CS533
Modeling and Performance
Evaluation of Network and
Computer Systems

Simulation

(Chapters 24-25)

Introduction (1 of 3)

The best advice to those about to embark on a very large simulation is
often the same as Punch’s famous advice to those about to marry: ‘Don’t!”
— Bratley, Fox and Schrage (1986)

System to be characterized may not be
available

- During design or procurement stage

Still want to predict performance

Or, may have system but want o evaluate
wide-range of workloads

- Simulation

° However, simulations may fail

- Need good (frogramming, statistical
analysis and perf eval knowledge

Outline

Introduction

Common Mistakes in Simulation
Terminology

Selecting a Simulation Language
Types of Simulations
Verification and Validation
Transient Removal

Termination

Common Mistakes in Simulation
(2 of 4)

Improper language
- Choice of language can have significant impact on
time to develop (Ch 24.4)

- Special-purpose languages can make implementation,
verification and analysis easier

- C++Sim (). JavaSim
), SimPy(thon)
().
Unverified models

- Simulations generally large computer programs
- Unless special steps taken, bugs or errors
- Techniques to verify simulation models in Ch 25.1

Common Mistakes in Simulation
(1of 4)

* Inappropriate level of detail
- Level of detail often potentially unlimited
- But more detail requires more time fo develop
* And often to run!
Can introduce more bugs, making more inaccurate
not less!
- Often, more detailed viewed as "better” but may
not be the case
* More detail requires more knowledge of input
parameters
* Getting input parameters wrong may lead to more
inaccuracy (Ex: disk service times exponential vs.
simulating sector and arm movement)
Start with less detail, study sensitivities and
introduce detail in high impact areas

Common Mistakes in Simulation
(3 of 4)

* Invalid models
- No errors, but does not represent real system
- Need to validate models by analytic, measurement
or intuition
- Techniques to verify simulation models in Ch 25.2
° Improperly handled initial conditions
- Offten, initial trajectory not representative of
steady state
* Including can lead to inaccurate results
- Typically want to discard, but heed method to do so
effectively
- Techniques to select initial state in Ch 25.4

Common Mistakes in Simulation
(4 of 4)

* Too short simulation runs
- Attempt to save time

- Makes even more dependent upon initial
conditions

- Correct length depends upon the accuracy
desired (confidence intervals)

- Variance estimates in 25.5
* Poor random number generators and seeds
- "Home grown" are often not random enough
= * Makes artifacts
- Best to use well-known one
I - Choose seeds that are different (Ch 26)
7

More Causes of Failure (1 of 2)

Any given program, when running, is obsolete. If a program is useful, it will
have to be changed. Program complexity grows until it exceeds the capacity
of the programmer who must maintain it. - Datamation 1968

Adding manpower to a late software project makes it later.
- Fred Brooks

* Large software
- Quotations above apply to software development
projects, including simulations
- If large simulation efforts not managed properly,
can fail
° Inadequate time estimate
- Need time for validation and verification
- Time needed can often grow as more details added

More Causes of Failure (2 of 2)

* No achievable goal
- Common example is "model X"
* But there are many levels of detail for X

- Goals: Specific, Measurable, Achievable,
Repeatable, Through (SMART, Section 3.5)

- Project without goals continues indefinitely
* Incomplete mix of essential skills
- Team needs onhe or more individuals with
certain skills
- Need: leadership, modeling and statistics,
programming, knowledge of modeled system

[¥
%
bt

Simulation Checklist (2 of 2)

* Checks after simulation is running
- Is simulation length appropriate?
- Are initial transients removed?
- Has model been verified?
- Has model been validated?

- Are there any surprising results? If yes,
have they been validated?

(Plus, see previous checklist (Box2.1) for
performance evaluation projects)

- -
11

Simulation Checklist (1 of 2)

® Checks before developing simulation
- Is the goal properly specified?
- Is detail in model appropriate for goal?
- Does team include right mix (leader,
modeling, programming, background)?
- Has sufficient time been planned?
® Checks during simulation development
- Is random number random?
- Is model reviewed regularly?
- Is model documented?

