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ABSTRACT
Experimental results in scientific domains are often plotted
as graphs of process variables. Clustering such graphs is
useful for applications such as process comparison in which
cluster representatives form at-a-glance depictions of each
cluster. Randomly selected representatives are seldom ef-
fective in incorporating semantics, user interests and ease
of interpretation. Hence there is a need to design domain-
specific representatives. Users cannot always evaluate the
design due to lack of time, huge volumes of experimental
data and vague notions of effectiveness. Hence there is a
need to automate evaluations using objective effectiveness
measures. In this paper, we propose an approach called
DesGraph that designs and evaluates domain-specific clus-
ter representatives of graphs. Design is based on guided
selection and construction giving candidates such as medoid
and summarized graphs. An encoding analogous to the Min-
imum Description Length principle is proposed to assess the
quality of the candidates taking into account complexity,
information loss and user interests. The winning candidate
is the one with the lowest encoding. DesGraph is experi-
mentally evaluated in Materials Science. Designed represen-
tatives are found to consistently outperform random ones.
Various representatives (e.g., medoid, summarized) are win-
ners in different targeted applications.

1. INTRODUCTION
This paper addresses a sub-problem of clustering [7],

namely, designing and evaluating domain-specific cluster rep-
resentatives. We cluster graphical plots of scientific func-

tions referred to in our work as graphs [13]. The graphs,
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resulting from experimental processes, plot a dependent ver-
sus an independent variable showing behavior of process pa-
rameters in a given domain. The domain of focus in this pa-
per is the Heat Treating of Materials [2] that motivated this
research. In applications such as process comparison, com-
putational estimation and simulation [10, 13, 8] it is found
useful to analyze the behavior of processes based on the sim-
ilarity of their results [2]. This is facilitated by clustering
graphs obtained from the corresponding processes. Cluster
representatives serve as at-a-glance visual depictions of each
cluster in such applications. However, a randomly selected
representative may not incorporate all the necessary infor-
mation about the cluster. This problem has been observed
in our earlier work, AutoDomainMine, that uses cluster rep-
resentatives for computational estimation [13, 14]. While
displaying all the relevant information it is also important to
avoid visual clutter. Moreover, different categories of users
may be interested in visualizing different levels of detail.
Given such considerations it is important to design domain-
specific cluster representatives for targeted applications.

Having designed the representatives it is essential to as-
sess their quality based on how well they capture informa-
tion, avoid clutter and cater to user interests. Users are not
always available to perform evaluations, especially at inter-
mediate stages of system development. Also, huge volumes
of data make it infeasible for users to conduct manual eval-
uations. Moreover, criteria for quality are seldom precisely
defined. Users may have vague subjective notions of their ex-
pectations from a system. Hence it is desirable to automate
the evaluations using objective measures of effectiveness.

In this paper we propose an approach called DesGraph
that designs and evaluates domain-specific cluster represen-
tatives of graphical plots. In DesGraph we utilize two de-
sign methods, namely, guided selection and construction.
In guided selection, the representative is chosen to be one
object of the cluster, e.g., the graph that forms the clus-
ter medoid [7]. In construction, the representative is a
new object developed using cluster information, e.g., by su-
perimposing all graphs in the cluster. These selected and
constructed objects form candidate representatives in Des-
Graph. An effectiveness measure for evaluating these repre-
sentatives is proposed in this paper. The proposed measure
called the DesGraph Encoding is analogous to the Minimum
Description Length [11] principle. The DesGraph Encod-
ing incorporates the complexity of the cluster representative,
information loss due to the representative and interests of



targeted users. Candidate representatives are compared us-
ing this encoding. The candidate with the lowest encoding
is the winner.

DesGraph is experimentally evaluated using graphs in the
Heat Treating domain [2]. On comparing designed repre-
sentatives with random ones using the DesGraph Encoding,
designed representatives are shown to be superior in qual-
ity. Different candidates such as medoid and summarized
graphs are winners in different situations depending on fac-
tors such as user interests. The winners are useful in de-
signing applications. For example in a given system, if ease
of interpretation is more important than amount of infor-
mation conveyed, this fact can be coded in the DesGraph
Encoding. If the winner for the given data set then hap-
pens to be the medoid graph, then this is used in the sys-
tem. DesGraph is also evaluated by integrating it with the
AutoDomainMine system [12] for computational estimation
in Heat Treating. Estimation using designed representatives
is compared with the estimation in an earlier version of the
system using random representatives. It is observed that
designed representatives enhance estimation accuracy.

