)
Operating Systems

Virtua Memory

Memory Management Outline

Motivation

+ Logica address space larger than physical
memory
—“Virtua Memory”
— on specid disk
+ Abstraction for programmer
+ Performanceok?
— Error handling not used
— Maximum arrays \

+ Processes v
+ Memory Management
—Basic v
— Paging v
— Virtual memory - ,
%
Demand Paging
+ Less /0 needed Fogeout

+ Less memory needed
+ Faster response
+ More users
+ No pagesin memory
initially
— Pure demand Main Memory ol

paging Lu

Paging Implementation

idation
Bit

IS

N P O

w

Logical Page Table)
Memory Physical \

Memory S~

Page Fault

+ Page not in memory
— interrupt OS => page fault
+ OSlooksintable:
— invalid reference? =>abort
— not in memory? =>bringitin
+ Get empty frame (from list) !
+ Swap pageinto frame
+ Reset tables (valid bit = 1) By
+ Restart instruction ~—

Performance of Demand Paging

Page Fault Rate (p)
0<p <10 (nopagefaultsto every ref isafault)
Effective Access Time
= (1-p) (memory access) +p (page fault overhead)
+ Page Fault Overhead
= (swap page out) + swap page in + rest;

/

Performance Example

+ memory accesstime = 100 nanoseconds
+ Pagefault overhead = 25 msec
+ pagefault rate = 1/1000
+ EAT=(1-p) * 100+ p* (25 msec)
= (1-p) * 100 + p * 25,000,000
=100 + 24,999,900 * p
=100 + 24,999,900 * 1/1000 = 25 microsecond
+ Want less than 10% degradation
110> 100 + 24,999,900 * p
10> 24,999,9000 * p
p < .0000004 or 1 fault in 2,500,000 acct

Page Replacement

+ Pagefault => What if no free frames?
— terminate user process (ugh!)
— swap out process (reduces degree of multiprog)
— replace other page with needed page

+ Page replacement:
— if free frame, use it
— else use agorithm to select victim frame
— write page to disk
— read in new page
— change page tables
— restart process

Page Replacement

0

2
3
Page Table

Page Replacement Algorithms

+ Every system hasitsown
+ Want lowest page fault rate

+ Evaluate by running it on aparticular string
of memory references (reference string) and
computing number of page faults

+ Example: 1,2,34,1,25,1,2,34,5

2
0 3 3
Logical .
Memory 1 Physical
Memory
Page Table
Review

+ Trueor False

— The logical address space cannot be bigger than
the physical address space

— Processes have big address spaces because they
need them

+ What isdemand paging?

+ What isapagefault? /

+ What does an OS do during apage fauM*
+ What is“Bedlady’ sAnomaly” ?

First-In-First-Out (FIFO)

Optimal

N

+ Replace the page that will not be used for
thelongest period of time

1,2,34,1,251,2,34,5
4 Frames/ Process

6 Page Faults ¢

5 How do we kno
Use asbhenchmal

1,2,34,1,251,2345

4 5

3 Frames/ Process 13 9 Page Faults
2 4
5 4

4 Frames/ Process 15 10 Page Fa
2 Belady's
3

L east Recently Used

+ Replace the page that has not been used for
thelongest period of time

1,234,1,25,1,2345
5
8 Page Faults
> 4 No Belady's A
3 - “Stack” Algori
- N frames sub

LRU Implementation

+ Counter implementation

— every page has a counter; every time pageis
referenced, copy clock to counter

— when a page needs to be changed, compare the
counters to determine which to change

+ Stack implementation
— keep astack of page numbers
— pagereferenced: moveto top
— no search needed for replacement

+ (Canwedothisin software?)

LRU Approximations

+ LRU good, but hardware support expensive
+ Some hardware support by referencebit

— with each page, initially =0

— when page is referenced, set = 1

— replace the one which is 0 (no order)

+ Enhance by having 8 bits and shiftin
— approximate LRU

Second-Chance

+ FIFO replacement, but ...
— Get first in FIFO
— Look at reference bit

« bit == 0 then replace
« bit == 1 then set bit = 0, get next in FIFO

+ If page referenced enough, never repl
+ Implement with circular queue /
Sy

—

Second-Chance

(€) (b)
0
e
Next —
Vicitm 0
0 /

If al 1, degeneratesto FIFO

L N =

Enhanced Second-Chance

+ 2-bits, referencebit and modify bit

+ (0,0) neither recently used nor modified
— best pageto replace

+ (0,2) not recently used but modified
— needs writeout (“dirty” page)

+ (1,0) recently used but “clean”
— probably used again soon

+ (1,1) recently used and modified
— used soon, needs write-out

+ Circular queue in each class-- (Maci

Counting Algorithms

+ Keep acounter of number of references
— LFU - replace page with smallest count
« if doesall in beginning, won't be replaced
« decay values by shift

— MFU - replace page with largest count

« smallest count just brought in and will probably be
used

« lock in place for some time, maybe 4
+ Not too common (expensive) and nd
good

Page Buffering

+ Pool of frames
— start new process immediately, before writing old
« write out when systemidle
— list of modified pages
« write out when systemidle
— pool of free frames, remember content
« page fault => check pool

Allocation of Frames

+ How many fixed frames per process?
+ Twoallocation schemes:

— fixed allocation

— priority alocation

Fixed Allocation

+ Equal dlocation
—ex: 93frames, 5 procs = 18 per proc (3 in pool)
+ Proportional Allocation
— number of frames proportional to size
—ex: 64 frames, s1 =10, s2 =127 '
+f1=10/137x64=5
«f2=127/137 x 64 = 59 |
+ Treat processes equal RY,

Priority Allocation

+ Useaproportional scheme based on priority

+ If process generates a page fault
— select replacement a process with lower
priority
+ “Global” versus“Loca” replacement
— local consistent (not influenced by others
— globa more efficient (used more often)

Thrashing

+ If aprocess does not have “ enough” pages,
the page-fault rateis very high
—low CPU utilization
— OSthinksit needs increased multiprogramming
— adds another proccesto system

+ Thrashing iswhen a processis busy
swapping pagesin and out

CPU
utilization

Thrashing

degree of muliprogramming

Cause of Thrashing

+ Why does paging work?
— Locality model

« process migrates from one locality to another
« localities may overlap

+ Why doesthrashing occur?

