
Program a Game Engine from Scratch

Mark Claypool

Chapter 7 - Projects

This document is part of the book “Dragonfly – Program a Game Engine from Scratch”,
(Version 11.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright ©2012–2025 Mark Claypool and WPI. All rights reserved.



Chapter 7

Projects

If this book is used for a course, this chapter provides 3 programming projects that can be
used as course assignments for students. Project 1 requires working through the tutorial
(Chapter 3) in order to learn Dragonfly from the game programmer’s perspective. Project 2
provides a roadmap to build Dragonfly (Chapter 4) through 3 different milestones. Project 3
charts a path for students to build games of their own inspiration using their own Dragonfly
engines. Instructors will want to tailor each to fit the particular course requirements and
time constraints.

7.1 Project 1 – Catch a Dragonfly

The first project is for students to get used to Dragonfly, meant as a first exposure to
a text-based, 2d game engine. Students work through a tutorial that has them make a
simple, “stock” game using Dragonfly. This helps students better understand a game engine
by developing a game from a game programmer’s perspective, providing the foundational
knowledge needed for building their own Dragonfly game engine in project 2 (Section 7.2,
and designing and developing their own game from scratch with it in project 3 (Section 7.3).

In project 1, students:

1. Visit the Dragonfly Web page and briefly familiarize themselves with the contents.
The Web page includes a download of the Dragonfly game engine (compiled – no
source code), documentation with details on the classes and methods for the game
programmer, and links to games and utilities that may be helpful for subsequent
projects.

2. Download the Dragonfly game engine for the environment of choice (e.g., Linux or
Windows) and setup their development environment. This means ensuring all the
needed external libraries are in place (e.g., SFML), installing the Dragonfly libraries
and header files in an appropriate place1, and creating a basic Makefile or project
and simple test program to be sure development can proceed. The same basic setup
is used for the students’ own game engine development in project 2.

1Dragonfly can be installed in user space – root/administrator permissions are not needed.

273



7.2. Project 2 – Dragonfly 274

3. Complete the tutorial (see Section 3.3 on page 15). The tutorial has students build
an arcade-style shooting game, called Saucer Shoot, where the player flies a space ship
into combat against an ever-increasing number of enemy saucers. The tutorial has
all sprites and audio files needed for development as well as working sample code for
students to reference.

4. Extend the Saucer Shoot game in a meaningful way by adding 10% or more func-
tionality. For example, students may add additional weapon types or enemies, health
and/or multiple lives, a high score table, or something entirely of their own creation.
The actual 10% extension done is up to each student, but s/he indicates what is done
with brief documentation when submitting the assignment.

Students work alone for project 1. When done, students turn in a source code package
with all code necessary to build their games, including header files and any needed additional
sprites (depending upon their extension). In addition, each student includes a Makefile or
project file for compiling their game, a README file explaining the platform, files, code
structure, and anything else needed to understand (and grade) his/her game, and a GAME
file providing a short description of the additional 10% functionality extension to the Saucer
Shoot tutorial game, including indicating the code written.

7.2 Project 2 – Dragonfly

In the second project, students build their own version of Dragonfly. Project 2 is broken
into three parts: A) Dragonfly Egg (Section 7.2.1), B) Dragonfly Naiad (Section 7.2.2) and
C) Dragonfly (Section 7.2.3), that build upon each other to end with a fully functional, full-
featured game engine. Since it is critical that game engine code be easily understood (from
the game programmer’s perspective) and, equally importantly, robust, the three projects are
structured such that completing parts A and B provides for a fully functional, if somewhat
limited, game engine. This level of proficiency enables students to proceed to project 3,
where they make games using their engines. Completing part 2C provides for a full featured
game engine, with functionality that makes it easier to create a broader range of games.

For timing and grading, the due dates should be staggered so that most of the time
is allocated for part A and part B, but there is still time for completing part C for the
top students in the class. In addition, points are allocated such that completing part B is
sufficient for earning a “B” grade for project 2, while fully completing part C provides an
opportunity for earning an “A” grade for project 2.

Students should be informed that it is much better have tested, trusted robust code
that only implements part A and part B then it is to have buggy, partially working code
that attempts to get into part C. Since students make use of their own engine for project
3, wise students tend to heed this advice.

Students work alone for all parts of project 2. While group work is important for
many aspects of software engineering, including game development, developing the engine
solo ensures students have complete and deep understanding of both the game engine and
the programming skills needed to develop it – there is no way to “hide” behind a more
experienced teammate. That is not to say students are alone, however – discussing the



7.2. Project 2 – Dragonfly 275

project with other students is encouraged, even for help in debugging each other’s code.
The line is drawn at not allowing sharing of code in that each student must write all the
engine code him/herself.

All development is done in C++. Students are expected to be familiar with C++
from earlier computer science classes, but are not expected to be experts in the language.
While development is done as “homework” outside of class, the requirements and design
of Dragonfly are presented in class, with discussions of design rationale, implementation
choices and alternatives, and more advanced features.

Individual classes, with high-level descriptions of attributes and methods, are provided.

7.2.1 Dragonfly Egg

Part A of the project is to construct the foundations of a game engine that provides the
following capabilities:

• Game initialization: Start and stop gracefully.

• Logging: Write messages to a file, including the values of variables of different types
(e.g., integers, strings, or floats).

• Object support: Add and remove game objects. Objects support 2d game world
positions for objects.

• Game loop: Run a game loop with: 1) A fixed update rate (e.g., 30 Hz), and 2)
updates sent to all objects each loop

To implement this functionality, students develop, code and test about a dozen base
classes.

No visual depiction of the game is required for part A. Instead, all output is done via
printing to the screen or to a log file via the logfile manager functionality built into the
game engine. As suggested above, at the successful completion of part A, students do not

have a game engine. Instead, they have a robust, foundational code base they can build
upon to get a functional game engine in part B.