The following contributions are made in this paper.

• Designing domain-specific cluster representatives by
guided selection and construction.

• Proposing a domain-specific effectiveness measure to
assess the quality of the representatives.

• Evaluating the usefulness of the designed representa-
tives for computational estimation.

• Gauging the use of the designed representatives in other
applications based on the effectiveness measure.

The rest of the paper is organized as follows. Section
2 presents an overview of Heat Treating as needed for the
given problem. Section 3 explains the DesGraph approach.
Section 4 describes its experimental evaluation. Section 5
summarizes related work. Section 6 gives the conclusions.

2. DOMAIN DESCRIPTION
Graphs in Heat Treating. Figure 1 shows a graph

called a heat transfer curve. It depicts the heat transfer co-
efficient h versus temperature T of a material where the heat
transfer coefficient measures the heat extraction capacity in
a rapid cooling process called quenching [2]. Some regions
on the graph are more significant than others because they
correspond to physical phenomena in the domain. Boiling
Point region BP shows the temperature of the part being
reduced to the boiling point of the cooling medium. Leiden-
frost Point LF denotes the breaking of the vapor blanket
resulting in rapid cooling. Slow Cooling region SC is where
the quenching process ends [2]. Maximum and minimum
heat transfer regions MAX and MIN respectively are sta-
tistical distinguishing factors.

Distance Metrics for Comparison. Different metrics
from the literature [6, 7] can be used to compare these
graphs, e.g., Euclidean distance based on absolute position
of points and statistical distances based on statistical distin-
guishing factors. In addition, we define Critical Distances

[14] such as Leidenfrost distance and Boiling Point distance
based on the respective critical regions. Our earlier work
LearnMet [14] learns semantics-preserving distance met-
rics for graphs, where a LearnMet metric is of the form

Figure 1: Heat Transfer Curve

D = Σm
i=1wiDci, each Dci being a component such as Eu-

clidean, Statistical or Critical distance, wi, its weight in-
dicating relative importance, and m, the number of compo-
nents. Metrics learned from LearnMet when used for cluster-
ing give higher clustering accuracy than individual metrics
(e.g., Euclidean distance) when evaluated using true clus-
ters over distinct test sets [14]. The output of LearnMet
therefore is used as the notion of distance for the graphs.

3. THE DESGRAPH APPROACH
Given a set of clusters, DesGraph works as follows. It

designs candidate representatives for each cluster by guided
selection and construction, measures their effectiveness us-
ing the DesGraph Encoding based on MDL [11], and returns
the designed representative as the winning candidate with
the least encoding. If multiple candidates get equal values
in the encoding then all are considered winners.

STEPS OF DESGRAPH

Input: Clusters of graphs, Notion of distance

1. Design candidate cluster representatives by

(a) Guided selection as

i. Nearest Representative

ii. Medoid Representative

(b) Construction as

i. Summarized Representative

ii. Combined Representative

2. Use DesGraph Encoding to measure effectiveness of candidates

3. Return designed representative (candidate with least encoding)

3.1 Candidates for Cluster Representatives
Consider the example of Cluster A in Figure 2. We explain

design of candidate representatives based on this example.

3.1.1 Design by Guided Selection
In guided selection the representative is chosen as one of

the objects of the cluster. Two candidate representatives,
nearest and medoid are selected as shown in Figure 3.

Nearest Representative. The nearest representative
is based on the concept of nearest neighbors using pairwise
distances, as defined below.

FOR f = 1 to g
SUM(f) = Σg

i=1
D(Gf , Gi)

ENDFOR
RETURN R = Gf with lowest SUM(f)

where Gf ,Gi refer to individual graphs in the cluster, g is the



Figure 2: Clusters of Graphs

Figure 3: Selected Representatives

total number of graphs in the cluster, R is the representative
graph and D is the distance between graphs using the given
metric. We use sum and not sum of squares because the as-
sumption is that squared distances are already incorporated
in the metric. This representative, the nearest graph, shows
users the member of the cluster that is nearest to the others
using the given distance metric. Since the metric incorpo-
rates domain semantics this representative conveys nearness
with respect to relative importance of regions on graphs.

