Operating System

Process Scheduling
(Ch4.2,5.1-5.3)

Schedulers

® Short-Term
— “Which process gets the CPU?’
— Fast, since once per 100 ms
® |Long-Term (batch)
— “Which process gets the Ready Queue?’
® Medium-Term (Unix)
— “Which Ready Queue process to memg
— Swapping

CPU-I10O Burst Cycle

Preemptive Scheduling

® Four timesto re-schedule
1 Running to Waiting (I/0 wait)
2 Running to Ready (time slice)
3 Waiting to Ready (1/0 completion)
4 Termination
® #2 optional ==>“Preemptive’
® Timing may cause unexpected results
— updating shared variable
— kernel saving state

add

read

(/O Wait) g

§t ore §

i ncrenent &

wite

(/O Wait) :

Burst Duration
Question

® \What Performance Criteria Should the
Scheduler Seek to Optimize?
— Ex: CPU minimize time spent in queue
— Others?

Scheduling Criteria

1 CPU utilization (40 to 90)
2 Throughput (processes/ hour)
3 Turn-aroundtime
4 Waiting time (in queue)
® Maximize#1,#2 Minimize#3, #4
® Responsetime
— Self-regulated by users (go home)
— Bounded ==> Variance!

First-Come, First-Served

Process Burst Time
A 8
B 1
C 1
Gantt
o —
0 8 9 10

® Avg Wait Time(0+8+9)/3=5.7

Shortest Job First

Process Burst Time
A 8
B 1
C 1
01 2 10

® Avg Wait Time(0+1+2)/3=
® Optimal Avg Wait
® Predictiontough ... |deas?

Priority Scheduling

® SIFisaspecia case
Process Burst Time Priority.

A 8 2
B 1 1
C 1 3

01 9 10

* Avg Wait Time (0+1+9)/3=3,

Priority Scheduling Criteria?

® Interna
— open files
— memory requirements

— CPU time used - time dice expired (RR)

— processage - 1/O wait completed
® Externd
-$

— department sponsoring work

— process importance
— super-user (root) - nice

Round Robin
® Fixed time-dice and Preemption
Process Burgt Time
A 5
B 3
C 3

® Avg Turnaround =(8+ 9+ 11) / 3=93
® FCFS? SIF?

Questions

® What isaPCB?

® List stepsthat occur duringinterrupt

® Explain how SJF works

® Trueor Fase:
— FCFSisoptimal in terms of avgwaiting time
— Most processes are CPU bound
— The shorter the time quantum, the bett

Round Robin Fun

Process Burst Time

A 10

B 10

C 10

® Turn-aroundtime?

-q=10 %
-q= 1
-q ->0

More Round Robin Fun

12 3 45 6 7
Time Quantum

Process Burst Time
A 6
B 3
C 1
o D 7
E
(=
‘g /
3
Rule: g
80%within 3
one quantum c>§)
<

Fun with Scheduling
Process Burst Time Priority

A 10 2
B 1 1
C 2 3
® Gantt Charts: ® Pearformance;
— FCFS — Throughput L
- SIF — Waiting tim
— Priority — Turnaround

-RR (g=1)

More Fun with Scheduling

Process Arrivd Time Burd Time
A 0.0 8
B 04 4
C 1.0 1

® Turn around time:
— FCFS :
- SIF
—g=1CPU idle
—g=0.5CPU idle

Multi-Level Queues

® Categoriesof processes
[Fioit] < [oysen]
(o] < [merecive]
[P < [(acn]

® Rundlinlfirst,then?2...

® Starvation!
® Dividebetween queues. 70% 1, 15%2 %

Multi-Level Feedback Queues

® Time dice expensive but want interactive
= -
- - 2 Quanta
B < R o

1 Quantum

® Consider process needing 100 quanta
—1,4,8,16, 32,64 =7 swaps!
® Favor interactive users

Outline
® Processes X
- PCB X
— Interrupt Handlers X
® Scheduling
— Algorithms X ,
— Linux -
—WIinNT

Linux Process Scheduling

® Two classesof processes:
— Real-Time
— Normal
® Redl-Time:
— Always run Real-Time above Normal
— Round-Robin or FIFO
— “Soft” not “Hard”

Linux Process Scheduling

® Norma: Credit-Based (count er variable)
— process with most credits is selected
+goodness() function
— time-dlice then lose a credit (O, then suspend)
— no runnable process (all suspended), add to
every process. ,
credits = credits/2 + priority

® Automaticaly favors1/O bound pr

Windows NT Scheduling

® Basic scheduling unitisathread

® Priority based scheduling per thread
® Preemptive operating system

® No shortest job first, no quotas

Priority Assignment
® NT kernel uses 31 priority levels
— 3listhehighest; Ois systemidle thread
— Redltimepriorities: 16- 31
— Dynamic priorities: 1- 15
® Users specify apriority class:
+realtime (24) , high (13), normal (8) and idle (4)
—and arelative priority:

+ highest (+2), above normal (+1), normal (O)/gse
normal (-1), and lowest (-2) [~

— to establish the starting priority
® Threads aso have acurrent priority

Quantum

® Determines how long a Thread runs once
slected

® Variesbased on:
— NT Workstation or NT Server

— Intel or Alphahardware
— Foreground/Background application threads

® How do you think it varieswith eac

Dispatcher Ready List

Ready Threads
n ® Keeps track of all

1o —(O-0 Ready-to-execute

Dispatcher

Ready List ° threads
8 ® Queue of threads
7 —’. assigned to

FindReadyThread

® |_ocatesthehighest priority thread that is
ready to execute

® Scansdispatcher ready list

® Picksfront thread in highest priority
nonempty queue

® \Whenisthislikeround robin?

Boosting and Decay

® Boost priority
— Event that “wakes” blocked thread
— Boosts never exceed priority 15 for dynamic
— Realtime priorities are not boosted
® Decay priority
— by onefor each quantum
— decays only to starting priority (no low

Starvation Prevention

® |ow priority threads may never execute
® “Anti-CPU starvation policy”
— thread that has not executed for 3 seconds
— boost priority to 15
— double quantum
® Decay isswift not gradual after thish:

