/F __\ iFP A7
Tyl 7= 'I V_IIIII
ridry "J"J'lJ'l'l’l"J’
P — \—u’\—n ’_’J IJJ '-ﬁ[-‘l'

Program a Game Engine from Scratch

Mark Claypool

Chapter 6 - Taking Flight

This document is part of the book “Dragonfly — Program a Game Engine from Scratch”,
(Version 11.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright (©)2012-2025 Mark Claypool and WPI. All rights reserved.

Chapter 6

Taking Flight

6.1 Testing

6.1.1 Overview

Testing, often overlooked by the novice programmer, is known to be critical for the ex-
perienced programmer, particularly as code complexity (e.g., size!) increases. Figure 6.1
coarsely depicts this relationship for the development of a single project (i.e., a single-
software code base).

~b

Figure 6.1: The difficulty of code development over time.

The horizontal axis represents time spent on developing code on the project and the
vertical represents the difficulty in writing bug-free, functional code. There are two trend
lines shown — the solid curved line represents the difficulty over time relationship for devel-
oping code without formalized testing. Note that the slope is getting steeper and steeper
as time progresses and the code gets more complex. With formalized testing, the difficulty
flattens out. Why? Because structured, thorough testing ensures that code that is written
and expanded upon works as expected, without bugs or unexpected behaviors, allowing

261

6.1. Testing 262

additional code to be added to this base. Effectively, adding new code is no more complex
than the code developed before it.

A keen observer will note that the difficulty for developing with formalized testing is
a bit more difficult initially (see the bottom left corner of Figure 6.1) than development
without testing. This is because it takes bit more effort to define tests that are needed and
setup a testing framework. However, once done, this extra time will pay immense dividends
as the project progresses. In short, testing takes a bit more time up front, but saves time
later on. Put it another way, for a large project, there is not enough time not to write
tests. This section also provides a framework that can be leveraged to help with some of
this testing, reducing the time-costs of adding new tests.

Also, another misconception may be that testing is for someone else, a quality-assurance
(QA) team or something similar. That’s not the case. Testing is for developers not just
testers — aspiring programmers should embrace testing as just one of the aspects of devel-
opment.

Moreover, testing early and often has another benefit — finding bugs early in the devel-
opment process costs a lot less (in time, and time is money) than finding a bug later in the
process. Roughly, finding a bug in an initial class implementation costs about 10-times less
than finding a bug when verifying a functioning system, and about 40-times less than when
finding a bug in final integration testing!

6.1.2 Types of Tests

Definitions of test names and types vary, but broadly there are at least these types of tests
relevant to systems such as Dragonfly:

e Unit test — a unit test tests the smallest unit of program code, such as a function or a
class method. For example, a unit test may check that the LogManager writeLog()
method with two arguments produces the expected output, checking the message and
any pre-pended frame or time string.

e Component test — A component test tests a set of units integrated together, such as
a module or a subsystem that is composed of an isolated set of classes. For example,
the WorldManager and all its supporting classes and even the Dragonfly engine could
be tested via a component test.

e Integration test — An integration test tests several component layers together. For
example, a integration test could verify that a Saucer Shoot gameplay (Hero and
Saucers) plus the accompanying Dragonfly engine work as expected.

e System test — A system test tests that several stand alone applications are integrated,
often the full system. For example, test Saucer Shoot game (Splash screen, Game
Start, and core gameplay) with the Dragonfly engine could be tested in a system test.

Another important test type is:

e Regression test — regression testing verifies that all previously developed code still
works, despite additional functionality that has been added or bugs that have fixed.

\

6.1. Testing 263

When a bug (a regression) is found and corrected, a test case is written to verify
that the bug is, indeed, fixed. That test is preserved and run during subsequent
development, ensuring that later code does not re-introduce the fixed bug.

6.1.3 Unit Tests

Since unit tests are the lowest-level building block they are the right place to start in writing
tests.

For Dragonfly, unit tests are written from the game engine programmer’s perspective.
Contrast that to a functional test, one that confirms the system works as expected, is
written more from the perspective of the game programmer.