Medoid Representative. A medoid representative, the
graph in the cluster closest to its centroid, is defined below.

FOR j = 1 to n
Cen(j) = 1

g
Σg

i=1
Gi(j)

ENDFOR
FOR i = 1 to g

DIST (i) = Σg
i=1

D(Cen, Gi)
ENDFOR
RETURN R = Gi with lowest DIST (i)

where Gi refers to each graph, Gi(j) is the value of the
dependent variable (y-coordinate) at the jth value of the
independent variable (x-coordinate), n is the number of x-
coordinates on the graphs, g is the number of graphs in
the cluster, Cen is the cluster centroid and D is the dis-
tance using the given metric. The assumption is that the
x-coordinates for all graphs are the same. Hence in comput-
ing the centroid, we take a mean of the y-coordinates only.
This representative, the medoid graph, helps users visualize
the object in the cluster closest to the average behavior of
the dependent variable on the graphs.

3.1.2 Design by Construction
In construction the representative is an object developed

using data in the cluster. We describe two such representa-
tives, summarized and combined as shown in Figure 4.

Figure 4: Constructed Representatives

Summarized Representative. The summarized repre-
sentative presents a summary of information in the cluster.
It is an average of graphs in the cluster with domain-specific
upper and lower prediction limits. Average is computed as
the cluster centroid while prediction limits are percentage
upper and lower domain-specific thresholds added and sub-
tracted from the average respectively, as follows.

FOR j = 1 to n
RAv(j) = 1

g
Σg

i=1
Gi(j)

RUp(j) = RAv(j) + U
100

∗ RAv(j)

RLow(j) = RAv(Xj) −
L

100
∗ RAv(j)

ENDFOR
RETURN R = RUp,RAv ,RLow

where Gi refers to each graph, Gi(j) is its y-coordinate at
the jth x-coordinate, n is the number of x-coordinates, g is
the number of graphs in the cluster, RAv, RUp and RLow

are the average graph, upper limit and lower limit respec-
tively, RAv(j), RUp(j) and RLow(j) being their respective
y-coordinates at the jth x-coordinate, U and L are percent-
age thresholds for upper and lower limits respectively, and R
denotes the representative. Thresholds are obtained from a
study of the data and discussions with experts. For example,
in Heat Treating both thresholds are 10%. This representa-
tive, namely, the average graph with prediction limits, is a
complex object consisting of 3 curves. It gives users a de-
piction of ranges of information in the cluster.

Combined Representative. The combined represen-
tative is constructed by superimposing all the graphs in a
given cluster on each other as follows.

FOR j = 1 to n
FOR i = 1 to g

Ri = (Gi(j))
ENDFOR

ENDFOR
RETURN R = Ri : i = 1 to g

where Gi is each graph, Gi(j) is its y-coordinate at the jth

x-coordinate, n is the number of x-coordinates, g is the num-
ber of graphs in the cluster, and R is the representative. This
representative, called the superimposed graph, is a complex
object composed of g curves. It shows users the whole clus-
ter with no information loss and depicts possible subtleties
in the cluster. For example, the combined representative
in Figure 4 shows that maximum heat transfer occurs at
around the same temperature for all graphs in the cluster.

3.2 Effectiveness Measure for Representatives
We propose an effectiveness measure called the DesGraph

Encoding for evaluating representative graphs. This encod-
ing is analogous to the Minimum Description Length (MDL)
principle [11]. MDL aims to minimize the sum of encoding



a theory and the examples using a theory. In DesGraph, the
theory is the representative itself and the examples are all
the objects in the cluster. However, the difference is that
in DesGraph, we do not need to retrieve the original cluster
from the encoding. Rather, we aim to compare the qual-
ity of the representatives in terms of how well they capture
cluster information and how complex they are taking into
account user interests. Hence the complexity of storing the
representative graph and its distance from all graphs in the
cluster are incorporated in the DesGraph Encoding. This
encoding aims to minimize the sum of the number of bits
to store the representative and the distance of all graphs
from the representative. The user bias for complexity and
distance is considered as percentage weights for each term.
The encoding is given below.

