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Abstract

This paper focuses on distance metric learning for graphical
data. We deal with graphs plotting scientific functions in
the form of a dependent versus an independent variable.
To compare such graphs it is often important to consider
various features, e.g., critical regions, statistical observa-
tions and absolute position of points. These features could
potentially be defined by individual metrics (components),
a weighted sum of which defines a notion of distance for
the graphs. Selecting appropriate components for the
given data is a significant challenge. This is the problem
addressed in the paper. We consider greedy and exhaustive
selection approaches. Greedy selection aims to learn a
notion of distance favoring fewer components. Exhaustive
selection refers to considering all possible combinations
of components. In addition, we propose hybrid greedy
and hybrid exhaustive approaches by merging greedy and
exhaustive selection in a more greedy and more exhaustive
manner respectively. We compare all these approaches
based on the complexity of the learning algorithm, accuracy
of the learned distance and efficiency of execution.

Keywords: Feature Selection, Domain Seman-
tics, Distance Metrics, Clustering, Data Preprocessing,
Learning Algorithms

1 Introduction.

Learning distance metrics for complex data involves
interesting issues pertaining to factors such as the
nature of the data, the semantics of the domain and
the requirements of specific problems. Accordingly,
distance metric learning has been approached using
several methods, e.g., [1, 2, 3, 10, 12, 14]. In our
work, the focus is on graphical data, more specifically,
two-dimensional graphs plotting the results of scientific
experiments as a dependent versus an independent
variable. In order to compare and analyze such graphs
analogous to domain experts, it is important to capture
their semantics. Although various distance metrics exist
in the literature [4, 6, 13], it is often not known apriori
which of these best fits the given data.

In dealing with the graphs in the context of our
problem, various issues need to be considered [12]. For
example, some regions of the graphs represent critical
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phenomena in the domain and are more significant than
other regions. In addition, there are statistical observa-
tions on the graphs depicting behavior of process pa-
rameters. Also, it is important to take into account
the absolute position of points on the graphs. Thus,
it seems advisable to capture these features using indi-
vidual distance metrics, a combination of which can be
used as a notion of distance for the graphs. The relative
importance of the components can then be defined by
weights that can be learned [12]. However, a crucial
issue is the selection of individual metrics, referred to
in our work as components. It is not always feasible
for domain experts to determine which components are
the best to use in the metric. Factors such as accuracy
of the learned notion of distance and efficiency of the
learning process also need to be taken into account.

Given the above issues we address the problem of
component selection for distance metric learning. We
consider two main approaches to select components,
namely, the greedy and the exhaustive approach [5, 8].
In greedy selection, the goal is to keep the learned dis-
tance metric simple. The heuristic for greedy selection
is based on the accuracy of each individual component.
The other extreme is exhaustive selection which consid-
ers all possible combinations of components. In addi-
tion to these two approaches, we propose two hybrid
approaches for selection. The hybrid greedy approach
follows the basic principle of greedy selection but con-
siders more combinations than greedy. The hybrid ex-
haustive approach considers all possible combinations
as in the exhaustive approach but after pruning certain
components. In all approaches, an initial set of com-
ponents is identified by a knowledge of distance metrics
and with the help of domain experts. The weights of the
components are learned using our LearnMet algorithm
[12].

We compare the component selection approaches in
terms of three criteria: the computational complexity of
the learning algorithm, the accuracy of the learned dis-
tance metric in preserving semantics and the efficiency
of learning in terms of execution time. Experimental
evaluation is conducted with real data from the domain
of Materials Science [9]. It is found that all the ap-
proaches have their pros and cons in distance metric
learning.



The rest of this paper is organized as follows. Sec-
tion 2 gives an overview of distance metric learning us-
ing the LearnMet technique. Sections 3 and 4 explain
the greedy and exhaustive selection, respectively. Sec-
tion 5 describes the two hybrid selection approaches.
Section 6 presents a comparison of the computational
complexity of the selection approaches. Section 7 sum-
marizes the comparative evaluation of accuracy and effi-
ciency for all the approaches. Section 8 outlines related
work. Section 9 gives the conclusions.

