a sound effect when the player fires a bullet (see Listing 3.10 on page 45).

4.14.4 Development Checkpoint #11!

Continue Dragonfly development to support audio. Steps:

1. Make the Sound and Music classes, referring to Listings 4.173 and 4.174, respectively.
Separately implement and test both classes outside of the game engine. This means
playing various sound effects and music. The audio files from the Saucer Shoot tutorial
(see Section 3.3.12 on page 44) can be used for this. Make sure to test error conditions
(e.g., the file cannot be found), too.

2. Extend the ResourceManager to support sound effects, referring to Listing 4.175 as
needed. Write and test methods to loadSound (), unloadSound (), and getSound().
Refer to Listings 4.176, 4.177, and 4.178, as needed.

s

Ye

5
s




4.14. Audio 203

3. Extend the ResourceManager to support music, referring to Listing 4.175 as needed.
Write and test methods to loadMusic(), unloadMusic(), and getMusic(). Base
the music support implementation off the corresponding sound support previously
implemented.

s

Ye

5
s