Unit tests isolates part of program, testing a single behavior. For C++4, this typically
means a single function or class method. In addition, a unit test will clearly indicate pass
or fail, with the latter accompanied by a reason for the failure (e.g., unexpected output).
For a decent sized program, there may be many unit tests so unit tests should run quickly.

Although this section appears in the book after the engine development, in practice unit
tests should be developed in parallel with code development. Moreover, the suite of unit
tests (and regression tests) previously developed should be run (successfully!) before any
code is checked into a source code repository.

Some guidelines for unit tests are:

e test edge conditions (e.g., boundaries on a list are when it is full or empty).

e test invalid inputs and other error conditions (e.g., drawing a character in an invalid
color or at a location that is outside the game world).

e test multiple invocations of the code under test (e.g., repeatedly adding the same
object to a list).

e test previously detected bugs found in your code (i.e., regression tests).

If a unit test fails, it is time to take action. If the immediate cause of the failure is not
clear, additional output (e.g., logging) might be needed. Or, smaller tests may need to be
written to more narrowly isolate the failure. Either way, the code should be fixed since it is
likely that subsequent code that builds upon the unit will also then fail. Keeping unit tests
around (and re-running periodically) ensures bugs are not introduced later and that fixed
bugs are not re-introduced.

Broadly, a unit test has 4 phases:

1. Setup test conditions. For example, starting up the game engine or clearing log files.

2. Call the method or function being tested. For example, call the method LM.writeLog(
"This is unit test number %d", 12).

3. Verify that the output results are correct. For example, check the string written to the
file “dragonfly.log” and make sure it has exactly “This is unit test number 12”.

4. Clean up. For example, deleting any temporary files or shutting down game engine.

\

6.1. Testing 264

Note, while step 2 and 3 are critical (i.e., invoking the test and then making sure it
works), steps 1 and 4 may not be needed for all unit tests.

The unit tests themselves should be maintained as if they are code (they are!). For
example, if a previously developed class is re-factored, say, by modifying a method, then
the unit tests that exercised that method should be updated, as well. Unit tests are not
just written, and run once, but rather are written, run, re-run, modified, re-run, re-run,
modified again, re-run and so on, all during engine development.

A good developer should resist pressure to “add tests later”. It may seem that writing
tests slows down the development process but in reality, for a large code base, it speeds it
up. Yes, it takes a bit of extra time to write and run tests for a recently completed class
method, but it helps make sure the class really is complete, and allows development moving
forward to concentrate on newly added code having more confidence the existing classes
work as they are supposed to. And any failed tests should be fixed as soon as possible.
Ignoring the failed test, even if other code appears to work, makes development moving
forward harder since it becomes difficult to know whether new errors are from new code or
from the previous code that has fails its tests.

Along the same lines, frameworks to run tests automatically can be quite useful, even
for moderate scale development (such as for Dragonfly). A good test framework will, for
each unit test, invoke the 4 unit tests phases listed above and report all test results. Once
automated, a development process may run unit tests daily, say at the end of a workday or
overnight, providing test results in a daily log file. Similarly, before committing any code
to a source code control system, unit tests should be written and run — this includes prior
tests that may not seem related to the newly added code since errors caused by code can
often manifest elsewhere, outside the code itself (see Section 5.1 on page 250).

6.1.3.1 Unit Test Manager

A quick Internet search will show there are dozens of unit testing frameworks that could
be used. Creating a custom unit test framework is not too difficult, either. In the spirit of
this book (programming a game engine from scratch), this section describes the design and
use of the Unit Test Manager (UTM), a basic framework for doing unit testing. UTM is
available for download at:

http://dragonfly.wpi.edu/games/

Figure 6.2 depicts an example of output from a UTM session. This session has been
configured to run five tests, number 0 to 4. Tests 0-2 and 4 all passed, but test 3 failed. A
summary of the number of tests passed and the test total is at the bottom. The name of
the test is on the far right - e.g., test_GameManager getSetGameOver failed. Although not
shown, details on the test output is written into a logfile, named “utm.log” by default.