2 Technique for Distance Metric Learning.

In our prior work, we propose a technique called Learn-
Met [12] to learn domain-specific distance metrics for
graphs. We define a LearnMet Distance Metric D as
a weighted sum of components, where each component
is an individual metric describing a particular aspect of
the graphs and the weight of each component is a nu-
merical value giving its relative importance in the do-
main. Thus D = Σm

i=1wiDi where each Di is a compo-
nent, wi is its weight, and m is the number of compo-
nents.

The input to LearnMet is a training set with
actual clusters of graphs provided by domain experts.
These are iteratively compared with clusters over the
same graphs predicted using an arbitrary but fixed
clustering algorithm. Using a guessed initial metric D
for clustering, adjustments are made to the metric in
each epoch based on the error between the predicted
and actual clusters until the error is minimal or below
a given threshold. The metric giving the lowest error is
output as the learned metric [12]. The details of this
technique are described in the next subsection.

2.1 Details of Technique. In order to guess the
initial metric in LearnMet, domain experts are asked to
identify components applicable to the graphs. If experts
have a subjective notion about relative importance of
components, then this notion is used to assign initial
weights using the following heuristic [12]:

Initial Weight Heuristic: Assign initial weights
to components in the LearnMet metric based on relative
importance of components in the domain.

If this relative importance is unknown then random
weights are assigned to all components. A special case
is assigning equal weights to all components. Weights
are typically assigned on a scale of 0 to 10.

An arbitrary but fixed clustering algorithm, e.g.,
k-means [7] is selected. Using D = Σm

i=1wiDi as the
notion of distance, k clusters are constructed using the
selected algorithm, where k is the number of actual
clusters in the training set. The clusters obtained
from the algorithm using the metric D are called the

Figure 1: Predicted and Actual Clusters

predicted clusters.
Figure 1 shows an example of predicted and actual

clusters of graphs. In order to compute error, we
consider pairs of graphical plots and introduce the
following notion of correctness [12]:

Notion of Correctness: Given a pair of graphical
plots ga and gb, we say that:

• (ga, gb) is a True Positive (TP ) pair if ga and gb

are in the same predicted cluster and in the same
actual cluster.

• (ga, gb) is a True Negative (TN) pair if ga and gb

are in different predicted clusters and in different
actual clusters.

• (ga, gb) is a False Positive (FP ) pair if ga and gb

are in the same predicted cluster but in different
actual clusters.

• (ga, gb) is a False Negative (FN) pair if ga and gb

are in different predicted clusters but in the same
actual cluster.

Thus, the true positives and true negatives are
considered to be correct pairs while false positives
and false negatives are error pairs. In each epoch, a
randomly selected subset of pairs is used for evaluation
and weight adjustment referred to as pairs per epoch or
ppe. The error measure of interest to us is failure rate
which is explained next [13]. Let TP , TN , FP and
FN denote the number of true positive, true negative,
false positive and false negative pairs respectively for
a given ppe value. Also let SR be the Success Rate
and FR = (1 − SR) be the Failure Rate. Then, SR =

TP+TN
TP+TN+FP+FN and thus, FR = FP+FN

TP+TN+FP+FN . A
domain-specific error threshold t is used, where t is the
extent of error allowed per epoch in the domain. If the



Figure 2: Distances used in Weight Adjustment

error is less than or equal to the threshold then the
final metric is output. However, if the error is greater
than the threshold in a given epoch, then the metric is
adjusted based on this error.

In order to adjust the metric D using error between
predicted and actual clusters, we introduce the concept
of false positive and false negative distances DFP and
DFN respectively [12] as shown in Figure 2. DFP
is defined as the average distance using the metric D
of the false positive pairs. Likewise, DFN is defined
as the average distance using the metric D of the false
negative pairs.

Given this, we now consider the error due to the
false positive pairs. To reduce this error it is desirable to
increase the distance DFP . In order to increase DFP
the weights of one or more components in the metric
used to calculate the distance in the present epoch is
increased. Thus new weight w

′′

i = wi + DFPi

DFP where
DFPi = DFP for component Di alone. Conversely, to
reduce error due to the FN pairs we decrease DFN by
decreasing the weights of one or more components in
metric D. Hence new weight w

′

i = wi −
DFNi

DFN where
DFNi = DFN for component Di alone. Combining
these two we get the weight adjustment heuristic below.

