
1

Operating Systems

Process Synchronization
(Ch 2.3, 2.4)

Too Much Pizza

3:00
3:05
3:10
3:15
3:20
3:25
3:30

Person A
Look in fridge. Pizza!
Leave for store.
Arrive at store.
Buy pizza.
Arrive home.
Put away pizza.

Person B

Look in fridge. Pizza!
Leave for store.
Arrive at store.
Buy pizza.
Arrive home.
Put pizza away.
Oh no!

Cooperating Processes

• Consider: print spooler
– Enter file name in spooler queue
– Printer daemon checks queue and prints

• “Race conditions” (ugh!)
• (Hey, you! Show demo!)

letter hw1 lab1.c... ...(empty)

A B

6 7 8

free 9

9

Outline

• Need for synchronization
– why?

• Solutions that require busy waiting
– what?

• Semaphores
– what are they?

• Classical problems
– dining philosophers
– reader/writers

Producer Consumer

• Model for cooperating processes
• Producer “produces” and item that

consumer “consumes”
• Bounded buffer (shared memory)

item buffer[MAX]; /* queue */

int counter; /* num items */

Producer
item i; /* item produced */

int in; /* put next item */

while (1) {

produce an item

while (counter == MAX){/*no-op*/}

buffer[in] = item;

in = (in + 1) % MAX;

counter = counter + 1;

}

2

Consumer
item i; /* item consumed */

int out; /* take next item */

while (1) {

while (counter == 0) {/*no-op*/}

item = buffer[out];

out = (out + 1) % MAX;

counter = counter - 1;

consume the item

}

Trouble!
{R1 = 5}

{R1 = 6}

{R2 = 5}

{R2 = 4}

{counter = 4}

{counter = 6}

R1 = counter

R1 = R1 + 1

R2 = counter

R2 = R2 -1

counter = R2

counter = R1

P:

P:

C:

C:

C:

P:

Critical Section

• Mutual Exclusion
– Only one process inside critical region

• Progress
– No process outside critical region may block other

processes wanting in
• Bounded Waiting

– No process should have to wait forever (starvation)
• Note, no assumptions about speed!

First Try: Strict Alternation

int turn; /* shared, id of turn */

while(1) {

while (turn <> my_pid) { /* no-op */}

/* critical section */

turn = your_pid

/* remainder section */

}

Second Try
int flag[1]; /* boolean */

while(1) {

flag[my_pid] = true;

while (flag[your_pid]) { /* no-op */}

/* critical section */

flag[my_pid] = false;

/* remainder section */

}

int flag[1]; /* boolean */

int turn;

while(1) {

flag[my_pid] = true;

turn = your_pid;

while (flag[your_pid] &&
turn==your_pid){ /* noop */}

/* critical section */

flag[my_pid] = false;

/* remainder section */

}

Third Try: Peterson’s Solution

3

Multiple-Processes

• “Bakery Algorithm”
• Common data structures
boolean choosing[n];

int num[n];

• Ordering of processes
– If same number, can decide “winner”

Multiple-Processes
choosing[my_pid] = true;

num[my_pid] = max(num[0],num[1] …)+1

choosing[my_pid] = false;

for (j=0; j<n; j++) {

while(choosing[j]) { }

while(num[j]!=0 &&

(num[j],j)<(num[my_pid],my_pid)){}

}

/* critical section */

num[my_pid] = 0;

Synchronization Hardware
• Test-and-Set: returns and modifies atomically

int Test_and_Set(int &target) {

int temp;

temp = target;

target = true;

return temp;

}

Using Test_and_Set
while(1) {

while (Test_and_Set(lock)) { }

/* critical section */

lock = false;

/* remainder section */

}

• All the solutions so far have required
“Busy Waiting” … what is that?

Outline

• Need for synchronization (done)
– why?

• Solutions that require busy waiting (done)
– what?

• Semaphores
– what are they?

• Classical problems
– dining philosophers
– reader/writers

Semaphores

• Do not require “busy waiting”
• Semaphore S (shared, often initially =1)

– integer variable
– accessed via two (indivisible) atomic operations
wait(S): S = S - 1

if S<0 then block(S)

signal(S): S = S + 1

if S<=0 then wakeup(S)

4

Critical Section w/Semaphores
semaphore mutex; /* shared */

while(1) {

wait(mutex);

/* critical section */

signal(mutex);

/* remainder section */

}

(Hey, you! Show demo!)

Semaphore Implementation

• Disable interrupts
– Why is this not evil?
– Multi-processors?

• Use correct software solution
• Use special hardware, i.e.- Test-and-Set

Design Technique: Reducing a
Problem to a Special Case

• Simple solution not adequate
– ex: disabling interrupts

• Problem solution requires special case
solution
– ex: protecting S for semaphores

• Simple solution adequate for special case
• Other examples:

– name servers, on-line help

Trouble!

Process A
wait(S)

wait(Q)

…

Process B
wait(Q)

wait(S)

…

signal(S)

/* cr */

wait(S)

wait(S)

/* cr */

wait(S)

/* cr */

Classical Synchronization
Problems

• Bounded Buffer
• Readers Writers
• Dining Philosophers

Dining Philosophers

• Philosophers
– Think
– Sit
– Eat
– Think

• Need 2 chopsticks to
eat

5

Philosopher i:
while (1) {

/* think… */

wait(chopstick[i]);

wait(chopstick[i+1 % 5]);

/* eat */

signal(chopstick[i]);

signal(chopstick[i+1 % 5]);

}

Dining Philosophers

(Other solutions?)