The first step in using UTM is code to set it up. Listing 6.1 depicts basic instructions
to do so. Note the UnitTestManager is a singleton, like game engine managers. The for
method calls setup before and after testing functions to call.

Listing 6.1: Setup UTM

ol UnitTestManager &utm = UnitTestManager ::getInstance ();
1| utm.setSetupFunc (&testSetup) ;
2l utm.setCleanupFunc (&testCleanup) ;

s

* ol

8.}

5%

Ye

6.1. Testing 265

PASS test [0]: testObject setGetMethods

PASS test [1]: testlLogManager bytesWritten
PASS test [2]: testManager startStop

FAIL test [3]: testGameManager getSetGameOver
PASS test [4]: testClock deltaAndSplit
Summary: 4 of 5 tests passed

Figure 6.2: UTM - Unit Test Manager example output.

3l utm.setBeforeFunc (&testBefore) ;
| utm.setAfterFunc (&testAfter) ;

Next, the individual tests to run are loaded — examples are shown in Listing 6.2. Each
call to registerTestFunction() provides the string name of the function, followed by a
pointer to the function itself.

Listing 6.2: Setup UTM tests

olutm.registerTestFunction (" testObject_setGetMethods”,

1 &testObject_setGetMethods) ;

2l utm.registerTestFunction (" testLogManager_bytesWritten",

3 &testLogManager_bytesWritten);

4 utm.registerTestFunction (" testManager_startStop”,

5 &testManager_startStop) ;

6| utm.registerTestFunction (" testGameManager_getSetGameOver”,
7 &testGameManager_getSetGameOver) ;
gl utm.registerTestFunction (" testClock_deltaAndSplit",

9 ZtestClock_deltaAndSplit);

Finally, the tests are ready to be run. Listing 6.3 shows sample code that runs either all
the tests or just a specific test, depending upon the number of arguments passed in from
the command line. Remember, argv[1] refers to the first command line argument (after
the program name itself) and atoi() converts a C-style string string to an integer.

Listing 6.3: Run UTM tests

0 int passed;

1 if (strcmp(argv([1]l, "all”) == 0)

2 passed = utm.run(UTM_ALL_TESTS) ;
3 else

4 passed = utm.run(atoi (argv[1]));

For Dragonfly, an appropriate test before would setup the LogManager log level (assum-
ing logging level is implemented — see Section 4.12 on page 63), startup the game manager,
and set output flushing to true.

Ist:sample-utm-testbefore

Listing 6.4: Sample UTM function - testBefore()

ol // Setup conditions before individual tests.
1| void testBefore (string test_name) {

3] LM.setLogLevel (20) ;

12

14
15

10
11
12

13

6.1. Testing 266

// Start up the game manager.
GM.startUp () ;

// Make sure LogManager flushes in case of crashes.
LM.setFlush (true) ;

An appropriate test after would shutdown the GameManager and then rename the logfile
(“dragonfly.log”) to be a different name, one per test, for reference.

Listing 6.5: Sample UTM function - testAfter()

// Cleanup conditions after individual tests.

void testAfter (string test_name) {
// Shut down the game manager.
GM.shutDown () ;
// If there is a Dragonfly logfile , rename it to be log/test_name.log.
if (access(”"dragonfly.log”, F_O0K) != -1) {
string new_name = LOG_DIR;
new_name += test_name;
new_name += " .log";
if (rename (" dragonfly.log”, new_name.c_str()) == -1)
fprintf (stderr, "testAfter(%s) rename() error: %s\n",
test_name.c_str (), strerror (errno));
}
}

The actual tests themselves (those provided in Listing 6.2) need to be defined. That’s
the real work, needing to be done for each class and method. Listing 6.6 provides an example
of a test function that test the Clock class’ delta() and split () methods, verifying that
they report about the right time for a second of sleep. After setting up the clock, sleeping
and then calling split (), Line 16 checks if the time reported is about 1 second. If not, the
test fails and false is returned. Otherwise, the test passes and true is returned. Note, the
macro __FUNCTION__ on line 20 returns the name of the function currently being invoked as
a C-style string.