Weight Adjustment Heuristic: For each com-
ponent Dci, its new weight is w

′′′

i = max(0, wi−
DFNi

DFN +
DFPi

DFP ).
The new metric obtained after adjustment is likely

to minimize error due to both false positive and false
negative pairs. Clustering in the next epoch is done
with this new metric. The process is repeated until
error is below threshold or maximum number of epochs
is reached. The final metric is then output.

Based on the above discussion, we give the Learn-
Met algorithm that we use for distance metric learning
[12].

2.2 Algorithm for Distance Metric Learning

The main steps of the algorithm as explained above are:
initial metric step, clustering step, cluster evaluation
step, weight adjustment step and final metric step.
These steps are outlined below.

The LearnMet Algorithm:

Given: Training set with k actual clusters over G graphs, error
threshold t, domain expert input on individual distance metrics
applicable to graphs.

1. Initial Metric Step

(a) For each individual metric assign a component Di to D

(b) If relative importance of each Di available use Initial
Weight Heuristic to assign each wi

(c) Else assign a random wi to each Di

2. Clustering Step

(a) Select arbitrary but fixed clustering algorithm

(b) Set number of clusters = k (constant)

(c) Cluster plots using distance D = Σm
i=1

wiDi

3. Cluster Evaluation Step

(a) Set ppe = Number of pairs per epoch

(b) Select randomly ppe pairs of graphical plots

(c) Calculate TP, TN, FP, FN for ppe pairs

(d) Calculate failure rate FR = (FP + FN)/(TP + TN +
FP + FN)

(e) If (FR ≤ t) or (epoch == maxEpochs) go to Final Metric
Step

4. Weight Adjustment Step

(a) Calculate distances DFN , DFP

(b) Use Weight Adjustment Heuristic to get new metric D“‘

(c) Go to 2(c) in Clustering Step using D = D“‘ as distance

5. Final Metric Step

(a) If (FR ≤ t) return metric D

(b) Else find epoch with minimum failure rate FR

(c) Return corresponding metric D

Given this, we now consider the following ap-
proaches for selection of components.

3 Greedy Approach.

In greedy selection, the goal is to try to learn a simple
metric fast, yet meeting the minimum requirements of
accuracy as per the given problem. The fewer the
number of components used in the metric, the simpler
is the metric. The main principle applied in learning
in the greedy approach is that of Occam’s Razor which
states that simpler theories are preferred over complex
ones [8]. In our case, the theory refers to the learned
metric.

Greedy selection involves first considering metrics
with a single component, then with two components,



then three and so forth until convergence occurs or the
training times out. The preference of one component
over another is determined by the accuracy of each indi-
vidual component in preserving semantics. Accuracy is
measured as the success rate SR of that component used
alone as the notion of distance in clustering in Learn-
Met. Conversely error is measured as the failure rate
FR = 1 − SR as described earlier. Given this, we now
define the heuristic for greedy selection.

Greedy Heuristic: Select each component Di

such that if FRDa
< FRDb

then Da is preferred over
Db, where Da and Db each denote a component Di, and
FRDi

is the failure rate of Di used alone as distance D
in clustering.

Using this heuristic the process of greedy selection
is explained as follows. Given a training set of graphs
placed in correct clusters and an error threshold t
acceptable in the domain, we study the graphs using
a fundamental knowledge of distance metrics and with
the help of domain experts. Based on this study,
we identify m components, i.e., individual distance
metrics potentially applicable to them. We consider
each component Di, one at a time as the metric D.
Using this as the notion of distance, we execute the
clustering step of LearnMet and evaluate error and
accuracy (failure and success rates). If error with any
component Di is less than or equal to the threshold
then we output that component alone as the learned
metric D and stop. Otherwise, we consider the two
best components, i.e., the two giving highest accuracy
individually as the initial metric and execute all the
steps of LearnMet. If the learned metric yields error
below the given threshold then this is output as the final
metric. If error is still above threshold, then we repeat
this process with the best three, best four components
and so forth until error is below threshold or all best
combinations are considered.

