
1

Operating Systems

Processes
(Ch 2.1)

Processes

• “A program in execution”
• Modern computers allow several at once

– “pseudoparallelism”

A

B

C

Program
Counter

A B C

B
A

CConceptual View

Time 

Processes
• “A program in execution”

• “more” than a program: ls, tcsh

• “less” than a program: gcc blah.c

(cpp, cc1, cc2, ln …)

• “A sequential stream of execution in it’s 
own address space”

main() {
...
}
A() {
…
}

main() {
...
}
A() {
…
}

Heap

A
main

Stack

Process States

• Consider:
cat /etc/passwd | grep claypool

Waiting

Running

Ready

New

Dispatch
Interrupt

I/O Wait

I/O Complete

Exit

(Hey, you, show states in top!)

Design Technique: State Machines

• Process states
• Move from state to state based on events

– Reactive system
• Can be mechanically converted into a 

program
• Other example:

– string parsing, pre-processor

Unix Process Creation

• System call: fork()
– creates (nearly) identical copy of process
– return value different for child/parent

• System call: exec()
– over-write with new process address space

• Shell
– uses fork() and exec()
– simple!

• (Hey, you, show demos!)



2

Process Scheduler

cat ls ... disk

Scheduler

vid

• All services are processes
• Small scheduler handles interrupts, stopping and 

starting processes

Process Control Block

• Each process has a PCB
– state
– program counter
– registers
– memory management
– …

• OS keeps a table of PCB’s, one per process
• (Hey! Simple Operating System, “system.h”)

Interrupt Handling
• Stores program counter (hardware)
• Loads new program counter (hardware)

– jump to interrupt service procedure
• Save PCB information (assembly)
• Set up new stack (assembly)
• Set “waiting” process to “ready” (C)
• Scheduler (C)

– Newly awakened process
+ Often called a context-switch

– Previously running process

Context Switch
• Pure overhead
• So … fast, fast, fast

– typically 1 to 1000 microseconds
• Sometimes special hardware to speed up
• Real-Time wants worse case

– RT Linux worse case sub 20 microseconds
• How to decide when to switch contexts to another 

process is process scheduling

Linux Context Switch Times

Measured
with 
LMBench

(http://math.nmu.edu/~benchmark/)

Processes in Linux

• PCB is in struct task_struct
– states: RUNNING, INTERRUPTIBLE, 

UNINTERRUPTIBLE
– priority: when it runs
– counter: how long it runs

• Environment inherited from parent
• NR_TASKS max, 2048

– 1/2 is max per user



3

Processes in NT/2000

• States: ready, standby (first in line), 
running, waiting, transition, terminated

• priority - when it runs
• Processes are composed of threads

– (revisit threads after scheduling)