Listing 6.6: Example Unit Test - Clock delta() and split()

// Note: only 1 second granularity. Needs
// additional tests with finer clock granularity .
bool testClock_deltaAndSplit(void) {

// Make a clock object for testing.
df :: Clock clock;

// Make calls to delta () and split().

clock.delta();

sleep(1);

int t = (int) clock.split() / 1000000; // About 1 second.

// Print time to logfile for debugging.
LM.writeLog (" split time tl is %", t);

15
16

18
19
20
21

22

6.2. Particles 267

// See if reported time is as ezpected.
if (¢ != 1)
return false;

// If we get here, test has passed.
LM.writeLog ("%s passed.”, __FUNCTION__);
return true;

Similar tests could be written for each class and method, returning true whenever the
test passed and false if not. The UTM framework, with at least some of the sample code
above, then allows easy invocation of the tests.

In summary, writing unit tests takes time and skill. Likewise, interpreting unit test
failures takes time and skill. Fortunately, like many skills (including coding), it improves
with practice. Writing tests goes hand-and-hand with finding and fixing bugs, a skill that
also gets better with practice.

6.2 Particles

Many modern game engines provide for particle systems that can be used by game pro-
grammers for compelling background and environmental effects. While game programmers
can do without such systems since most particle effects can be achieved through artistic
animation (e.g., creating a Sprite with the effect), particle systems provide a measure of
convenience for the game programmer for two main reasons: 1) they do not need to make
the art; and 2) particle systems make the effects random, whereas the same animation
played over and over can look repetitive.

The core for the Dragonfly particle system is the Particle class, shown in Listing 6.7.
Basically, a Particle is a derived class of Object that is SPECTRAL. Unlike most Objects
that use text-based Sprites, a Particle uses an SFML shape — in this case, a circle — which
it draws itself in a custom draw() method. An additional attribute is how long the Particle
will live (age, in game loop ticks). The Particle handles step events so it can age itself (i.e.,
get older) and expire when it is time. The colors are not stored as attributes, but are used
to set the color of the SFML shape in the Particle constructor.

Listing 6.7: Particle.h

// System includes.
#include <SFML/Graphics/CircleShape .hpp>

// Engine include.
#include " Object.h”

class Particle : public Object {
private:
int age; // Age to live (in ticks).

sf::CircleShape shape;

public:

s

Ye

5
s

26

10
11
12
13
14
15

16

18

19

6.2. Particles 268

// Create particle with size (pizels), age (in ticks), opacity
// (0—-255) and rgb color.
Particle(float size, int age, unsigned char opacity,

unsigned char r, unsigned char g, unsigned char b);

// Set age.

void setAge(int new_age) ;

// Get age.
int getAge() const;

// Handle step events.
// Return 0 if tignored, else 1.
int eventHandler (const Event *p_e) override;

// Draw particle .
virtual int draw () override;

g

The Particle is handled by the game engine as are all other game objects. However,
since a Particle has a defined draw (), it draws an SFML shape at its position instead of an
animated Sprite. Also, when the Particle eventHandler () ages the particle (decrements
age during step events), it checks the age and, when it reaches 0 it destroys itself.

A single Particle is simple, but its visual power comes from creating a lot of them.
The particle system provides utility functions to help create a lot of particles. A shortened
version of a Dragonfly utility function addParticles() is shown in Listing 6.8.

Listing 6.8: Utility addParticles() — general

// Add particles. Fach parameter has average and spread .
// count — number to add
// position — location
// size — size (pizels)
// speed — speed (spaces/tick)
// age — age (ticks)
// opacity — how ”see through” [0—255, 0 is transparent]
// T, g, b — color in RGB wvalues
// Return 0 if ok, else —1.
int addParticles (...)
for i = 0 to count
randomize opacity
randomize age
randomize size
randomize color
create Particle with color, size, opacity, age
set position
randomize speed
randomize direction
end for

Clusters of similar types of particles can achieve a variety of effects. Downward moving
grey particles spread across screen can look like rain. Sideways moving white particles of
different sizes and speeds can look like a starfield. Randomly expanding bright red particles
can look like sparks. So, versions of addParticles() create clusters of particles, shown

-

» 0%
e,
.