The DesGraph Encoding:

Eng = UBC ∗ log2(Nr) + UBD ∗ log2(
1

g
Σg

i=1
D(R, Gi))

where Eng = encoding for graphs
Nr = number of data points to store representative graph
R = the representative graph
Gi = each individual graph in the cluster
D = distance between graphs using the given metric
g = total number of graphs in the cluster
UBC = percentage weight giving user bias for complexity
UBD = percentage weight giving user bias for distance

The first term in the encoding, log2(Nr), is the complexity
of storing the representative. Given that N is the number of
x-coordinates, Nr = N if R is nearest or medoid, Nr = 3∗N
if R is summarized, and Nr = g ∗ N if R is combined.

The second term in the encoding, log2(
1

g
Σg

I=1
D(R, Gi))

is the average distance of each graph in the cluster from
the representative. This distance gives the information loss
with respect to domain semantics because it is computed
using the given distance metric. Distance is calculated as
D(R, Gi) if R is nearest or medoid, as the minimum of
(D(RAv , Gi),D(RUp, Gi) and D(RLow, Gi) if R is summa-

rized and as the minimum of all values D(Ri, Gi) : i = 1 to

g for the given Gi if R is combined.
Percentage weights UBC and UBD give user bias for com-

plexity and distance terms in the encoding respectively. De-
fault weights are 50% each, indicating equal importance of
both terms. In some situations users are interested in cap-
turing more information in the cluster and do not care about
how complex the representative is. Thus complexity gets a
lower weight. Some categories of users give high importance
to complexity for reasons such as storage and ease of display.
Hence complexity gets a higher weight.

Figure 5 shows calculations for measuring the effective-
ness of representatives for Cluster A. Designed candidates
are compared with each other and with a random represen-
tative. Complexity and Distance columns in the figure show
values of the respective terms in the encoding without user
bias. Columns (10/90), (50/50) and (90/10) give user bias
for complexity and distance respectively. Winners for each
column are shown in italics.

4. EXPERIMENTAL EVALUATION
DesGraph is implemented in Java and is experimentally

evaluated using real data from Heat Treating. Standalone
evaluation of DesGraph is performed using the proposed ef-
fectiveness measure. Additional evaluation is conducted by

Figure 5: Effectiveness of Representatives

Figure 6: Statistics for Small Data Set

integrating DesGraph with the AutoDomainMine system for
computational estimation [12]. The platform used for all
the evaluations is a Mobile Intel Celeron (R) PC with a
CPU Speed of 2 GHz, 192 MB of RAM and the Microsoft
Windows XP Professional Version 2002 operating system.

4.1 Standalone Evaluation of DesGraph

4.1.1 Evaluation Process
In the standalone evaluation clusters of graphs over differ-

ent data sets are sent as input to DesGraph. Input parame-
ters altered are weights of complexity and distance, data set
size, number of clusters, and clustering seeds. The cluster-
ing algorithm used is k-means [7]. Output of DesGraph is
the winning candidate for each cluster.

For comparison, a random representative is considered per
cluster in the evaluation process. Scores are then assigned
to each representative as the number of clusters in the data
set in which it is the winner. For example, in a data set of
25 graphs in 5 clusters with (50/50) weights, if the winner
is medoid for two clusters and combined for three, then the
scores are, Nearest:0, Medoid:2, Summarized:0, Combined:3
and Random:0. The statistics is reported accordingly.

4.1.2 Evaluation Results
A summary of the evaluation of DesGraph in Heat Treat-

ing is presented here. We show the results of 330 experi-
ments run with a small data set of 25 graphs in 5 clusters,
a medium data set of 150 graphs in 10 clusters and a large
data set of 400 graphs in 20 clusters. For each data set, user
bias for complexity and distance is altered from (0/100) to
(100/0) respectively in steps of 10. Each experiment is run
10 times, altering clustering seeds to build the clusters input
to DesGraph. The average of 10 experiments is shown here.
Statistics is reported as scores for representatives in Figures
6, 7 and 8 respectively. The observations made from the
evaluation results are given below, followed by a discussion
on their usefulness with respect to targeted applications.