The logic behind this approach is that if a com-
bination of the best and second best components
does not give error below threshold, then it is less
likely that a combination of the best and third best
will yield any better results. Hence this approach
avoids the combinations that do not seem promising.
Instead, as a next step it considers the best, second
best and third best components since this combination
would probably have a greater chance of giving error
below the threshold. Based on this discussion, our al-
gorithm for greedy selection of components is presented.

Greedy Selection Algorithm:

Given: Actual clusters of graphs, error threshold t

1. Identify all m applicable components

2. For each Di : 1 = 1 to m

(a) Do clustering in LearnMet with D = Di, calculate FR
and SR

(b) If (FR ≤ t) then set final metric = D and go to step 4

3. Else j = 2

(a) Execute LearnMet with D = Σj

i=1
wiDi where

D1, . . . , Dj are the j best components

(b) If (FR ≤ t) then set final metric = D and go to step 4

(c) j = j + 1

(d) If j ≤ m go to step 3(a)

4. Output final metric

4 Exhaustive Approach.

Our method for exhaustive selection of components fol-
lows the concept of exhaustive searches in the literature
[5]. In these searches, typically each and every path is
traversed. Exhaustive searches usually occur without
heuristics. In the context of our problem, the exhaus-
tive method involves considering all possible combina-
tions of components. We then return the combination
that gives maximum accuracy in preserving semantics
as the notion of distance. As in the case of the greedy
approach, accuracy is measured as the success rate of
that component used alone as the notion of distance in
clustering. Conversely error is measured as the failure
rate. The process is as follows.

We first identify the applicable components as in
the greedy approach. We then consider each individual
component alone as the notion of distance in clustering
and record its failure rate as calculated in the LearnMet
algorithm. Regardless of the values of the failure rates
of the individual components, we next consider all
possible combinations of two components as initial
metrics in LearnMet. After executing the LearnMet
steps, the failure rates of the corresponding learned
metrics are recorded. Then all possible combinations
of three components are considered and the process
is repeated. Likewise, we proceed until all possible
combinations of m components are considered as initial
metrics. In each case, we record the failure rates
of the corresponding learned metric. Among all the
combinations the one with the lowest failure rate is
returned as the final metric. In case of ties, the one
with minimal components is returned. Note that this
selection could proceed in any order, i.e., we could start
with combinations of all m components, then consider
combinations of m − 1 components and so forth. Our
algorithm for exhaustive selection of components is
shown below.

Exhaustive Selection Algorithm:

Given: Actual clusters of graphs, error threshold t



1. Identify all m applicable components

2. j = 1

(a) Execute LearnMet with all possible combinations of j
components as metric D

(b) For each combination record failure rate FR

(c) j = j + 1

(d) If j ≤ m go to step 2(a)

3. Output final metric with lowest FR

5 Hybrid Approaches.

While greedy approaches are based on the Occam’s Ra-
zor principle of keeping things simple, exhaustive ap-
proaches stem from the Epicurean philosophy, i.e., the
other extreme of experiencing everything [8]. However,
the greedy selection does not find the most accurate
solution nor does it yield the simplest possible metric.
The exhaustive selection is not practical except for cases
involving only a small number of components. We there-
fore investigate two hybrid approaches using principles
from both greedy and exhaustive search. We describe
these approaches next.

• Hybrid Greedy Selection: This approach is
basically greedy in principle but considers more
combinations, thus tending towards the exhaustive
approach.

• Hybrid Exhaustive Selection: In this approach
the selection is basically exhaustive but after prun-
ing components using ideas from the greedy heuris-
tic.

The details of these two hybrid approaches for com-
ponent selection are explained below. Before we proceed
further, we first define the concept of a Tolerance Limit
Heuristic as follows.

Tolerance Limit Heuristic: The tolerance limit
L is defined as the upper limit of failure rate (or lower
limit of success rate). If the failure rate of component
Di used alone as the notion of distance is higher that the
tolerance limit then this component is not considered to
be useful and is hence discarded as per this heuristic.

Note that the tolerance limit L is different from
the error threshold t. Threshold t defines satisfactory
performance, i.e., if error drops below this threshold
then the clustering is considered to be good. The
tolerance limit on the other hand measures the other
extreme, i.e., to what extent unsatisfactory performance
can be tolerated. This is used to prune unwanted
components during selection.