"\
\

3| // scale — size of particle effect

| // type — type of particle: RAIN, SNOW, STARFIELD

6.2. Particles 269

with their headers only in Listing 6.9.

Listing 6.9: Utility addParticles() - cluster effects

// Add particle effect of specific type.
// type: SMOKE, SPARKS, RINGS, FIREWORKS

// position — location

// color — base color

// Return 0 if ok, else —1.

int addParticles (ParticleType type, Vector position, float scale,
Color color)

// Add environment particles of specific type.

// scale — scale size (default 1.0)

// color — dragonfly color to wuse (default ’“built—in)

// Return 0 if ok, else —1.

int addParticles (PrecipitationType type, Direction direction, float scale,
Color color)

Consider the explosion in the Saucer Shoot tutorial when a Bullet hits a Saucer. This
effect is achieved by an Explosion sprite — 8 frames that, when animated, look like a space-
ship exploding into a ball of fire then fading to nothing. To create the animation, each
frame was created by hand ahead of time, then tweaked to get the right explosion effect.
A similar effect can be achieved with the Dragonfly particle system, where a mass of red
Particles emerge from a single location, spread out randomly and then fade away. Thus,
an explosion effect can be created with one line, shown in Listing 6.10. The first parameter
indicates the effect is SPARKS, the second the location (e.g., the Bullet at the point of impact
with a Saucer), and the third is the scale of the effect.

Listing 6.10: Example call to addParticles() for explosion effect

U[df::addParticles(df::SPARKS, getPosition (), 2.0);]

Listing 6.11 shows pseudo code for an excerpt of the inner workings of addParticles()
method. At the top, if the function checks if the particle type desired (a parameter passed
in to the function) is SPARKS. If so, Particle settings appropriate for “sparks” are set. For
example, 50 particles, each 1.5x as big as a normal particle moving 0.08 spaces/second.
Such parameters are adjusted based on the scale parameter passed in, allowing for general
tweaking of the spark effect size (e.g., big spark effect would have a scale of 2.0 or even
3.0 while a small spark effect might have a scale of 0.5).

Note, on Line 12, the direction and direction spread are set to 0 not since the
spark particles will not move (they willl), but so that when created, the engine will give the
particles a random direction and spread.

Similar settings are done for each particle system type — for example, SMOKE starting on
Line 22.

Once all parameters are set, the full addParticles() function is called in Line 30,
which, in turn, creates the individual Particles.

Listing 6.11: Utility addParticles() - sparks example

s

Ye

5
s}

6.3. Lines of Code 270

// SPARKS.

if type is SPARKS then
position_spread = 0.0
number = 50 * scale
number_spread = 20 * scale
size = 1.5 * scale
speed = 0.08 * (1 + scale/4)
speed_spread = speed
age = 15 * scale
age_spread = age
opacity = 255
opacity_spread = 75
direction = Vector (0,0)

direction_spread = 0

// Sparks are red

r = 2565

g =0

b =0

color_spread = 0

particle_class = PARTICLE
end if
// SMOKE.

if type is SMOKE then

end if

// Call full addParticles() function.
addParticles (
number , number_spread,
position, position_spread,
direction, direction_spread,
size, size_spread,
speed, speed_spread,
age, age_spread,
opacity, opacity_spread,
r, g, b, color_spread,
particle_class)

6.3 Lines of Code

“Measuring software productivity by lines of code is like measuring progress on
an airplane by how much it weighs.” — Bill Gates