Observations from Evaluation Results:

• For the small data set, combined representatives are



Figure 7: Statistics for Medium Data Set

Figure 8: Statistics for Large Data Set

often winners followed by nearest and medoid.

• For the medium data set, the winners are usually sum-
marized and combined representatives.

• For the large data set, summarized representatives are
winners in most cases.

• For (10/90) weights, combined representatives win re-
gardless of data set size.

• For (50/50) weights, summarized representatives win
(with or without a tie) for all data sets.

• For (90/10) weights, all data sets have nearest/medoid
representatives as winners.

• Random representatives lose almost always, except when
users give zero weight to the distance term.

4.1.3 Discussion on Evaluation
These observations help design representatives in domain-

specific applications as follows.

• The (90/10) weights are likely to arise in applications
such as parameter selection [10]. Here a represen-
tative is used to study the behavior of a cluster to
compare processes for selecting process parameters in
industry. Hence a simple representative is desirable.
Thus nearest/medoid representatives are useful, espe-
cially for large data sets.

• The (50/50) weights are typically found in simulation
applications [8]. Users run simulations with represen-
tatives depicting ranges of information in the cluster.
Hence the distance term matters because it denotes
information loss. Complexity matters because simula-
tions are time-consuming. Hence summarized repre-
sentatives are useful for most data set sizes.

Figure 9: AutoDomainMine Estimation Approach

• The (10/90) weights would probably occur in applica-
tions such as decision support systems [15] for experts.
In such systems it is important to study all informa-
tion in the cluster to analyze process behavior in de-
tail. Complexity of the representative does not matter
as much. Thus combined representatives are useful in
such applications.

4.2 Evaluation with System Integration

4.2.1 The AutoDomainMine System
DesGraph is developed for our larger project, a computa-

tional estimation system called AutoDomainMine [13, 14,
12]. AutoDomainMine estimates the graph obtained in a
scientific experiment given its input conditions. The esti-
mation approach first clusters graphs from existing experi-
ments, then uses decision tree classifiers to learn relative im-
portance of clustering criteria, and builds a representative
pair of input conditions and graph per cluster. Representa-
tive pairs are the basis for estimating graphs of new exper-
iments given their input conditions. The AutoDomainMine
estimation approach is depicted in Figure 9.

4.2.2 Evaluation of DesGraph with AutoDomainMine
DesGraph is evaluated with AutoDomainMine to assess

the effectiveness of the designed representatives. The inter-
mediate stage of AutoDomainMine uses semantics-preserving
distance metrics for clustering and randomly selected cluster
representatives for estimation [14]. This stage is compared
with the final stage that incorporates DesGraph using de-
signed representatives [12]. The estimation in both stages
is compared with the results of laboratory experiments from
a distinct test set not used for training the technique. The
difference in estimation accuracy with random and designed
representatives shows the effectiveness of DesGraph. Esti-
mation accuracy is computed as follows. Input conditions of
each laboratory experiment in the test set are submitted to
AutoDomainMine. The estimated graph is compared with
the real graph from the laboratory experiment. If the two
match within a domain-specific threshold then the estima-
tion is considered accurate. Accuracy is then reported as
the percentage of accurate estimations over the test set.

Observations from AutoDomainMine evaluation with and
without DesGraph are shown in Figure 10. The designed
representatives N, M, S and C correspond to the final stage
of AutoDomainMine [12] while the random representative
R refers to the intermediate stage [14]. It is observed



Figure 10: AutoDomainMine Evaluation Results

that designed representatives give higher estimation accu-
racy. Since the estimation provided by AutoDomainMine
has various applications such as parameter selection, simu-
lation tools and decision support [10, 8, 15], all the designed
representatives found to be are useful.

5. RELATED WORK
Brecheisen et al [3] use reachability plots to extract sig-

nificant clusters in a hierarchical cluster representation with
medoids. Their restriction is that the representative must be
an object of the cluster. We do not have such a restriction
and can thus consider multiple design strategies.

Representatives for web information are built by manual
intervention in [4] using image rating criteria of color, tex-
ture etc. No evaluation metrics are proposed. In our prob-
lem manual intervention for design is not feasible. Also,
our evaluation criteria are different such as information loss
(with respect to domain semantics), simplicity of interpre-
tation and user interests in specific applications.

