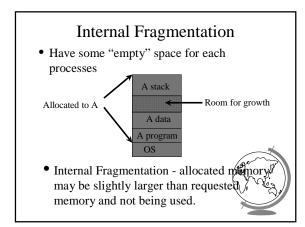
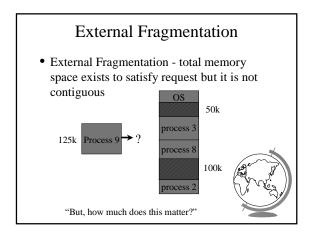
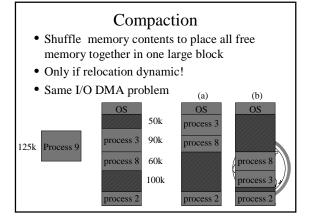
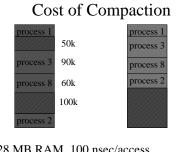

Design Technique: Static vs. Dynamic


- Static solutions
 - compute ahead of time
 - for predictable situations
- Dynamic solutions
 - compute when needed
 - for unpredictable situations
- Some situations use dynamic because static too restrictive (malloc)
- ex: memory allocation, type checking


Variable-Sized Partitions

- Idea: want to remove "wasted" memory that is not needed in each partition
- Definition:
 - Hole a block of available memory
 - scattered throughout physical memory
- New process allocated memory from hote large enough to fit it





Analysis of External Fragmentation

- Assume:
 - system at equilibrium
 - process in middle
 - if N processes, 1/2 time process, 1/2 hole
 - + ==> 1/2 N holes!
 - Fifty-percent rule
 - Fundamental:
 - + adjacent holes combined
 - + adjacent processes not combined

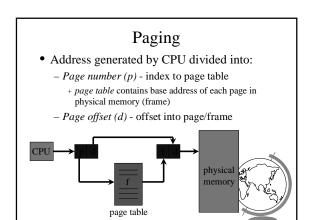
- 128 MB RAM, 100 nsec/access
 - → 1.5 seconds to compact!
- Disk much slower!

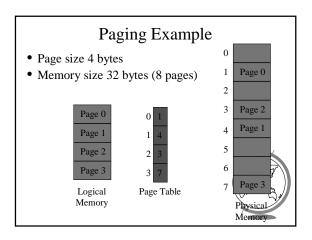
Solution?

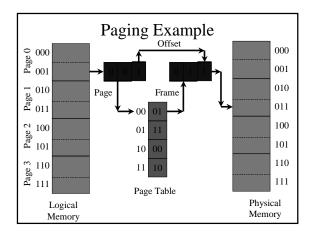
- Want to minimize external fragmentation
 - Large Blocks
 - But internal fragmentation!
- - Sacrifice some internal fragmentation for reduced external fragmentation
 - Paging

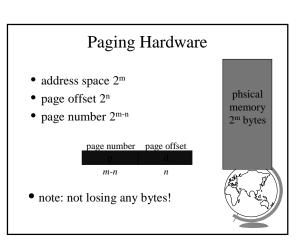
- Memory Management
 - fixed partitions

(done) (done)

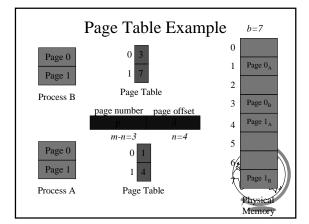

- linking and loadingvariable partitions
- (done)


- Paging
- Misc




Paging

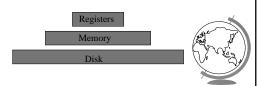
- Logical address space noncontiguous; process gets memory wherever available
 - Divide physical memory into fixed-size blocks
 - + size is a power of 2, between 512 and 8192 bytes
 - + called Frames
 - Divide logical memory into bocks of same size
 - + called Pages


Paging Example

- Consider:
 - Physical memory = 128 bytes
 - Physical address space = 8 frames
- How many bits in an address?
- How many bits for page number?
- How many bits for page offset?
- Can a logical address space have only pages? How big would the page table

Another Paging Example

- Consider:
 - 8 bits in an address
 - 3 bits for the frame/page number
- How many bytes (words) of physical memory?
- How many frames are there?
- How many bytes is a page?
- How many bits for page offset?
- If a process' page table is 12 bits, how may logical pages does it have?



Paging Tradeoffs

- Advantages
 - no external fragmentation (no compaction)
 - relocation (now pages, before were processes)
- Disadvantages
 - internal fragmentation
 - + consider: 2048 byte pages, 72,766 byte proc
 - 35 pages + 1086 bytes = 962 bytes
 - + avg: 1/2 page per process
 - + small pages!
 - overhead
 - + page table / process (context switch +
 - + lookup (especially if page to disk)

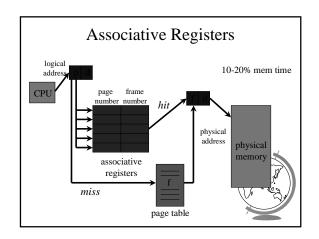
Implementation of Page Table

- Page table kept in registers
- Only good when number of frames is small
- Expensive!

