Operating Systems

Introduction

* OneOSfunctionisto control devices

— significant fraction of code (80-90% of Linux)
* Want all devicesto besimpleto use

— convenient

— ex: gdin/stdout, pipe, re-direct
* Want to optimize accessto device

— efficient

— devices have very different needs

Input/Qutput Devices
(Ch5:5.15.5)
Outline

* |ntroduction (done)
* Hardware -
* Software
* Specific Devices

— Hard disk drives

— Clocks

Hardware

* Device controllers
* Typesof I/O devices
* Direct Memory Access(DMA)

Device Controllers

* Mechanica and electronic component

Mechanical - -
Electronic F —

System bus

* OSdealswith éectronic
— device controller

I/O Device Types

* block - accessisindependent
—ex- disk

* character - accessisserid
— ex- printer, network

* other
— ex- clocks (just generate interrupts)

Direct Memory Access (DMA)

* Very Old

— Controller reads from device

— OSpollscontroller for data
* Old

— Controller reads from device

— Controller interrupts OS

— OS copies data to memory
* DMA ¢

— Controller reads from device

— Controller copies datato memory

— Controller interrupts OS

Outline
* Introduction (done)
* Hardware (done)
* Software -
* Specific Devices
— Hard disk drives :

— Clocks

I/O Software Structure
¢ Layered User Level Software
Device Independent
Software

Device Drivers

Interrupt Handlers

(Talk from bottom up)

Interrupt Handlers

CPY 1/O Controller
1) Device driver initiates —-1) I nitiates|/O
e (/O device processing
(CPU executing, request)
checking for interrupts

' i 2) 1/0O complete.
between instructions)

Generate interrupt.
3) Receivesinterrupt,

transfer to handler
4) Handler processes
(Resume processing)

Interrupt Handler

Makeinterrupt handler as small aspossible

— interrupts disabled

— Split into two pieces

* First part does minimal amount of work

— defer rest until later in the rest of the device driver
— Windows: “deferred procedure call” (DPC)

— Linux: “top-half” handler ¢
Second part does most of work

* |mplementation specific

— 3rd party vendors

Device Drivers

¢ Devicedependent code
— includes interrupt handler
* Accept abstract requests
— ex: “read block n”
* Seethat they are executed by device hardware
— registers
— hardware commands :
* After error check
— pass data to device-independent softw

Device-Independent |/O Software

* Much driver codeindependent of device
* Exact boundary is system-dependent
— sometimes inside for efficiency
¢ Perform 1/O functions common to al devices
* Examples:
—naming protection block size
— buffering storage allocation error rep G

User-Space I/0O Software

® EX: count = wite(fd, buffer, bytes);
* Put parametersin placefor systemcall
® Candomore: formatting

—printf (), gets()
* Spooling

— spooal directory, daemon

—ex: printing, USENET

10 Reply —) /O System Summary
Make 1/0 (‘AI;.Fofma 1/0;
1/0 Request Spooling
Naming, protection,
blocking, buffering,
allocation
Setup deviceregisters;
check status
Wakeup driver when
1/0 completed
Perform 1/O operation
Hard Disk Drives (HDD)
arirde
¢ Controller S
oftenondisk s
* Cacheto
speed access

Dty ddre

Outline
* Introduction (done)
* Hardware (done)
* Software (done)
* Specific Devices -
— Hard disk drives 4
— Clocks
HDD - Zoom i W - EecTnr
— Platters i U= shan
+3000-10,000 RPM Cylnder % s
(floppy 360 RPM) ey = -
N d
- Trapks g
— Cylinders i !
— Sectors =

Ex: hdb: Conner Peripherals 540MB
CFS540A, 516MB W 64kB Cache, CHS=1050/16/63 ;
— 1050 cylinders (tracks), 16 heads (8 platters), 63 sectors per T

* Disk armsall move together ‘:’
vy

¢ If multipledrives 1

— overlapping seeks but one read/write at

Disk Arm Scheduling

* Readtime:
— seek time (arm to cylinder)
— rotational delay (time for sector under head)
— transfer time (take bits off disk)

® Seek time dominates

* How does disk arm scheduling affect

First-Come First-Served (FCFS)
(T T PPI PITTTIT T T I
—_—

_

® 14+13+2+6+3+12+3=53

® Servicerequestsin order that they arrive
® Little can be done to optimize

* What if many requests?

<«— Time

Shortest Seek First (SSF)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

[T T T < I¥]
iﬁ\)_}

<«— Time

® 1+2+6+9+3+2 =23

* Suppose many requests?
— Stay in middle
— Starvation!

Elevator (SCAN)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

«b

1+2+6+3+2+17=31

* Usually, alittleworse avg seek timethan
— But avoids morefair, avoids starvation

® C-SCAN haslessvariance

* Note, seek getting faster, rotationa n

— Someday, change algorithms

<«— Time
[]

Redundant Array of Inexpensive
Disks (RAID)

=
- S R=—

* For speed
— Pull datain parallel

¢ For fault-tolerance
— Example: 38 disks, form 32 bit word, 6 check
— Example: 2 disks, have exact copy on onedi

Error Handling

e Common errors.
— programming error (non-existent sector)
— transient checksum error (dust on head)
— permanent checksum error (bad block)
— seek error (arm went to wrong cylinder)
— controller error (controller refuses comm:

/

Clock Hardware Clock Software Uses

¢ Timeof day totime quantum o

time of day
— 64-bit, in seconds, or relative to boot
Pulse from 5 to 300 MHz .
* interrupt after quantum

Decrement counter * accounting of CPU usage
when==0 — separate timer or pointer to PCB

- generate interrupt e alar IT() system cals

T Holding register to — separate clock or linked list of alarms

Can control clock ticks

