
1

Operating Systems

Process Synchronization (Ch 6.1 - 6.7)

Too Much Pizza

3:00
3:05
3:10
3:15
3:20
3:25
3:30

Person A
Look in fridge. Pizza!
Leave for store.
Arrive at store.
Buy pizza.
Arrive home.
Put away pizza.

Person B

Look in fridge. Pizza!
Leave for store.
Arrive at store.
Buy pizza.
Arrive home.
Put pizza away.
Oh no!

Cooperating Processes

F Consider: print spooler
– Enter file name in spooler queue
– Printer daemon checks queue and prints

F “Race conditions” (ugh!)
F (Hey, you! Show demo!)

letter hw1 lab1.c... ...(empty)

A B

6 7 8

free 9

9

Producer Consumer

F Model for cooperating processes
F Producer “produces” and item that

consumer “consumes”
F Bounded buffer (shared memory)

item buffer[MAX]; /* queue */
int counter; /* num items */

Producer
item i; /* item produced */
int in; /* put next item */
while (1) {

produce an item
while (counter == MAX){/*no-op*/}
buffer[in] = item;
in = (in + 1) % MAX;
counter = counter + 1;

}

Consumer
item i; /* item consumed */
int out; /* take next item */
while (1) {

while (counter == 0) {/*no-op*/}
item = buffer[out];
out = (out + 1) % MAX;
counter = counter - 1;
consume the item

}

2

Trouble!

{R1 = 5}
{R1 = 6}
{R2 = 5}
{R2 = 4}
{counter = 6}
{counter = 4}

R1 = counter
R1 = R1 + 1
R2 = counter
R2 = R2 -1
counter = R1
counter = R2

P:
P:
C:
C:
P:
C:

Critical Section

F Mutual Exclusion
– Only one process inside critical region

F Progress
– No process outside critical region may block

other processes wanting in

F Bounded Waiting
– No process should have to wait forever

(starvation)

F Note, no assumptions about speed!

First Try: Strict Alternation

int turn; /* shared, i or j */

while(1) {
while (turn <> i) { /* no-op */}
/* critical section */
turn = j
/* remainder section */

}

Second Try
int flag[1]; /* boolean */

while(1) {
flag[i] = true;
while (flag[j]) { /* no-op */}
/* critical section */
flag[i] = false;
/* remainder section */

}

int flag[1]; /* boolean */
int turn;
while(1) {
flag[i] = true;
turn = j;
while (flag[j] && turn==j){ }
/* critical section */
flag[i] = false;
/* remainder section */

}

Third Try: Peterson’s Solution Multiple-Processes

F “Bakery Algorithm”
F Common data structures
boolean choosing[n];
int num[n];

F Ordering of processes
– If same number, can decide “winner”

3

Multiple-Processes
choosing[i] = true;
num[i] = max(num[0],num[1] …)+1
choosing[i] = false;
for (j=0; j<n; j++) {
while(choosing[j]) { }
while(num[j]!=0 &&

(num[j],j)<(num[i],i)) {}
}
/* critical section */
num[i] = 0;

Synchronization Hardware
F Test-and-Set: returns and modifies atomically

int Test_and_Set(int target) {
int temp;
temp = target;
target = true;
return temp;

}

Synchronization Hardware

while(1) {
while (Test_and_Set(lock)) { }
/* critical section */
lock = false;
/* remainder section */

}

Semaphores

F Does not require “busy waiting”
F Semaphore S (shared, often initially =1)

– integer variable
– accessed via two (indivisible) atomic operations
wait(S): S = S - 1
if S<0 then block(S)

signal(S): S = S + 1
if S<=0 then wakeup(S)

Critical Section w/Semaphores

semaphore mutex; /* shared */

while(1) {
wait(mutex);
/* critical section */
signal(mutex);
/* remainder section */

}

Semaphore Implementation

F How do you make sure the signal and the
wait operations are atomic?

4

Semaphore Implementation

F Disable interrupts
– Why is this not evil?
– Multi-processors?

F Use correct software solution
F Use special hardware, i.e.- Test-and-Set

Design Technique: Reducing a
Problem to a Special Case

F Simple solution not adequate
– ex: disabling interrupts

F Problem solution requires special case
solution
– ex: protecting S for semaphores

F Simple solution adequate for special case
F Other examples:

– name servers, on-line help

Trouble!

Process A
wait(S)
wait(Q)
…

Process B
wait(Q)
wait(S)
…

signal(S)
/* cr */
wait(S)

wait(S)
/* cr */
wait(S)

/* cr */

Project 2: Mini Chat

F Shared memory
F Concurrent processes
F Semaphores

Outline

F Processes Synchronization (Ch 6.1 - 6.7)
– Shared memory 4
– Hardware 4
– Semaphores ←
– Classical Problems
– Other methods

F Interprocess Communication (Ch 4.6)
F Threads (Ch 4.5)

Review

F What is “mutual exclusion violation”?
– Why do we care?

F What is “busy waiting”?
F How does a semaphore work?