The number of lines of code is a poor metric for determining the complexity of a program
or for determining the productivity of a programmer. Conversely, it is a wonderful metric
because it is so easy to measure and compare. Lines of code can be easily checked in Linux
or a Mac by typing wc -1 *.h *.cpp) in a terminal window. However, that command
will count all whitespace lines and comment lines, too — generally, the number of lines of
code does not count whitespace or lines containing only comments. The GNU program

» 0%
N,
»
.\
\

6.3. Lines of Code 271

cloct can count and summarize the “true” number of lines of code for many programming
languages, including C++. Using cloc for the core version of Dragonfly (version A, only
the non-optional features in this book implemented) produces:*

Language files blank comment code
C++ 26 570 710 2188
C/C++ Header 27 429 507 751
SUM 53 999 1217 2939

File blank comment code
ResourceManager. cpp 66 79 318
InputManager.cpp 35 45 273
WorldManager. cpp 73 89 214
DisplayManager.cpp 50 57 191
Object.cpp 64 66 188
ViewObject.cpp 31 40 178
GameManager . cpp 44 43 136
Clock.cpp 10 28 78
Object.h 40 52 67
Sprite.cpp 15 21 64
utility.cpp 14 19 61
DisplayManager.h 27 36 61
LogManager. cpp 21 23 61
Vector.cpp 15 11 48
ViewObject.h 24 28 47
ResourceManager.h 22 34 46
ObjectList.cpp 15 21 44
WorldManager.h 28 46 44
Manager.cpp 16 21 43
EventMouse.h 16 14 36
EventKeyboard.h 14 13 36
Sound. cpp 12 16 34
Sprite.h 20 23 33
EventView.cpp 10 14 32
Box.cpp 10 14 31
Frame.cpp 11 14 31
Music.cpp 10 15 30
EventCollision.cpp 10 15 29
GameManager.h 19 21 28

thttp://cloc.sourceforge.net/
* Did you know (#12)7 The “Helicopter Damselfly” Megaloprepus Caerulatus has the largest wingspan
of any dragonfly/damselfly, up to 7.5 inches. — “Megaloprepus Caerulatus” Wikipedia, 2013.

‘vﬁ’{.,

6.3. Lines of Code 272
EventMouse. cpp 9 12 26
LogManager.h 15 18 25
Music.h 14 16 23
Sound.h 16 18 23
ObjectList.h 16 15 23
EventCollision.h 15 15 23
Vector.h 9 8 22
Manager.h 15 18 22
EventView.h 15 14 22
Box.h 14 14 21
Frame.h 14 14 21
EventKeyboard.cpp 7 10 19
InputManager.h 11 13 18
Color.h 5 8 18
Event.h 11 11 16
EventStep.cpp 6 10 16
EventStep.h 11 10 16
utility.h 11 18 16
Clock.h 8 13 13
Event.cpp 6 10 13
EventOut.h 7 6 11
EventOut.cpp 3 6 5
SUM: 999 1217 2939

Table 6.1: Commercial Game Engines Lines of Code
‘ Engine ‘ Game ‘ Game Release ‘ Engine Release ‘ Lines of Code ‘
id Tech Quake 1996 1999 79k
id Tech 2 Quake II 1997 2001 138k
id Tech 3 Quake IIT 1999 2005 329k
id Tech 4 Quake IV 2005 2011 586k
‘ Unreal Engine 4 ‘ Unreal Tournament ‘ 2014 ‘ 2015 ‘ 1964k ‘

For comparison, Table 6.1 lists id Software’s family of game engines, along with the
Quake games built using them. Quake is a first person shooter, with support for 3d graph-
ics and a variety of other features that Dragonfly does not support. For a more recent
comparison, the bottom line show Epic’s latest Unreal Engine (v4), used for Unreal Tour-
nament (2014), another first person shooter. Note, the intent is not to compare id Tech or
Unreal Engine to Dragonfly nor to minimize the accomplishment of successfully implement-
ing the Dragonfly game engine (in fact, the opposite is true — anyone completing Dragonfly
should be proud!). Instead, Table 6.1 is meant to show the size and scope of a commercial

game engine that can be completed by teams of programmers over several years.

‘v*:’{._

