
1

Receiver-driven Layered
Multicast

Steven McCanne, Van Jacobson and
Martin Vetterli

ACM SIGCOMM, Stanford California

August 1996

Problem

• Network heterogeneity
• One output to multiple users with varied capabilities
• How to decide the rate?

• Minimum? Maximum?
• How to determine network capacity?

Solution?

• Multiple levels of quality across multiple
network channels

• Receivers decide their own rates of reception
• Note, requires layered media streams

Layered Video Stream

• One channel per layer
• Layers are additive
• Adding more channels gives better quality
• Adding more channels requires more bandwidth

The RLM Protocol

• High level abstraction
– on congestion, drop a layer

– on spare capacity, add a layer

• Q: How does the receiver decide?
– detection time

– capacity inference

Determining Capacity

• At a “well-chosen” time conduct a join experiment
• If congestion is experienced, leave the new group
• If no congestion for awhile, try to join next

higher group

2

Project 2: Mini-RLM

• Three programs
– Server: send video on all channels

– Router: receive video, ‘route’ appropriate channels
to client

– Player: receive video, probe for capacity, play
video

Mini RLM

Send video

Send appropriate
channels to player

Play video
Probe for
bandwidth

Taking a Walk

0

|

|

Mini Video

• Text-based frames

• One frame per second on each channel
– sleep! alarm! setitimer!

Taking a Walk

0

|

/ \

Taking a Walk

0

|

|

Video Scaling
• Receiver
Channel 1: 1 4 7 Time à
Channel 2: 2 5 8
Channel 3: 3 6 9

• Base case, channel 1 only:
Channel 1: 1 4 7 ...

• If more bandwidth:
Channels 1-2: 12 45 78 ...

• Full quality:
Channels 1-3: 123456789 ...

IP Multicast Client-
Server

socket()

bind()

Server

socket()

recvfrom()

Client

sendto()

Data
close()

-Same as UDP client server!
-Multicast requires special address (reserved)
-A few socket options

-No two-way communication

close()

IP Multicast

• Server
– Send to 239.0.0.1 to 239.255.255.255

addr.sin_addr.s_addr = inet_addr(239.0.0.1);

– Port

• Receiver
struct ip_mreq mreq;

mreq.imr_multiaddr.s_addr = inet_addr(239.0.0.1);

mreq.imr_interface.s_addr = htonl(INADDR_ANY);

setsockopt(sock, IPPROTO_IP, IP_ADD_MEMBERSHIP,
&mreq, sizeof(mreq))