5

SOS Semaphore Implementation

F Semaphore structure
– array in OS
– integer id to use in process

F AttachSemaphore(key), returns sid
F DetachSemaphore(sid)
F SignalSemaphore(sid)
F WaitSemaphore(sid)

Classical Synchronization
Problems

F Bounded Buffer
F Readers Writers
F Dining Philosophers

Dining Philosophers

F Phisolophers
– Think
– Sit
– Eat
– Think

F Need 2 chopsticks to
eat

Philosopher i:
while (1) {
/* think… */
wait(chopstick[i]);
wait(chopstick[i+1 % 5]);
/* eat */
signal(chopstick[i]);
signal(chopstick[i+1 % 5]);

}

Dining Philosophers

Other Solutions?

Other Solutions

F Allow at most N-1 to sit at a time
F Allow to pick up chopsticks only if both are

available
F Asymmetric solution (odd L-R, even R-L)

6

Readers-Writers

F Readers only read the content of object
F Writers read and write the object
F Critical region:

– No processes
– One or more readers (no writers)
– One writer (nothing else)

F Solutions favor Reader or Writer

Readers-Writers
Shared:
semaphore mutex, wrt;
int readcount ;

Writer:
wait(wrt)
/* write stuff */
signal(wrt);

Readers-Writers
Reader:
wait(mutex);
readcount = readcount + 1;
if (readcount==1) wait(wrt);
signal(mutex);
/* read stuff */
wait(mutex);
readcount = readcount - 1;
if (readcount==0) signal(wrt);
signal(mutex);

“Critical Region”

F High-level construct
region X do S

X is shared variable
S is sequence of statements

F Compiler says:
wait(x-mutex)
S
signal(x-mutex)

“Critical Region”

F Deadlocks still possible:
– Process A:

region X do
region Y do S1;

– Process B:
region Y do

region X do S2;

Process A
wait(x-mutex)
...
...
wait(y-mutex)

Process B
...
wait(y-mutex)
wait(x-mutex)
...

A B

X

Y

“cycle”

Conditional Critical Regions

F High-level construct
region X when B do S
X is shared variable
B is boolean expression (based on c.r.)
S is sequence of statements

7

Bounded Buffer

Shared:
struct record {

item pool[MAX];
int count, in, out;

};
struct record buffer;

Bounded Buffer Producer

region buffer when (count < MAX){
pool[in] = i; /* next item*/
in = in + 1;
count = count + 1;

}

Bounded Buffer Consumer

region buffer when (count > 0){
nextc = pool[out];
out = (out + 1) % n;
count = count - 1;

}

Monitors

F High-level construct
F Collection of:

– variables
– data structures
– functions
– Like C++ classs

F One process active inside
F “Condition” variable

– not counters like semaphores

Monitor Producer-Consumer

monitor ProducerConsumer {
condition full, empty; /* not semphores */
integer count;

/* function prototypes */
void producer();
void consumer();
void enter(item i);
item remove();

}

Monitor Producer-Consumer
void producer() {
item i;
while (1) {

/* produce item i */
ProducerConsumer .enter(i);

}
}
void consumer() {
item i;
while (1) {

i = ProducerConsumer .remove();
/* consume item i */

}
}

8

Monitor Producer-Consumer
void enter (item i) {

if (count == N) wait(full);
/* add item i */
count = count + 1;
if (count == 1) then signal(empty);

}
item remove () {
if (count == 0) then wait(empty);
/* remove item into i */
count = count - 1;
if (count == N-1) then signal(full);
return i;

}

Other IPC Synchronization

F Sequencers
F Path Expressions
F Serializers
F ...
F All essentially equivalent in terms of

semantics. Can build each other.

Ex: Cond. Crit. Region w/Sem
region X when B do S {
wait(x-mutex);
if (!B) {

x-count = x-count + 1;
signal(x-mutex);
wait(x-delay);
/* wakeup loop */
x-count = x-count -1

}
/* remainder */

Ex: Wakeup Loop
while (!B) {
x-temp = x-temp + 1;
if (x-temp < x-count)

signal(x-delay);
else

signal(x-mutex);
wait(x-delay);

}

Ex: Remainder

S;
if (x-count > 0) {
x-temp = 0;
signal(x-delay);

} else
signal(x-mutex);

Trouble?

F Monitors and Regions attractive, but ...
– Not supported by C, C++, Pascal ...

u semaphores easy to add

F Monitors, Semaphores, Regions ...
– require shared memory
– break on multiple CPU (w/own mem)
– break distributed systems

F Message Passing!

9

Message Passing

F Communicate information from one process
to another via primitives:
send(dest, &message)
receive(source, &message)

F Receiver can specify ANY
F Receiver can block (or not)

Producer-Consumer
void Producer() {

while (TRUE) {
/* produce item */
build_message(&m, item);
send(consumer, &m);
receive(consumer, &m); /* wait for ack */

}}
void Consumer {
while(1) {

receive(producer, &m);
extract_item(&m, &item);
send(producer, &m); /* ack */
/* consume item */

}}

“Rendezvous”

Consumer Mailbox

void Consumer {
for (i=0; i<N; i++)

send(producer, &m); /* N empties */
while(1) {

receive(producer, &m);
extract_item(&m, &item);
send(producer, &m); /* ack */
/* consume item */

}
}

New Troubles with Messages?

New Troubles

F Scrambled messages (checksum)
F Lost messages (acknowledgements)
F Lost acknowledgements (sequence no.)
F Process unreachable (down, terminates)
F Naming
F Authentication
F Performance (from copying, message

building)