We are now ready to explain hybrid greedy and
hybrid exhaustive approaches for selection.

5.1 Hybrid Greedy Approach. In this approach
the basic idea is to select the components in a greedy
manner. Thus it follows the greedy heuristic of pre-
ferring components with higher individual accuracies.
However, we consider not only the best components at
each stage but also consider the rest of them in descend-
ing order of their accuracies. This approach tends to-
wards exhaustive selection. The stopping criterion is
the same as for greedy selection, i.e., stop when the fail-
ure rate drops below a given threshold. However, we do
not consider all m components (as in pure exhaustive
selection), since we apply the Tolerance Limit Heuristic.
The process is described next.

We first use each component individually as the
notion of distance in clustering and calculate its failure
rate using LearnMet. If the failure rate of any single
component is less than or equal to the threshold then
we output that component alone as the final metric and
stop. If not, then as a next step we apply the Tolerance
Limit Heuristic to prune s components that give
individual failure rates greater than the tolerance limit
L. For the remaining (m− s) components, the selection
proceeds as follows. We consider combinations of two
components as the initial metric and execute LearnMet.
This time, however, instead of considering only the
best two components, i.e,, the two with individually
lowest failure rates, we consider other combinations
also. Thus, if the best and the second best components
do not give failure rate below threshold, then instead of
considering the best three as a next step, we consider
the best and the third best. This is repeated until
all combinations are considered with components
ordered in descending order of accuracies or until the
failure rate drops below the threshold. This approach
aligns with the logic of exhaustive selection. The main
argument is that other paths need to be explored rather
than directly choosing the path that seems likely to
give minimal error. The algorithm that we propose for
hybrid greedy selection is outlined as follows.

Hybrid Greedy Selection Algorithm:

Given: Actual clusters of graphs, error threshold t,
tolerance limit L

1. Identify all m applicable components

2. For each component Di : i = 1 to m

(a) Do clustering in LearnMet with D = Di, calculate FR
and SR

(b) If (FR ≤ t) then set final metric = D and go to step 5

3. Use Tolerance Limit Heuristic to prune s components that give
FR > L

4. j = 2



(a) Execute LearnMet with combinations of j components
ordered from highest to lowest accuracies

(b) If (FR ≤ t) for any combination then set final metric =
D and go to step 5

(c) Else j = j + 1

(d) If j ≤ s go to step 4(a)

5. Output final metric

5.2 Hybrid Exhaustive Approach. This approach
follows the exhaustive method of considering all possible
combinations even if failure rate drops below threshold
and finally returning the combination with the lowest
failure rate. However, we consider only those compo-
nents whose individual failure rates are greater than or
equal to the given tolerance limit L. This stems from the
greedy heuristic of preferring components with higher
accuracies. The method is explained below.

We consider each component individually and
evaluate its failure rate using LearnMet. Using the
Tolerance Limit Heuristic, we discard s components
whose failure rate is greater than the tolerance limit
L. For the remaining (m − s) components, we consider
all possible combinations of components as the initial
metric in LearnMet and execute all of its steps. This
part is analogous to the pure exhaustive approach.
Regardless of error dropping below threshold, all
combinations are considered as the initial metric. The
corresponding learned metric that gives the lowest
failure rate is returned as the final metric. Hence this
approach is exhaustive in the sense of traversing all
possible paths. However, the Tolerance Limit Heuristic
is applied in order to prune the number of paths to be
traversed. The algorithm that we propose for hybrid
exhaustive selection is shown below.

