
1

1

HINT: A New Way to
Measure Computer

Performance

John L. Gustafson and Quinn. O. Snell

In Proceedings of the Fifth Annual Hawaii
International Conference on System Sciences

(HICSS)
1995

2

Introduction (1 of 2)
• Early computers had single instruction

stream
• Floating-point operations took longest
• Thus, computer with higher flops per

second would be faster
• Wasn’t linear (doubling flop/s didn’t quite

halve execution time) but predictions were
in the “right direction”

• It doesn’t work anymore…

3

Introduction (2 of 2)
• Most algorithms do more “data motion”

than arithmetic
– And “data motion” is often the bottleneck

• Growing rift in nominal speed (as
determined by MIPS or MFLOPS) and
actual application speed

• Using memory bandwidth figures (say, in
Mbytes/sec) too simplistic
– Each memory layer (registers, primary

cache, 2nd-ary cache, main memory, disk …)
has its own size and speed

– Parallel memories make this problem worse
4

Outline
• Introduction
• Problems
• HINT
• Net QUIPS
• Examples

5

Failure of Other “Speed” Measures
SPEC

• SPEC
– Is popular
– Not independent (is a consortium)
– Has to be revised when “too small” for

workstations
– Uses geometric ratio of the time reduction

of various kernels
•Compare to base machine (was VAX-11/780)

– But some VAX-11/780 systems have SPEC
mark of 3!

– “Survives because lack of credible
alternatives”

6

Failure of Other “Speed” Measures
PERFECT

• PERFECT
– Benchmark suite
– Has 100,000 lines of (semi-) standard

FORTAN
– Not widely used since converting the

application is difficult
– Results available only for a handful of

systems

2

7

Measuring Computer Speed
• Traditional measures of computer

performance have little resemblance to
other human endeavor fields
– Meters per second and reaction rate are

“hard currency” for measuring speed that is
easily understood

• But at a loss for performance of computing
method

• Only agreed measure is time
– So fix problem (work) and run on different

computers and see what is faster
– speed is work/time

8

Work, Work
• But, since “work” is hard to define, keep it

constant and measure relative speeds
– Divide one speed by another cancels

numerator (work) and leaves ratios of time
– Avoids definition of work

• Fixing program (work) problematic, since
increased performance can attack larger
problems or get better quality answer
– Users scale job to fit time to wait
– Don’t purchase 1000-processor system to

do same job in 1/1000th of the time!

9

Possible Measures of Speed? (1 of 2)
• VAX unit of performance

– But, as SPEC shows, can vary by at least 3
• Mflop/sec

– No standard “floating point operation” since
different computers have different errors

– No measure of how much progress on
computation, only what was done

– Ex: analogous to measuring speed of human
runner by counting footsteps per second,
ignoring how large the footsteps are

10

Possible Measures of Speed? (2 of 2)
• MHz

– Universal indicator of speed for PCs
•Ex: 3.2 GHz computer faster than 2.0 GHz

– But if memory and hard-disk speeds are
bottleneck, slower computer (2.0 GHz) can
run faster than faster computer (3.2 GHz)

– Analogous to noting largest car
speedometer number and inferring
performance

• Solution? Definition of computational work
where there is a quality of an answer
– Quality Improvement per Second (QUIPS)

11

The Precedent of SLALOM (1 of 3)
• SLALOM (Scalable, Language-independent,

Ames Laboratory, One-minute
Measurement)
– Fixed time of radiosity1 at one minute
– Asked how accurate an answer
– Any answer, any architecture
– Good because vendors could scale problem

to power available could show power-
solving ability

1 To find the equilibrium radiation inside a box made of diffuse colored surfaces.
The faces are divided into regions called "patches," the equations that determine
their coupling are set up, and the equations are solved for red, green, and blue
spectral components.

12

The Precedent of SLALOM (2 of 3)
• Troubles

– Answer is “patches” (number of areas that
geometry is divided into)
• ignores roundoff errors

– Complexity was n3, n is number of patches
• Published advances put this at n2

• Then, NlogN method so hard to compare
– Ease of use is one advantage of benchmark

• Otherwise, just run target application!
– SLALOM was 1000 lines, then 8000 lines (nlogn

version) and then to parallelize took 1 graduate
student year

3

13

The Precedent of SLALOM (3 of 3)
• Troubles (continued)

– Was “forgiving” of machines with inadequate
memory bandwidth

– Did not run for 1 minute on computers with
insufficient memory compared with
arithmetic speed
•Conversely, computers with large memories

could not take advantage
• Large memory related to application

performance, even if not “speed”

14

Outline
• Introduction
• Problems
• HINT
• Net QUIPS
• Examples

15

The HINT Benchmark (1 of 2)
• Hierarchical INTegration.