Other Solutions

• Allow at most N-1 to sit at a time
• Allow to pick up chopsticks only if both are

available
• Asymmetric solution (odd L-R, even R-L)

Readers-Writers

• Readers only read the content of object
• Writers read and write the object
• Critical region:

– No processes
– One or more readers (no writers)
– One writer (nothing else)

• Solutions favor Reader or Writer

Readers-Writers
Shared:
semaphore mutex, wrt;

int readcount;

Writer:
wait(wrt)

/* write stuff */

signal(wrt);

Readers-Writers
Reader:
wait(mutex);

readcount = readcount + 1;

if (readcount==1) wait(wrt);

signal(mutex);

/* read stuff */

wait(mutex);

readcount = readcount - 1;

if (readcount==0) signal(wrt);

signal(mutex);

Monitors
• High-level construct
• Collection of:

– variables
– data structures
– functions
– Like C++ class

• One process active inside
• “Condition” variable

– not counters like semaphores

6

Monitor Producer-Consumer
monitor ProducerConsumer {

condition full, empty;

integer count;

/* function prototypes */

void enter(item i);
item remove();

}
void producer();

void consumer();

Monitor Producer-Consumer
void producer() {
item i;

while (1) {
/* produce item i */
ProducerConsumer.enter(i);

}
}
void consumer() {
item i;

while (1) {
i = ProducerConsumer.remove();
/* consume item i */

}
}

Monitor Producer-Consumer
void enter (item i) {

if (count == N) sleep(full);
/* add item i */
count = count + 1;

if (count == 1) then wakeup(empty);
}
item remove () {
if (count == 0) then wakeup(empty);

/* remove item into i */
count = count - 1;
if (count == N-1) then sleep(full);

return i;
}

Other Process Synchronization
Methods

• Sequencers
• Path Expressions
• Serializers
• ...
• All essentially equivalent in terms of

semantics. Can build each other!

Trouble?

• Monitors and Regions attractive, but ...
– Not supported by C, C++, Pascal ...

+ semaphores easy to add

• Monitors, Semaphores, Regions ...
– require shared memory
– break on multiple CPU (w/own mem)
– break distributed systems

• In general, Inter-Process Communication
(IPC)
– Move towards Message Passing

Inter Process Communication

• How does one process communicate with
another process? Some of the ways:
– shared memory – read/write to shared region

+ shmget(), shmctl() in Unix
+ Memory mapped files in WinNT/2000

– semaphores - signal notifies waiting process
– software interrupts - process notified

asynchronously
– pipes - unidirectional stream communication
– message passing - processes send and receive

messages.

7

Software Interrupts
• Similar to hardware interrupt.
• Processes interrupt each other (often for

system call)
• Asynchronous! Stops execution then restarts

– cntl-C
– child process completes
– alarm scheduled by the process expires

+ Unix: SIGALRM from alarm() or setitimer()
– resource limit exceeded (disk quota, CPU time...)
– programming errors: invalid data, divide by zero

Software Interrupts
•SendInterrupt(pid, num)

– type num to process pid,
– kill() in Unix
– (NT doesn’t allow signals to processes)

•HandleInterrupt(num, handler)
– type num, use function handler
– signal() in Unix
– Use exception handler in WinNT/2000

• Typical handlers:
– ignore
– terminate (maybe w/core dump)
– user-defined

• (Hey, show demos!)

Unreliable Signals
• Before POSIX.1 standard:
signal(SIGINT, sig_int);

...

sig_int() {

/* re-establish handler */

signal(SIGINT, sig_int);

}

• Another signal could come before
handler re-established!

Pipes
• One process writes, 2nd process reads

% ls | more

• Shell:
1 create a pipe
2 create a process for ls command, setting
stdout to write side of pipe

3 create a process for more command, setting
stdin to read side of pipe

Shell

ls more

1

stdout
23

stdin

The Pipe

• Bounded Buffer
– shared buffer (Unix 4096K)
– block writes to full pipe
– block reads to empty pipe

b l a h . c \0

write fdread fd

The Pipe
• Process inherits file descriptors from parent

– file descriptor 0 stdin, 1 stdout, 2 stderr
• Process doesn't know (or care!) when reading

from keyboard, file, or process or writing to
terminal, file, or process

• System calls:
– read(fd, buffer, nbytes) (scanf() built on top)
– write(fd, buffer, nbytes) (printf() built on top)
– pipe(rgfd) creates a pipe

+ rgfd array of 2 fd. Read from rgfd[0], write to rgfd[1]

• (Hey, show sample code!)

8

Message Passing

• Communicate information from one process
to another via primitives:
send(dest, &message)

receive(source, &message)

• Receiver can specify ANY
• Receiver can block (or not)

Producer-Consumer
void Producer() {

while (TRUE) {

/* produce item */
build_message(&m, item);

send(consumer, &m);

receive(consumer, &m); /* wait for ack */
}}

void Consumer {

while(1) {
receive(producer, &m);
extract_item(&m, &item);

send(producer, &m); /* ack */
/* consume item */

}}

“Rendezvous”

Consumer Mailbox
void Consumer {
for (i=0; i<N; i++)

send(producer, &m); /* N empties */
while(1) {

receive(producer, &m);

extract_item(&m, &item);

send(producer, &m); /* ack */
/* consume item */

}

}

New Troubles with Messages?

New Troubles with Message Passing

• Scrambled messages (checksum)
• Lost messages (acknowledgements)
• Lost acknowledgements (sequence no.)
• Process unreachable (down, terminates)
• Naming
• Authentication
• Performance (from copying, message building)
• (Take cs4513!)