Outline

Introduction

Common Mistakes in Simulation
Terminology

Selecting a Simulation Language
Types of Simulations
Verification and Validation
Transient Removal

Termination

|

Terminology (1 of 7)

* Introduce terms using an example of
simulating CPU scheduling
- Sfud various scheduling techniques given
jobc acher‘isTics, ignoring disks, display...
° State variables

- Variables whose values define current state
of system

- Saving can allow simulation to be stopped
and restarted later by restoring all state
variables

- Ex: may be length of the job queue

|

Terminology (3 of 7)

® Continuous-state and discrete-state models
- If uncountably infinite - continuous
* Ex: time spent by students on hw
- If countable > discrete
* Ex: jobs in CPU queue
- Note, continuous time does not necessarily
imply continuous state and vice-versa
* All combinations possible

P

Time Term vy

Jobs
Time

|

Terminology (5 of 7)

° Static and dynamic models
- Time is not a variable > static
- If changes with time > dynamic

- Ex: CPU scheduler is dynamic, while matter-to-
energy model E=mc? is static

* Linear and nonlinear models
- Output is linear combination of input > linear
- Otherwise - nonlinear

.

Input Input
P (Non-Linear) P

Output

Output

(Linear)

Terminology (2 of 7)
° Event
- A change in system state
- Ex: Three events: arrival of job, beginning
of new execution, departure of job
° Continuous-time and discrete-time models
- If state defined at all times > continuous
- If state defined only at instants > discrete

- Ex: class that meets M-F 2-3 is discrete
since not defined other times

bl

1 Time Time

Jobs
Students

Terminology (4 of 7)

* Deterministic and probabilistic models

- If output predicted with certainty >
deterministic

- If output different for different
repetitions > probabilistic

- Ex: For proj1, dog type-1 makes simulation
deterministic but dog type-2 makes
simulation probabilistic

=
=]

32 5
5 °, ° F= (vertical lines)
O|°% . Sle.
° o
Input Input s
16 R wEu
(Deterministic) (Probabilistic)

Terminology (6 of 7)

° Open and closed models
- Input is external and independent > open
- Closed model has no external input

- Ex: if same jobs leave and re-enter queue
then closed, while if new jobs enter system
then open

’—’III ‘T

closed

Terminology (7 of 7)

* Stable and unstable
- Model output settles down > stable
- Model output always changes > unstable

5 5
o =
= £
s\ 5
Time Time
(Stable) (Unstable)

Outline

Introduction

Common Mistakes in Simulation
Terminology

Selecting a Simulation Language
Types of Simulations
Verification and Validation
Transient Removal

Termination

L DN W A .

Selecting a Simulation Language
(1of 2)

Four choices: simulation language, general-purpose
language, extension of general purpose, simulation
package

Simulation language - built in facilities for time
steps, event scheduling, data collection, reporting
General-purpose - known to developer, available on
more systems, flexible

The major difference is the cost tradeoff -
simulation language requires startup time to learn,
while general purpose may require more time to
add simulation flexibility

- Recommendation may be for all analysts to learn one

simulation language so understand those “costs” and
can compare

21 L]

L DS W .

Outline

° Introduction

Common Mistakes in Simulation
Terminology

Selecting a Simulation Language
Types of Simulations

° Verification and Validation

° Transient Removal

Termination

22

Selecting a Simulation Language
(2 of 2)

Extension of general-purpose - collection
of routines and tasks commonly used.
Often, base language with extra libraries
that can be called

Simulation packages - allow definition of
model in interactive fashion. Get results in
one day

Tradeoff is in flexibility, where packages
can only do what developer envisioned, but
if that is what is needed then is quicker to
do so

Types of Simulations

Variety of types, but main: emulation,

Monte Carlo, trace driven, and discrete-

event

Emulation

- Simulation that runs on a computer to make
it appear to be something else

- Examples: JVM, NIST Net

Computer C
Computer A: Computer B
NIST Net
Hardware

Monte Carlo Simulation (1 of 2)

A static simulation has no time parameter
- Runs until some equilibrium state reached
Used to model physical phenomena,
evaluate probabilistic system, numerically
estimate complex mathematical expression

Driven with random number generator
- S0 "Monte Carlo" (after casinos) simulation

Example, consider numerically determining
the value of T

° Area of circle = T2 for radius 1

Monte Carlo Simulation (2 of 2)