– Fixes neither time nor
problem size

• Find bounds on area for y=(1-
x)/(1+x) and x[0:1]

• Subdivide x and y by equal
power of two

• Count the squares
– completely inside the area

(lower bound)
– completely contain the

area (upper bound)
• Quality inversely

proportional to
(upper bound - lower bound)

16

The HINT Benchmark (2 of 2)
• Obtain highest quality answer in least time
• Quality increases as a step function of time
• Maintain a queue of intervals in memory to split
• Split the intervals in order of largest removable

error
• Removable error by subdivision must be calculated

exactly when interval is subdivided.
• Sort the resulting smaller errors into the last two

entries in the queue

17

Why this HINT?
• Proof (now shown) that hierarchical

integration shows linear improvement
• Tries to capture adaptive methods used by

many applications
– Find largest contributor to error and refine

• Benchmarks must have mathematically
sounds results

18

HINT Details
• Adjusts to precision available

– Unlimited scalability in that no
mathematical upper limit on quality

– Only limit is precision, memory, speed of
computer

• Lower limit is extremely low
– About 40 operations give quality of 2.0

•A human can get that in a few seconds
•ME: work example on board!

• Quality attained in order N for order N
storage and order N operations
– Scaling is linear

4

19

HINT Example (1 of 3)
• Given word size bd bits, x-axis represented

by bd/2 bits, yaxis bd/2 bits
– Ex: d = 8 bits, so x-axis [0:15], y-axis [0:15]

• If nx and nx are numbers of area units
along x, y then
– Compute (1-x)/(1+x) as ny(nx-i)/(nx+i)
– Rounding up will be used for upper bound
– Rounding down will be used for lower bound

• Then divide by ny

20

HINT Example (2 of 3)
• x = ½ then i=8, nx = 16, ny = 16
• ny(nx-i)/(nx+i)

= 16(16-8)/(16+8) = 128/24
– Round down = 5, Round up = 6

• So, 5/16 < f(1/2) < 6/16

• 87 squares UL, 47 LR
• Should next sub-divide 87

LB = 40, UB = 256 – 80
Quality = 256 / (136)

= 1.88

21

HINT Example (3 of 3)

• Order N
• A computer with
• 2x QUIPS is
twice as powerful 22

Termination
• If no loss in precision, quality then related

to number of partitions
• When width is one square or UB – LB < 2

squares then done “insufficient
precision”

23

Memory Requirements
• Must compute and store record of upper-

lower bounding rectangle for each region
– Left and right x values xl, xr
– UB and LB

• If bd bits for data and bi bits for index
– n iterations is (9bd +4bi)n bits

• Note, program storage varies widely but
should not be bottleneck
– If want to stress instruction caching, do not

use HINT

24

Data Types
• Can use floating points instead of integers

– Roughly, 40 FLOPs per HINT iteration
• Computers have roughly same QUIPS for

different data types
– But specialized may do better.

• Ex: scientific may have better QUIPS for
floating point while business may have better
QUIPS for integer

5

25

Memory vs. Instructions

Index operations:
• 39 adds or subs
• 16 fetches or stores
• 6 shifts
• 3 conditional branches
• 2 multiplies

Data operations
• 69 fetches or stores
• 24 adds or subs
• 10 multiplies
• 2 conditional branches
• 2 divides

HINT kernel for a conventional processor reveals:

• Roughly, 20-90 bytes of memory per iteration
• So, about a 1-to-1 ratio of operations to storage
• Other benchmarks operation-intensive but
stressing memory needed

• Shows up when page to disk
26

Anticipated Objections to HINT
(1 of 5)

• No benchmark can predict the
performance of every application
– True.
– Maintain that memory references dominate

most applications
• HINT measures memory reference

capacity as well as operation speed

27

Anticipated Objections to HINT
(2 of 5)

• It’s only a kernel, not a complete
application
– Not true.
– Most kernels are pieces of code (ie- dot

product or matrix multiply)
– Usually, measure number of iterations

• HINT is miniature, standalone scalable
application
– Measures work in quality of answer, not

what is done to get there
– Unlikely hardware could improve HINT

performance without improving app perf
28

Anticipated Objections to HINT
(3 of 5)

• QUIPS are just like Mflop/s; they are
nothing new
– Can translate Whetsontes to Mflop/s,