Hybrid Exhaustive Selection Algorithm:

Given: Actual clusters of graphs, error threshold t,
tolerance limit L

1. Identify all m applicable components

2. For each component Di : i = 1 to m

(a) Do clustering in LearnMet with D = Di, calculate FR
and SR

3. Use Tolerance Limit Heuristic to prune s components that give
FR > L

4. j = 1

(a) Execute LearnMet with all possible combinations of j
components

(b) For each combination record failure rate FR

(c) j = j + 1

(d) If j ≤ (m − s) go to step 4(a)

5. Output final metric with lowest failure rate FR

6 Comparison of Computational Complexity.

6.1 Greedy Selection. In greedy selection, we first
need to execute LearnMet m times in order to determine
the individual failure rates of the m components. In the
next execution, we consider only the best and second
best. Then, we consider only the best, second best
and third best. Thus, in every subsequent execution
we consider only the best combinations, not all possible
combinations. Hence this involves at most (m − 1)
executions of LearnMet, in addition to the m executions
with single components. Thus the total number of
executions is at most m+(m−1). Thus greedy selection
even in the worst case involves only 2m−1 executions of
the distance metric learning algorithm, thus providing
a search space that is linear with respect to the number
of components m. This gives a low computational
complexity and hence faster learning.

6.2 Exhaustive Selection. In the exhaustive ap-
proach, the search space is exponential (2m − 1) in the
number of subsets from m components. In the first m
executions of LearnMet, each component would be con-
sidered individually. Then all possible combinations of
2 components would be considered The number of com-
binations of 2 components that can be made from m
components is

(

m
2

)

. Next, it would consider all pos-

sible combinations of 3, i.e,
(

m
3

)

number of combina-
tions. Each combination is selected as the initial metric
in LearnMet and hence one combination corresponds
to one execution of LearnMet. Thus for m compo-
nents, the total number of combinations considered is
Σm

j=1

(

m
j

)

= 2m − 1. This gives the total number of exe-
cutions of LearnMet. Clearly, the exhaustive approach
involves a huge number of executions and hence a huge
learning complexity, which is not practical except for
small values of m.

6.3 Hybrid Greedy Selection. The proposed hy-
brid greedy algorithm reduces the search space from ex-
ponential (2m − 1) to quadratic in the number of subsets

from m components. In particular, at most m(m−1)
2 exe-

cutions of LearnMet are needed in the worst case. After
considering c components, the next step of the hybrid
greedy algorithm involves executing LearnMet at most
m − c times. If the components are considered in de-
scending order of accuracies, it is reasonable to expect
that only a fraction of the (m − c) executions will be
sufficient to find a solution with (c+1) components. To
compute the Distance Metric D or execute to LearnMet
with c ≤ m components, it is expected that the execu-
tion time will be reduced proportionally by a factor of
c
m of the time needed using all m components.



6.4 Hybrid Exhaustive Selection. In the hybrid
exhaustive approach, the search space is reduced to ap-
proximately 2m−s where s is the number of components
that get pruned out by the tolerance limit heuristic.
In the first m executions of LearnMet, each component
is considered individually to determine its failure rate.
Among these, m − s components are retained after the
pruning is done. Next, all possible combinations of 2
components would be considered from a total of (m−s)
components. The number of combinations of 2 compo-
nents that can be made from (m − s) components is
(

m−s
2

)

. Likewise, in the next few iterations all combina-
tions of 3 components would be considered. Hence, the
total number of combinations considered is: the first m
combinations using all components to determine failure
rates and the next

(

m−s
2

)

+
(

m−s
3

)

. . . +
(

m−s
m−s

)

combina-
tions with the remaining (m − s) components. Thus,
the total number of executions of LearnMet in hybrid
exhaustive selection is m + Σm−s

j=2

(

m−s
j

)

. Even though
this complexity is high, it is still likely to be less than
that of the pure exhaustive approach if some compo-
nents get pruned out. The hybrid exhaustive approach
is therefore suitable for small values of (m − s).

7 Evaluation of Accuracy and Efficiency.

Evaluation of the selection approaches is conducted
with real data from the domain of Heat Treating of
Materials [9] that motivated this research. Its main
application is to learn distance metrics for clustering
graphs called heat transfer curves. Experts provide
actual clusters over distinct test sets of heat transfer
curves not used for training. These are compared with
clusters predicted by any fixed clustering algorithm over
the same curves using the learned metrics. The extent
to which the predicted and actual clusters match each
other measures the clustering accuracy of the respective
metric. Learning efficiency is recorded as the number of
epochs required for training and the training time in
milliseconds [11].

7.1 Data Description. In order to proceed with the
details of the experiments, we give a brief overview of
the heat transfer curves and distance metrics that apply
to them.