— sum of localities > total memory size
+ How do we fix thrashing?

— Working Set Model

— Page Fault Frequency

Working-Set Model

+ Working set window W= afixed number of
page references
— total number of pagesreferencesintime T

+ D=sumof sizeof Ws

Working Set Example

+T=5

+ 1%23%#347\4334/“%21/

w={123 W={34,7} W={12}
— if Ttoo small, will not encompass locality — !
—if Ttoo large, will encompass several 1004 ¥
—if T => infinity, will encompass entire pr
+ if D >m=>thrashing, so suspend aprosess.-
+ Modify LRU appxto include Working'S

Page Fault Frequency

increase
number of
frames

j)

§ upper bound

3

iy

[

§’ decrease
number of

f /
Number of Frames

+ Establish “acceptable’ page-fault rat
— If rate too low, process loses frame
— If rate too high, process gains frame

Prepaging

+ Pure demand paging has many page faults
initialy
— use working set

— does cost of prepaging unused frames outweigh
cost of page-faulting?

Page Size
+ Old - Page sizefixed, New -choose pagesize
+ How do we pick theright page size? Tradeoffs:
— Fragmentation
—Tablesize
— Minimize 1/O
« transfer small (.1ms), latency + seek timelarge (10ms)
— Locdlity

« small finer resolution, but more faults 4
— ex: 200K process (1/2 used), 1 fault/ 200k, 100K fRultSDOwe

+ Historical trend towards larger page Sizes
— CPU, mem faster proportionally than disks

Program Structure

+ consider:
int A[1024][1024];
for (j=0; j<1024; j++)
for (i=0; i<1024; i++)

AliTLIl =0
+ suppose:;
— process has 1 frame
— 1 row per page

— =>1024x1024 page faults!

Program Structure

int A[1024][1024];
for (i=0; i<1024; i++)
for (j=0; j<1024; j++)
ATl =6
+ 1024 page faults
+ stack vs. hashtable /
+ Compiler
— separate code from data ;
— keep routines that call each other togethér7\,,
+ LISP (pointers) vs. Pascal (no-pointer

Priority Processes

+ Consider
— low priority process faults,
« bring pagein
— low priority process in ready queue for awhile,
waiting while high priority process runs
— high priority process faults ,
« low priority page clean, not used in awhile
=> perfect! |
+ Lock-hit (like for 1/O) until used once’}

—

Redal -Time Processes

+ Real-time
— bounds on delay
— hard-red time: systems crash, lives lost
« air-traffic control, factor automation
— soft-real time: application sucks
« audio, video
+ Paging adds unexpected delays
—don'tdoit
— lock bits for real-time processes

Virtual Memory and WinNT

+ Page Replacement Algorithm

- FIFO

— Missing page, plus adjacent pages
+ Working set

— defaultis30

— take victim frame periodically

— if no fault, reduce set sizeby 1
+ Reservepool

— hard page faults

— soft page faults

Virtual Memory and WinNT

+ Shared pages
— level of indirection for easier updates
— samevirtua entry
+ PageFile
— stores only modified logical pages
— code and memory mapped files on disk

Virtual Memory and Linux

+ Regionsof virtual memory
— paging disk (normal)
— file (text segment, memory mapped file)
+ New Virtua Memory
— exec() creates new pagetable
— fork() copies pagetable

« reference to common pages
« if written, then copied

Virtua Memory and Linux

+ Page Replacement Algorithm
— look in reserve pool for free frames
— block devices (disk cache)
— reserved for shared memory
— user-space blocks
— enhanced second chance (with more bit
« “dirty” pages not taken first

Mikhail Mikhailov

Ganga Kannan _Saqib Syed
Mark Claypool DivyaPrakash
David Finkel Sujit Kumar

WPI BMC Software, Inc.

Capacity Planning Then and Now

+ Capacity Planning in the good old days
— used to be just mainframes
— simple CPU-load based queuing theory
— Unix
+ Capacity Planning today
— distributed systems
— networks of workstations
— Windows NT
— MS Exchange, Lotus Notes

Experiment Design

+ System + Experiments
— Pentium 133 MHz — Page Faults
— NT Server 4.0 — Caching
— 64 MB RAM
— IDENTFS + Analysis
— perfnon i

+ cl earrem
&

2%

Page Fault Method

+ “Work hard”
+ Run lots of applications, open and close
+ All local access, not over network

Soft or Hard Page Faults?

!p}:"

r s |'. !

FRH; S T]

Caching and Prefetching

+ Start process
— wait for “Enter”

+ Start perfmon

+ Hit “Enter”

+ Read 1 4-K page
+ Exit

+ Repeat

Page Metrics with Caching On

Hit Return Read L Exit FGIEl
button 4KB
L 2| Sl
T
= Hit Return
[0 button
. e
Ly
m
:
- |
il
Lil N
& L =
e AL Seemmge L) Wi W BT S T L]
T Sealt Cowit T Pt L]
= Rl = [T TR
S IR Pager e Fican FRUTEN
(TR M.lwﬁu [1..|rhm4_|_l.