Imagine throwing dart
at square

- Random x (0,1)

- Randomy (0,1)
Count if inside

- sqri(x?+y?) <1
Compute ratio R

- in/ (in+out)

Can repeat as many
times as needed to get
arbitrary precision

° Unit square area of 1
° Ratio of area in
quarter to area in
square = R
- 1= 4R

26

(Show example)

Trace-Driven Simulation

° Uses time-ordered record of events on
real system as input
- Ex: to compare memory management, use
trace of page reference patterns as input,
and can model and simulate page
replacement algorithms
° Note, need trace to be independent of
system
- Ex: if had trace of disk events, could not be
used to study page replacement since
events are dependent upon current
algorithm

27 L]

L DS W .

Trace-Driven Simulation Disadvantages

.

Complexity - requires more detailed

implementation

* Representativeness - trace from one system may

not represent all traces

Finiteness - can be long, so often limited by space

but then that time may not represent other times

° Single point of validation - need to be careful that
validation of performance gathered during a trace
represents only 1 case

* Trade-off - it is difficult to change workload since

cannot change trace. Changing trace would first

need workload model

.

Trace-Driven Simulation Advantages

Credibility - easier to sell than random inputs
Easy validation - when gatheri ng trace, often get
performance stats and can validate with those
Accurate workload - preserves correlation of
events, don't need to simplify as for workload
model

Less randomness - input is deterministic, so output
may be (or will at least have less hon-determinism)
Fair comparison - allows comparison of
alternatives under the same input stream
Similarity to actual implementation - often
simulated system needs to be similar to real one so
can get accurate idea of how complex

Discrete-Event Simulations (1 of 3)

° Continuous events are simulations like weather or
chemical reactions, while computers usually
discrete events

* Typical components:

* Event scheduler - linked list of events

- Schedule event X at time T

Hold event X for interval dt

Cancel previously scheduled event X

Hold event X indefinitely until scheduled by other

event

- Schedule an indefinitely scheduled event

Note, event scheduler executed often, so has

significant impact on performance

|

Discrete-Event Simulations (1 of 3)

* Simulation clock and time advancing
- Global variable with time
- Scheduler advances time

* Unit time - increments time by small amount
and see if any events

* Event-driven - increments time to next event
and executes (typical)

° System state variables
- Global variables describing state
- Can be used to save and restore

Discrete-Event Simulations (2 of 3)

* Event routines
- Specific routines to handle event
- Ex: job arrival, job scheduling, job departure

- Often handled by call-back from event
scheduler

* Input routines
- Get input from user (or config file, or script)
- Often get all input before simulation starts

- May allow range of inputs (from 1-9 ms) and
number or repetitions, etfc.

L DN W A .

Discrete-Event Simulations (3 of 3)

® Report generators

- Routines executed at end of simulation,
final result and print

- Can include graphical representation, too

- Ex: may compute total wait time in queue or
number of processes scheduled

;

Discrete Event Simulation Example
NS - (2 of 4)

i (Event scheduler is core of S|mu|a1'or')

DataPath 3

r tune_ wd_next_ handler_ "’[:Ihamilelk'j):\ \\\\)

\ Network /
.. Ohject. o

7 e

Event
\ Scheduler

|]
il time_id_next_handler |« Temwork
== = = ‘_\Oh_]@n:t e
Object.

Data Path

Discrete Event Simulation Example
NS - (1 of 4)
* NS-2, network simulator

- Government funded initially, Open source
° Wildly popular for IP network simulations

OTel - Tel imerpr

Simudarion

Results 4

(http://perform.wpi.edu/NS/) war

Discrete Event Simulation Example
NS - (3 of 4)

Open the NAM trace file # Setup a FTP
set nf [open out.nam w] set ftp [new Application/FTP]
$ns namtrace-all $nf $ftp attach-agent $tcp
$ftp set type_ FTP
Define a 'finish' procedure
proc finish {3 {
global ns nf
$ns flush-trace
Close the frace file
close $nf
#Execute NAM on file
exec nam out.nam &

Initial schedule events
$ns at 0.1 "$cbr start"
$ns at 1.0 "$ftp start"
$ns at 4.0 "$ftp stop"
$ns at 4.5 "$cbr stop"

Finish after 5 sec (sim time)

exit 0 $ns at 5.0 "finish"
}
Run the simulation
36 $ns run

Discrete Event Simulation Example
NS - (4 of 4)
° Output in text file, can be processed with
Unix command line tools

37 (Objects and script can have custom output, foo)

(Hey, run
sample!)