Figure 3 shows a heat transfer curve. It plots the
heat transfer coefficient h versus temperature T of a
material where the heat transfer coefficient measures
the heat extraction capacity in a rapid cooling process
called quenching [9]. Some regions on the graph are
more significant than others because they correspond
to physical phenomena in the domain. Boiling Point
region BP shows the temperature of the part being
reduced to the boiling point of the cooling medium.

Figure 3: Heat Transfer Curve

Leidenfrost Point LF denotes the breaking of the vapor
blanket resulting in rapid cooling. Slow Cooling region
SC is where the quenching process ends [9]. Maximum
and minimum heat transfer regions, MAX and MIN
respectively, are statistical distinguishing factors.

Different metrics from the literature can be used to
compare these graphs. Euclidean distance DEuclidean

compares them based on absolute position of points.
Statistical distances DMax, DMin and DMean compare
them based on the statistical observations of maximum
value, minimum value and mean value of the dependent
variable, i.e., heat transfer coefficient. In addition, we
define Critical Distances [12], DLF , DBP and DSC as
the distances between the respective Leidenfrost points,
Boiling points and Slow Cooling points of the graphs
respectively. With this discussion, we give the details of
our experimental evaluation.

7.2 Experimental Details. The experiments below
show the impact of selecting the components on clus-
tering accuracy and learning efficiency. Several experi-
ments have been conducted [11], a summary of which
is presented here. The number of graphs in the train-
ing set is G = 25 from which P = 300 pairs of plots
are obtained. The number of clusters is k = 5 from
the actual clusters over the training set. The number
of pairs per epoch is maintained at ppe = P/2 = 150,
since this number was observed to be a good setting
from earlier experiments [11]. We conducted experi-
ments with different values for error threshold and max-
imum number of epochs. For the experiments shown
here, error threshold t is maintained at 0.1 and max-
imum number of epochs is constant at 1000. For the
hybrid approaches, we use a tolerance limit of L = 0.75,
i.e., components giving more than 75% error (less than
25%) accuracy individually are not considered useful.
The test set used is of size G = 15, with k = 3 ac-
tual clusters provided. The components applicable to
the graphs as identified with the help of domain experts
are: DSC , DEuclidean, DMean, DMax, DLF , DBP , and
DMin. We alter the seeds in the clustering algorithm



Figure 4: Greedy Selection

for randomization.
The results of our experiments are shown below for

greedy, exhaustive, hybrid greedy and hybrid exhaus-
tive approaches. For each experiment, we record the
components used, the number of epochs for training,
the training time in milliseconds and the accuracy of
the learned metric over the test set. Each experiment
shows the average of four experiments altering cluster-
ing seeds in LearnMet for randomization.

7.2.1 Greedy Selection. In applying the greedy ap-
proach for selection of components, we first executed
LearnMet with each individual component, DEuclidean,
DSC , DLF , DBP , DMax, DMean and DMin. Then
based on their individual accuracies, we used a com-
bination of the best two components, i.e., DEuclidean

and DMax. This was followed by a combination of the
best three, i.e., DEuclidean, DMax and DBP . Finally
a combination of the best four, i.e., DEuclidean, DMax,
DBP and DLF gave failure rate below threshold. The
observations are shown in Figure 4. We highlight the
combination that gives the greatest accuracy.

It is seen that for seven components, the greedy ap-
proach requires only ten executions of LearnMet before
converging to error below threshold. The convergence
occurs in as few as 375 epochs for a combination of
the four best components. The final metric in this case
yields a clustering accuracy of 0.92, i.e., 92% over the
test set. Hence this approach is efficient and yet gives
clustering accuracy above the required threshold of 90%.
However, it does not consider all prior combinations of
fewer components before moving on to a combination
with more components. Hence it is not guaranteed to
find a solution with the minimal number of components,
although it converges quickly to a fairly simple metric,
i.e., favoring few components with high accuracies.

7.2.2 Exhaustive Selection. In the exhaustive ap-
proach, we consider all possible combinations of the
seven components, namely, DEuclidean, DSC , DLF ,

Figure 5: Exhaustive Selection with one and two com-
ponents

DBP , DMax, DMean and DMin. Figure 5 shows exe-
cutions with single components and with combinations
of two components. The executions with combinations
of three components and four components are shown in
Figures 6 and 7 respectively. Figure 8 displays all the
remaining combinations, i.e., with five or more compo-
nents.