7.2.2 Dragonfly Naiad

Part B is to continue construction of the game engine, each student using their own code
base from part A, adding the following additional capabilities:

• Output: Support 2d, text characters with color. Provide a clean refresh each game
loop.

• Input: Accept non-blocking keyboard and mouse input. Send input to all game
objects.

• Velocity: Automatically move objects with an (x,y) velocity. Support speeds both
greater and less than one space per step.



7.2. Project 2 – Dragonfly 276

• Collisions: Provide a “solid” attribute for game objects. Detect collisions between
solid objects. Send an event to both objects involved in a collision.

• Misc: Provide deferred, batch removal of game objects. Provide support for an “al-
titude” attribute for game objects to support layered drawing. Notify game objects
that move out of game world with “outofbounds” event.

All of the above capabilities must be thoroughly tested, bug-free and ready for a game
programmer to make a game (the students themselves, in project 3).

7.2.3 Dragonfly

Part C is to continue construction of the game engine, each student using their own code
base from part A and part B, adding the following additional capabilities:

• Sprites: Provide multi-character frames. Associate one or more frames with a game
object. Play frames in sequence to achieve animation. Support “slowdown” of ani-
mation to less than one frame per game loop.

• Resource Management: Read sprite data from files. Provide bounding boxes for game
objects. Allow game objects to be larger than a single character (for movement and
collisions). Associate bounding boxes with sprites.

• Sound: Support sound effects and music. With resource management, load/associate
audio for sound and music.

• Camera Control: Allow the game world to be larger than the screen, providing a
“viewport”. Enable free viewport movement around the game world, including the
ability to follow one object (e.g., the player’s avatar).

• View Objects: provide an alternative (to game objects) object that supports “heads-
up display” functionality.

As for project 2A and 2B, all of the above capabilities must be thoroughly tested, bug-
free and ready for a game programmer to make a game (the students themselves, in project
3).

For each part, students turn in a package with all code necessary to build their game
engine, including header files and a Makefile or project file for building their engine.
Game programmer code (i.e., code someone would write using their engine) is required
to demonstrate the full functionality of what has been built (so far). This can be more
than one program, if needed. Documentation is required to explain the platform, files,
code structure, how to compile the engine and game code, and anything else needed to
understand (and grade) a student’s game engine.



7.3. Project 3 – Dragonfly Spawn 277

7.3 Project 3 – Dragonfly Spawn

In project 3, students use the Dragonfly game engines they built in project 2 to make their
own, original games from scratch. The end result is expected to be a robust (bug-free),
playable, and balanced game (it may even be fun).

Like a typical, large game development effort, the project is broken into several mile-
stones: plan, alpha and final. Each milestone is submitted and graded separately, while
all apply towards the total project 3 grade. The intent of the milestones is to provide pro-
duction guidance to yield a fully-functional, complete, playable game built with their own
game engine.

Students work in teams of two for project 3. Students are free to partition the work
among the team as they see fit, but all team members are encouraged to help (say, with
design and debugging) and be knowledgeable (in terms of how the game code executes) for
all parts of the game.

Development must be in C++ using their game engine from project 2. Under exceptional
circumstances (e.g., both partners not completing project 2b), students are allowed to use
the pre-made Dragonfly engine from project 1. No engine source code is provided, however,
only the pre-compiled engine.

7.3.1 Plan

Student teams provide a game plan document within the first two weeks of the project. The
plan document provides a detailed description of the game they plan to build, including
the technical challenges it entails, a bit about any significant artistic aspects of the game,
and the timeline to successfully complete development in the time provided. In planning,
students are asked to draw upon experiences from other classes (e.g., other programming
or game development courses), to inform the creation of the plan document. While the
actual length of the plan is not a requirement, as a guideline the plan is expected to be
approximately 2-3 pages – much less and students have probably have not supplied enough
details.

For the plan submission, students turn in a written document.

7.3.2 Alpha

At alpha stage, the student games have all of the required features implemented, but not
necessarily working completely correctly. Game code must be tested thoroughly enough to
eliminate any critical gameplay flaws, but minor bugs or glitches may be present.

Games must compile cleanly and be runnable, even if all aspects of gameplay are not
available from one program. Separate features of the game may be demonstrable from
separate game code programs (e.g., separate game programs illustrating a kind of weapon
or a specific opponent).

Games are likely not yet be finally balanced nor the levels designed for all experiences
(beginning to advanced) of game player.

Games may contain some placeholder art assets. For example, in the alpha release, a
simple, non-animated square may be used for an opponent with the intent of creating a
figure and frames of animation for the final version.



7.3. Project 3 – Dragonfly Spawn 278

For the alpha submission, students hand in a package with all the source code necessary
to build their game engines and their games. All header files must be included, as well as
Makefiles or project files for building the games.

7.3.3 Final

The final game versions have all game content complete – design, code and art. Games must
be tested thoroughly for bugs, both major and minor, removing all visual and gameplay
glitches. Game code must compile cleanly and be easily runnable. Upon startup, instruc-
tions for the player on how to play must be readily available, and with clear indications
on how to begin play. Gameplay must be balanced, providing appropriate difficulty for
beginners and/or early gameplay, with increased difficulty as the game progresses. Games
must have a clear ending condition (i.e., winning or losing) and the player must be able to
exit the game easily and cleanly.

For the final submission, students submit their engine and game, with necessary sup-
port files and Makefiles or project files. The typical READMEs are required, as well as
DESIGN documents providing all the details in the plan, but updated to reflect the games
as actually built. For example, the functionality, milestones and work responsibilities need
to be updated from the plan to reflect the development. Major deviations from the original
plan must be noted.