SPECmarks to Mflop/s and LINPACK times
to Mflop/s

– QUIPS cannot be so translated
•Not proportional to operations once precision

begins to show
– Ex: a vector or parallel computer will have

to do more computations to equal the quality
– Traditional benchmark gives credit, even if

work did not help quality
– Plus, can get high quality without flops

29

Anticipated Objections to HINT
(4 of 5)

• This will just measure who has the
cleverest mathematicians or trickiest
compilers
– Not true.
– HINT is not amenable to algorithmic

“cleverness”
•Already O(N) and cannot use knowledge of

function
– Compiler optimizations don’t help much, even

with hand-coded assembler

30

Anticipated Objections to HINT
(5 of 5)

• For parallel machines, the only
communication is in the sum collapse
– True.
– But this “diameter” is representative of

algorithms that are limited by synch costs,
global costs, master-slave…

– “We challenge anyone to find a more
predictive test of parallel communication
that is this simple to use”

6

31

Outline
• Introduction
• Problems
• HINT
• Net QUIPS
• Examples

32

Single Number Rating
• Tug-of-War between distributors of data

and interpreters of data
– Distributors produce lots of data showing

different facets of measurements
– Interpreters want one number to answer

“How good is it?”
• So, QUIPS vs. time or QUIPS vs. mem will

be distilled
• Have devised a method

Net QUIPS

33

Net QUIPS (1 of 3)
• Integral of the quality (Q) divided by

time2, from time of first improvement (t0)
to last time measured

• Same as area under QUIPS curve on
log(time) scale

• Net QUIPS units are still QUality
Improvements Per Second

34

Net QUIPS (2 of 3)
• More memory or more cache, then QUIPS

high for larger range of time
– Net QUIPS higher

• Improved precision lifts overall Q
– Net QUIPS higher

• Lack of interruptions (say, OS)
– Net QUIPS higher

• Philosophically, Net QUIPS totals QUIPS
weighted inversely with time to get there

35

N
et Q

U
IPS Exam

ples

36

Net QUIPS (3 of 3)
• Hopefully, users can interpret QUIPS

versus time and not use Net QUIPS
• Can be used to make “speedup” plots for

multiprocessors
– Shows not quite linear with number of

processors, which is common in practice
• Can be used for humans, too

– College-educated adults have about 0.1
QUIPS

– Humans increase precision dynamically as
needed

7

37

HINT Claypool (1 of 2)
• Download source code

– cs.wpi.edu, Linux cs 2.4.25
claypool 108 cs=>>wc -l hint.c hint.h

343 hint.c
170 hint.h
513 total

• Compiled “out of the box” (make)
• Make “data” dir (mkdir data)
• Run run.sh (sh run.sh) or (perl run.pl)
• Plot 1st two columns, logscale xaxis

gnuplot
> set logscale x
> Plot “INT” with linesp, “FLOAT” with linesp

38

HINT Claypool (2 of 2)

64 million Net QUIPs

cpu MHz : 1190
cache size : 256 KB
MemTotal : 1550448 KB

OS : Linux 2.4.25
model name : AMD Athlon(tm)
stepping : 2

39

Extra Credit for Next Class
• Run HINT on machine of your choice

– Download code from
http://hint.byu.edu/pub/HINT/source/

• QUIPS Graph (ala previous slides)
– INT, FLOAT or other …

• Report
– Net QUIPS (returned by software)
– CPU, OS, Memory

• Email to me and we’ll discuss, build a
modern Net QUIPS table

40

Outline
• Introduction
• Problems
• HINT
• Net QUIPS
• Examples

41

Examples – SGI Indy SC
•Double, float, int, short = 53 bits, 24 bits, 32 bits, 15 bits of precision

• Using memory as x-axis is how see dropoff at caches
42

Other Workstations

• SPEC benchmark correlates with 10-3 and 10-2

• Fits in cache of many computers

8

43

Parallel Computers

• Ratio of Paragon to nCUBE correspond to observed app performance
• Ratio per processor is consistent with NAS benchmark
• But

•NAS benchmark takes 4 months to port and tune
•HINT takes about 2 hours

Note Intel Mflops is
25x the nCUBE Nonsense!
Memory bwidth is about 2x,
which is captured by HINT

44

Conclusions
• HINT is designed to last
• Fair comparisons over extreme variations in

computer arch, storage capacity, precision
• Linear in answer quality, memory usage and

operations
• Low cost to convert
• Speed measure that is as pure and

“information-theoretic” as possible, yet
practical and useful predictor of app
performance