Questions (1 of 2)

* Identify all
relevant states:

- continuous state
vs. discrete time

- deterministic vs.
probabilistic

- linear vs. non-
linear

- stable vs. unstable

y(t)=t1t+0.2
° y(t) = 1/+2
Cy(t) =y(t) + A
- For integer A>= 1
* y(t+l) = y(1) + A
- ForAc<1

Questions (2 of 2)

* Which type of simulation for each of:

- Model requester address patterns to a
server where large number of factors
determine requester

- Model scheduling in a multiprocessor with
request arrivals from known distribution

- Complex mathematical integral

L DN W A .

Analysis of Simulation Results

Always assume that your assumption is invalid.
Robert F. Tatman

° Would like model output to be close to that of real
system
Made assumptions about behavior of real systems
° 1s* step, test if assumptions are reasonable
- Validation, or representativeness of assumptions
° 2vd step, test whether model implements
assumptions
- Verification, or correctness
° Mutually exclusive.
- Ex: what was your project 1?

41

Outline

Introduction

Common Mistakes in Simulation
Terminology

Selecting a Simulation Language
Types of Simulations
Verification and Validation
Transient Removal

Termination

40 v

Model Verification Techniques
(1 of 3)

Good software engineering practices will result in
fewer bugs

Top-down, modular design

Assertions (antibugging)

- Say, total packets = packets sent + packets received
- If not, can halt or warn

° Structured walk-through

Simplified, deterministic cases

- Even if end-simulation will be complicated and non-

deterministic, use simple repeatable values (maybe
fixed seeds) to debug

Tracing (via print statements or debugger)

Model Verification Techniques Model Verification Techniques
(2 of 3) (3 of 3)
® Continuity tests Consistency tests - similar inputs produce
- Slight change in input should yield slight similar outputs
change in output, otherwise error - Ex: 2 sources at 50 pkts/sec produce same
total as 1 source at 100 pkts/sec

5 /\/\/ 5 Seed independence - random number

£ § — generator starting value should not affect

a final conclusion (maybe individual output,
(Undebugged) (Debugged) but not overall conclusion)

M ° Degeneracy tests

- Try extremes (lowest and highest) since
I may reveal bugs

44

Model Validation Techniques -
Expert Intuition

Most practical, most ° Present measured

Model Validation Techniques

° Ensure assumptions used are reasonable

- Want final simulated system to be like real system common results and compare to
° Unlike verification, techniques to validate one "Brainstorm" with simulated results (can
simulation may be different from one model to people knowledgeable see if experts can tell
another In area the difference)
° Three key aspects to validate: - Ex: mail carriers and

dog owners for Projl

Assumptions validated
first, followed soon

- Assumptions
- Input parameter values and distributions

| Which alternative |

L DN W A .

- Output values and conclusions A]
° Coré\par'eTv.aLid'ty of each to one or more of: Sg;rizr(;*bgdlggus‘réonogpu? '51
- Expert intuition it output is available (and =
- Real system measurements __)Ngof zwzl,ﬂn; flons | verified), even if a
- Theoretical results always possible, preliminary 02 04 08
5 however e I " Packet Loss Probability 3=t
Model Validation Techniques - Model Validation Techniques -
Real System Measurements Theoretical Results

. Can be used to compare a simplified system with
Most reliable and preferred simulated results

May be unfeasible because system does not exist May not be useful for sole validation but can be

or foo expensive fo measure used to complement measurements or expert

- That could be why simulating in the first place! intuition

* But even one or two measurements add an - Ex: measurement validates for one processor, while
enormous amount to the validity of the simulation analytic model validates for many processors .,

* Should compare input values, output values, Note, there is no such thing as a “fully validated

o model
workload characterization .
. . . X - Would require too many resources and may be
- Use multiple traces for trace-driven simulations impossible

