
1

Operating System

Process Scheduling
(Ch 2.5)

Schedulers

• Short-Term
– “Which process gets the CPU?”
– Fast, since once per 100 ms

• Long-Term (batch)
– “Which process gets the Ready Queue?”

• Medium-Term (Unix)
– “Which Ready Queue process to memory?”
– Swapping

CPU-IO Burst Cycle

add

read

(I/O Wait)
store

increment

write

(I/O Wait)
Burst Duration

Fr
eq

ue
nc

y

Preemptive Scheduling

• Four times to re-schedule
1 Running to Waiting (I/O wait)
2 Running to Ready (time slice)
3 Waiting to Ready (I/O completion)
4 Termination

• #2 optional ==> “Preemptive”
• Timing may cause unexpected results

– updating shared variable
– kernel saving state

Question

• What Criteria Should the Scheduler Use?
– Ex: favor processes that are small
– Others?

Scheduling Criteria
• Internal

– open files
– memory requirements
– CPU time used - time slice expired (RR)
– process age - I/O wait completed

• External
– $
– department sponsoring work
– process importance
– super-user (root) - nice

2

Scheduling Measures of
Performance

1 CPU utilization (40 to 90)
2 Throughput (processes / hour)
3 Turn-around time
4 Waiting time (in queue)
• Maximize #1, #2 Minimize #3, #4
• Response time

– Self-regulated by users (go home)
– Bounded ==> Variance!

First-Come, First-Served
Process

A
B
C

Burst Time
8
1
1

0 8 9 10

A B C

• Avg Wait Time (0 + 8 + 9) / 3 = 5.7

Gantt
Chart

Shortest Job First

0 1 2 10

AB C

• Avg Wait Time (0 + 1 + 2) / 3 = 1
• Optimal Avg Wait
• Prediction tough … Ideas?

Process
A
B
C

Burst Time
8
1
1

Priority Scheduling
• SJF is a special case

Process
A
B
C

Burst Time
8
1
1

Priority
2
1
3

0 1 9 10

AB C

• Avg Wait Time (0 + 1 + 9) / 3 = 3.3

Round Robin
• Fixed time-slice and Preemption

Process
A
B
C

Burst Time
5
3
3

B CA B C A B CA A

• Avg Turnaround = (8 + 9 + 11) / 3 = 9.3
• FCFS? SJF?

8 9 11

SOS: Dispatcher

• What kind of scheduling algorithm is it?
• There is no “return” from the Dispatcher()

… why?
– OS system stack

• Why is there a while(1);?
– Is this infinite loop ok? Why?

3

Round Robin Fun
Process

A
B
C

Burst Time
10
10
10

• Turn-around time?
– q = 10
– q = 1
– q --> 0

More Round Robin Fun
Process

A
B
C
D

Burst Time
6
3
1
7

1 2 3 4 5 6 7
Time Quantum

A
vg

. T
ur

n-
ar

ou
nd

 T
im

e

Rule:
80% within
one quantum

Fun with Scheduling
Process

A
B
C

Burst Time
10
1
2

Priority
2
1
3

• Gantt Charts:
– FCFS
– SJF
– Priority
– RR (q=1)

• Performance:
– Throughput
– Waiting time
– Turnaround time

More Fun with Scheduling
Process

A
B
C

Arrival Time
0.0
0.4
1.0

Burst Time
8
4
1

• Turn around time:
– FCFS
– SJF
– q=1 CPU idle
– q=0.5 CPU idle

Multi-Level Queues

SystemPriority 1

Priority 2

Priority 3

Interactive

Batch

• Categories of processes

• Run all in 1 first, then 2 …
• Starvation!
• Divide between queues: 70% 1, 20% 2 …

... ...

Multi-Level Feedback Queues

QueuePriority 1

Priority 2

Priority 3

Queue

Queue

1 Quantum

2 Quanta

4 Quanta

• Time slice expensive but want interactive

• Consider process needing 100 quanta
– 1, 4, 8, 16, 32, 64 = 7 swaps!

• Favor interactive users

...

4

Outline

• Processes X
– PCB X
– Interrupt Handlers X

• Scheduling
– Algorithms X
– Linux ←←←←
– WinNT

Linux Process Scheduling

• Two classes of processes:
– Real-Time
– Normal

• Real-Time:
– Always run Real-Time above Normal
– Round-Robin or FIFO
– “Soft” not “Hard”

Linux Process Scheduling

• Normal: Credit-Based (counter variable)
– process with most credits is selected

+goodness() function
– Timer goes off (jiffy, 1 per 10 ms)

+ then lose a credit (0, then suspend)
– no runnable process (all suspended), add to

every process:
– recalculate:

credits = credits/2 + priority

• Automatically favors I/O bound processes

Windows Scheduling

• Basic scheduling unit is a thread
– (Can think if threads as processes for now)

• Priority based scheduling per thread
• Preemptive operating system
• No shortest job first, no quotas

Priority Assignment
• Windows kernel uses 31 priority levels

– 31 is the highest; 0 is system idle thread
– Realtime priorities: 16 - 31
– Dynamic priorities: 1 - 15

• Users specify a priority class:
+ realtime (24) , high (13), normal (8) and idle (4)

– and a relative priority:
+ highest (+2), above normal (+1), normal (0), below

normal (-1), and lowest (-2)

– to establish the starting priority
• Threads also have a current priority

Quantum

• Determines how long a Thread runs once
selected

• Varies based on:
– NT Workstation or NT Server
– Intel or Alpha hardware
– Foreground/Background application threads (3x)

• How do you think it varies with each?

5

Dispatcher Ready List

• Keeps track of all
Ready-to-execute
threads

• Queue of threads
assigned to each level

Dispatcher
Ready List

11

10

9

8

7

Ready Threads

FindReadyThread

• Locates the highest priority thread that is
ready to execute

• Scans dispatcher ready list
• Picks front thread in highest priority

nonempty queue

• When is this like round robin?

Boosting and Decay

• Boost priority
– Event that “wakes” blocked thread

+ Amount of boost depends upon what blocked for
– Ex: keyboard larger boost than disk

– Boosts never exceed priority 15 for dynamic
– Realtime priorities are not boosted

• Decay priority
– by one for each quantum
– decays only to starting priority (no lower)

Starvation Prevention

• Low priority threads may never execute
• “Anti-CPU starvation policy”

– thread that has not executed for 3 seconds
– boost priority to 15
– double quantum

• Decay is swift not gradual after this boost