Janecek et al [5] address searches based on Semantic Fish
Eye Views to display many large images in a small space.
This is worthwhile when display space is critical which is
not an issue in our targeted applications.

MDL encodings for cluster evaluation are proposed in the
literature, e.g., [1, 9]. However, these encodings are not
used to evaluate different types of representatives. More-
over, they need to retrieve the original cluster from the en-
coding which is not a requirement in our problem.

6. CONCLUSIONS
This paper proposes an approach called DesGraph for de-

signing and evaluating domain-specific cluster representa-
tives of graphical plots. Design involves guided selection
and construction giving candidate representatives such as
nearest and superimposed graphs. An effectiveness measure
called DesGraph Encoding, analogous to MDL, is proposed
for assessing the quality of the representatives. Experimen-
tal evaluation in Heat Treating shows that designed cluster
representatives have distinctly better quality than random
ones. Different types of designed representatives are found
to be suitable in different targeted applications.

Ongoing work in this area involves designing and evalu-
ating and domain-specific cluster representatives for sets of
experimental input conditions leading to the graphs. This
is another sub-problem being addressed as a part of the
AutoDomainMine project. The designed representatives of
conditions along with those of graphs will be used to build

representative pairs for estimation in AutoDomainMine. The
use of the designed representatives of conditions in other tar-
geted applications will also be assessed.

7. REFERENCES
[1] Banerjee, A. and Langford J.: An Objective Evaluation

Criterion for Clustering. KDD (Aug 2004) pp. 515-520.

[2] Boyer, H. and Cary, P.: Quenching and Control of
Distortion. ASM International (1989).

[3] Brecheisen, S., Kriegel, H., Kroger, P., Pfeifle, M. and
Viermetz, M.: Representatives for Visually Analyzing
Cluster Hierarchies. KDD MDM (Aug 2003) pp. 64-71.

[4] Helfman, J. and Hollan, J.: Image Representations for
Accessing and Organizing Web Information. SPIE II
(2001) pp. 91-101.

[5] Janecek, P., and Pu, P.: Opportunistic Search with
Semantic Fisheye Views. Swiss Federal Institute of
Technology, Lausanne (2004) TR IC/2004/42.

[6] Keim, D. and Bustos, B.: Similarity Search in
Multimedia Databases. ICDE (Mar 2004) pp. 873-874.

[7] Kaufman, L., and Rousseeuw, P.: Finding Groups in
Data: Introduction to Cluster Analysis. John Wiley
(1988).

[8] Lu, Q., Vader, R., Kang, J. and Rong, Y.: Development
of a Computer-Aided Heat Treatment Planning System.
Heat Treatment of Metals (2002) Vol. 3, pp. 65-70.

[9] Lent, B., Swami, A., and Widom, J.: Clustering
Association Rules. ICDE (Apr 1997) pp 220-231.

[10] Maniruzzaman, M., Chaves, J., McGee, C., Ma, S.
and Sisson, R.: The CHTE Quench Probe System. In
ICFDM (Jul 2002) pp 13-17.

[11] Rissanen, J.: Stochastic Complexity and the MDL
Principle. In Econometric Reviews Vol. 6 (1987) pp.
85-102.

[12] Varde, A., Rundensteiner E., Ruiz, C., Brown, D.,
Maniruzzaman, M. and Sisson, R.: Integrating
Clustering and Classification for Estimating Process
Variables in Materials Science. AAAI Symposium (Jul
2006) submitted Apr 2006.

[13] Varde, A., Rundensteiner, E., Ruiz, C.,
Maniruzzaman, M. and Sisson, R.: Data Mining over
Graphical Results of Experiments with Domain
Semantics. ACM ICICIS (Mar 2005) pp. 603-611.

[14] Varde, A., Rundensteiner E., Ruiz, C., Maniruzzaman,
M. and Sisson, R.: Learning Semantics-Preserving
Distance Metrics for Clustering Graphical Data. KDD
MDM (Aug 2005) pp. 107-112.

[15] Varde, A., Takahashi, M., Rundensteiner E., Ward, M.,
Maniruzzaman, M. and Sisson, R.: QuenchMinerTM : Deci-
sion Support for Optimization of Heat Treating Processes.
IEEE’s IICAI (Dec 2003) pp. 993 - 1003.