° Can use statistical techniques (confidence
intervals) to determine if simulated values
different than measured values

47

- Can only show is invalid

Instead, show validation in a few select cases, to
lend confidence to the overall model results

L DS W .

s
3

49

Outline

Introduction

Common Mistakes in Simulation
Terminology

Selecting a Simulation Language
Types of Simulations
Verification and Validation
Transient Removal

Termination

Transient Removal

° Most simulations only want steady state
- Remove initial transient state
° Trouble is, not possible to define exactly
what constitutes end of transient state
° Use heuristics:
- Long runs
- Proper initialization
- Truncation
- Initial data deletion
- Moving average of replications
- Batch means

L DN W A .

51

Long Runs

Use very long runs

Effects of transient state will be
amortized

But ... wastes resources
And tough to choose how long is “enough”
Recommendation ... don't use long runs alone

L DS W .

Truncation

Assume variability * Method:

during steady state is - Given n observations
less than during {Xq, X5, ., X}
transient state ignore first |
Variability measured in observations

terms of range Calculate (min,max)
- (min, max) of remaining n-|

If a trajectory of - Repeat for|=1.n
range stabilizes, then - Stop when I+1th

assume that in stable observation is neither
state min nor max

(Example next)

Proper Initialization

° Start simulation in state close to expected
state

Ex: CPU scheduler may start with some
jobs in the queue

Determine starting conditions by previous
simulations or simple analysis

May result in decreased run length, but
still may not provide confidence that are in
stable condition

Truncation Example

* So, discard first 9

* Sequence: 1,2,3,4,5,
observations

6,7,8,9,10,11,10,9,
10, 11,10, 9...
° Ignore first (I=1),

range is (2, 11) and 2nd
observation (I+1) is the
min

° Ignore second (I=2), .
range is (3,11) and 3r¢ <
observation (I+1) is min

° Finall{, 1=9 and range

1)

R Transient
Interval

is (9,11) and 10™
observation is neither ° L
min nor max Observation umber §

Truncation Example 2 (1 of 2)

* Find duration of
transient interval
for:

Truncation Example 2

Find duration of ° So, discard only 3

transient interval instead of 6
for:
11,4,2,6,5,7,10,

9’ 10, 9’]_O’ 9’ 10 e "‘Real" transient

When /=3, range is | ,
(5.10) and 4™ (6)is "t

not min or max I A
L

Initial Data Deletion (1 of 3)

° Study average after some initial
observations are deleted from sample
- If average does not change much, must be
deleting from steady state
- However, since randomness can cause some
fluctuations during steady state, need
multiple runs (w/different seeds)
* Given m replications size n each with x;; jth
observation of ith replication
- Note j varies along time axis and i varies
across replications

57 L]

Initial Data Deletion (3 of 3)

Ix

-
i

transient

interval

X
X -X)/ X

Initial Data Deletion (2 of 3)

Get mean trajectory:

x; = (l/m)Zx,-j F1.2,..n
Get overall mean:
X= (]/n)Z)_(J jF12,.n

Set [=1. Assume transient state /long, delete
first /and repeat for remaining n-/

X/= (]/(n—/))Z)_(J =10
Compute relative change

&-x)7/x

Repeat with /from 1 to n-1. Plot. Relative change
graph will stabilize at knee. Choose / there and
delete 1 through /

Moving Average of Independent
Replications

Compute mean over moving

time window

Get mean trajectory X
x;= (l/m)Zx,j jF12,.n

Set k=1. Plot movin

average of 2k+1 values:

- @ 5

Mean x; = 1/(2k+1) Z(x;+I) J
With jok+1, ke2,..nk
With I=-k to k transient
Repeat for k=2,3... and plot @
until smooth gl Mo
Find knee. Valueat jis &

length of fransient phase.

10

61

Batch Means

Run for long time n 2n 3n 4n 5n

- N observations
Divide up into batches

- m batches size n each so m

=N/n
Compute batch mean (x;)
Compute var of batch means
as function of batch size (X is
overall mean)

- Var(x) = (1/(m-1))Z(x;-X)?
Plot variance versus size n
When n starts decreasing,
have transient

Responses

Observation number

(Ignore)

J

transient
inferval

Variance of
batch means

Batch size n

Outline

Introduction

Common Mistakes in Simulation
Terminology

Selecting a Simulation Language
Types of Simulations
Verification and Validation
Transient Removal

Termination

L DN W A .