Implementation of Page Table

- Page table kept in main memory
- Page Table Base Register (PTBR)

Page Table

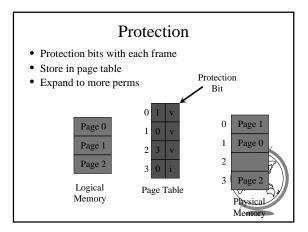


Page Table Length

Logical

Memory

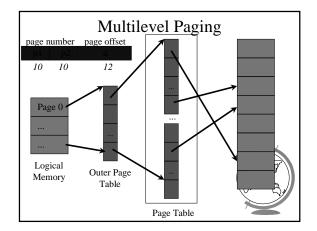
- Two memory accesses per data/inst access.
 - Solution? Associative Registers

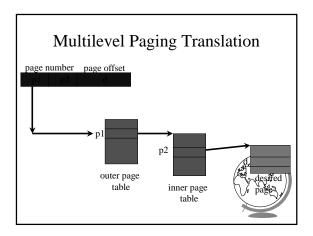

Associative Register Performance

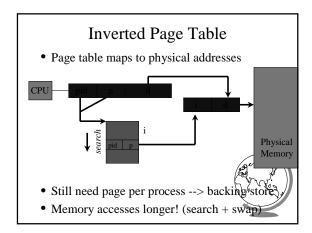
• Hit Ratio - percentage of times that a page number is found in associative registers

Effective access time =

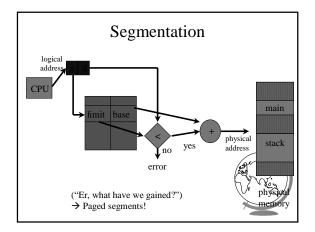
<u>hit ratio *x* hit time + miss ratio *x* miss time</u>


- hit time = reg time + mem time
- miss time = reg time + mem time * 2
- Example:
 - − 80% hit ratio, reg time = 20 nanosec, men time. = 100 nanosec
 - -.80 * 120 + .20 * 220 = 140 nanosecond




Large Address Spaces

- Typical logical address spaces:
 - 4 Gbytes => 2³² address bits (4-byte address)
- Typical page size:
 - $4 \text{ Kbytes} = 2^{12} \text{ bits}$
- Page table may have:
 - $-2^{32}/2^{12}=2^{20}=1$ million entries
- Each entry 3 bytes => 3MB per process!
- Do not want that all in RAM
- Solution? Page the page table
 - Multilevel paging



Segmentation

- Logical address: <segment, offset>
- Segment table maps two-dimensional user defined address into one-dimensional physical address
 - base starting physical location
 - limit length of segment
- · Hardware support
 - Segment Table Base Register
 - Segment Table Length Register

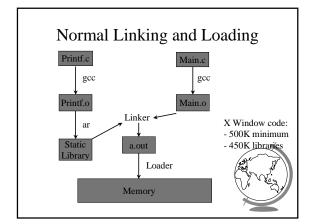
Memory Management Outline

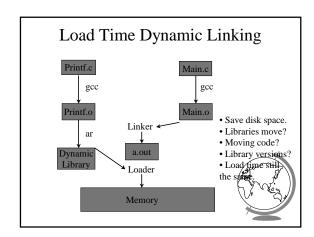
- Basic (done)
 Fixed Partitions (done)
 Variable Partitions (done)
 Paging (done)
 Basic (done)
 Enhanced (done)
- Specific
 - WinNT
 - $\ Linux$
- Linking and Loading

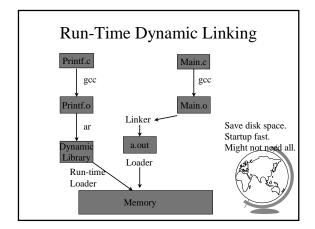
Memory Management in WinNT

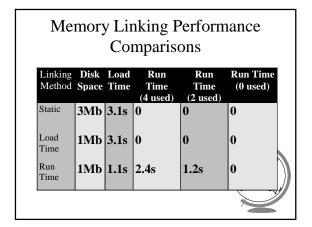
- 32 bit addresses ($2^{32} = 4$ GB address space)
 - Upper 2GB shared by all processes (kernel mode)
 - Lower 2GB private per process
- Page size is 4 KB (2¹², so offset is 12 bits)
- Multilevel paging (2 levels)
 - 10 bits for outer page table (page directory)
 - 10 bits for inner page table
 - 12 bits for offset

Memory Management in WinNT


- Each page-table entry has 32 bits
 - only 20 needed for address translation
 - 12 bits "left-over"
- Characteristics
 - Access: read only, read-write
 - States: valid, zeroed, free ...
- Inverted page table
 - points to page table entries
 - list of free frames




Memory Management in Linux


- Page size:
 - Alpha AXP has 8 Kbyte page
 - Intel x86 has 4 Kbyte page
- Multilevel paging (3 levels)
 - Makes code more portable
 - Even though no hardware support on x86,
 - + "middle-layer" defined to be 1