63

Terminating Simulations

For some simulations, transition state is of interest

no transient removals required

Sometimes upon termination you also get final

conditions that do not reflect steady state

- Can apply transition removal conditions o end of
simulation

Take care when gathering at end of simulation

- Ex: mean service time should include only those that
finish

Also, take care of values at event times

- Ex: queue length needs to consider area under curve

- Say t=0 two jobs arrive, t=1 one leaves, t=4 2" |eaves

- glengths q4=2, q;=1 q4,=0 but q average not (2+1+0)/3=1

- Instead, areais 2 + 1+ 1+ 1so0 q average 5/4=1.25

W

L DS W .

.

.

.

.

.

.

65

Independent Replications

Assume replications are independent
- Different random seed values
Collect m replications of size n+n, each
- ng is length of transient phase
Mean for each replication

X = (1/n)zx; i=1,2..m JEnetl,..ngtn
Overall mean for all replications
x = (1/m)zx; i=1,2..m
Calculate variance of replicate means
Var(x) = (1/(m-1))=(x;-x)? i=1,..m

Confidence interval is

X £ 21 4/Var(x)
Note, width proportional to sqrt(mn), but reduce
“waste" of mn, observations, increase length n

64

Stopping Criteria

Important to run long enough
- Stopping too short may give variable results
- Stopping too long may waste resources
Should get confidence intervals on mean to
desired width:
X+ 214Var(x)
Variance of sample mean of independent
observations
Var(x) = Var(x) / n
But only if observations independent! Most
simulations not
- Ex: if queuing delay for packet i is large then will
likely be large for packet i+1
So, use: independent replications, batch means,
regeneration (all next)

o
&

Batch Means (1 of 2)

Collect long run of N samples + n,

- ng is length of transient phase

Divide into m batches of n observations each
- nlarge enough so little correlation between
Mean for each batch

X; = (l/n)Zxij J=l..n i=1,2..m
Overall mean for all replications
x=(1/m)zx; i=l2..m

Calculate variance of replicate means
Var(x) = 1/(m-1))Z(x;-x)? i=1,..m
Confidence interval is
X 214/5Var(X)
Note, similar to independent replications but less
waste (only n,)

11

.

67

Batch Means (2 of 2)

How to choose n? Want covariance of successive
means small compared fo variance

Cov(x;, Xi1) = 1/(Mm-2)Z[(X-X)(Xi1-X)]
Start n=1, then double n

Example:
Size Cov Var
1 -0.187 1799
2 0.026 0.811
4 0.110 0.420
64 0.00010 0.06066

Becomes less than 1%, so can use n=64 as batch
size

.

Method of Regeneration (1 of 2)

Consider CPU ° Note, system with two
scheduling queues would need
Jobs arriving after both to be idle

queue empty hot ° Not all systems are
dependent upon regenerative

previous - Not those with "long"

memories
* Note, unlike in batch
methods, the cycles

Regeneration
Points

L DN W A .

69

Method of Regeneration (2 of 2)

° Compute sums:
yi=lUnsx; j=lfon
* Compute overall mean:
x = (2y)/(Zn) izl1tom
* Calculate difference between
expected and observed sums
W=y - nx izltom
Calculate variance of
differences
5,2 = 1/(m-1)zw?
* Compute mean cycle length:
n=1/mzn i=l1tom
+ Conf interval:
XE Zy.4/(5,,/(n sqrt(m)))

m cycles of length

NNz, Ny

Cycle means:

X = (1/n)Zx; j=1ton,

Note, overall mean is

not: .
x#(1/m)Zx

Since cycles are

different length

So, to compute
confidence intervals:

70

g can be of different
= o lengths
Time \
I Regeneration
68 Cycles
Question

Imagine you are called in as an expert to
review a simulation study. Which of the
following would you consider non-intuitive
and would want extra validation?
Throughput increases as load increases
Throughput decreases as load increases
Response time increases as load increases
Response time decreases as load increases
Loss rate decreases as load increases

o swn =

12