It is found that none of the combinations of two
components converge to error below threshold. Nor do
any of the combinations of three components, although
they require relatively longer training times. Among the
combinations of four components, the only one that con-
verges is with the components, DEuclidean, DLF , DBP

and DMax (highlighted in Figure 7). These happen
to be the components with individually highest accu-
racies. Among the combinations of five and six compo-
nents also, the ones that converge are those that contain
these 4 components. However, combinations contain-
ing DMean also give fairly high accuracies, even if one
among the four best components is missing. The best
combinations of five and six components are highlighted
in Figure 8. It is found that the best combination of
six gives greater accuracy than the best combination of
five which in turn gives greater accuracy than the best
combination of four. The combination of all seven com-



Figure 6: Exhaustive Selection with three components

Figure 7: Exhaustive Selection with four components

Figure 8: Exhaustive Selection with five or more com-
ponents



Figure 9: Hybrid Greedy Selection with one and two
components

ponents gives the greatest accuracy of all and is also
highlighted. However, we find that simply adding com-
ponents to the metric does not lead to convergence. The
good components, i.e., the ones with individually high
accuracies do have a significant impact on improving
the accuracy of the learned metric. Exhaustive selec-
tion goes through a much higher number of executions
than greedy selection. It does however find a solution
that gives a learned metric with the highest accuracy.

7.2.3 Hybrid Greedy Selection. In hybrid greedy
selection, the first 7 executions are conducted with the
individual components DEuclidean, DSC , DLF , DBP ,
DMax, DMean and DMin. Then the two components
DSC and DMin that individually give errors greater
than the tolerance limit L = 0.75 are pruned out. For
the remaining five components, execution proceeds with
combinations of two, three, four and all five compo-
nents respectively. The components are considered in
descending order of accuracies. Figure 9 shows the re-
sults for executions with one and two components. The
remaining ones, i.e., with three or more components are
shown in Figure 10.

We find that convergence does not occur for any of
the combinations of two or three components. The first
combination that converges to error below threshold is
the one with the four components DEuclidean, DLF ,
DBP and DMax. This is highlighted in Figure 10.
At this point we do not continue any further. It is
thus found that hybrid greedy selection requires far less
executions than exhaustive selection but relatively more
than greedy. It considers all prior combinations of fewer
components before adding components to the metric.

Figure 10: Hybrid Greedy Selection with three or more
components

Figure 11: Hybrid Exhaustive Selection with one and
two components

Hence it finds a solution with the fewest number of
components that give the desired level of accuracy.

7.2.4 Hybrid Exhaustive Selection. In the hybrid
exhaustive selection approach, after the first seven
executions with all components, i.e., DEuclidean, DSC ,
DLF , DBP , DMax, DMean and DMin, the components
DSC and DMin are discarded due to errors above
tolerance limit. Then the executions proceed as in the
pure exhaustive approach. The results for executions
with one and two components are shown in Figure 11,
while those with three or more components are shown
in Figure 12.

It is observed that convergence does not occur for
combinations having less than four components. The
only combination of four that converges is with the
components DEuclidean, DLF , DBP and DMax as high-
lighted in Figure 12. For combinations with five compo-
nents also, the ones that converge are the ones contain-



Figure 12: Hybrid Exhaustive Selection with three or
more components

ing these four components. Among them, the one that
gives highest clustering accuracy is highlighted. The
overall best combination is the one with the five compo-
nents DEuclidean, DLF , DBP , DMax and DMean. This
combination is found to give almost the same clustering
accuracy as the one with all the seven components in
the exhaustive approach. Hence it is likely to yield an
optimal solution adhering to the goals of simplicity and
accuracy.

7.3 Discussion on Experiments. We summarize
the rssults of our experimental evaluation for the four
selection approaches in terms of the most interesting
observations as follows.

• Greedy selection requires 10 executions and yields
a metric with four components that gives accuracy
of 92%.

• Exhaustive selection needs totally 127 executions
and learns the most accurate metric. This metric
has all of the seven components and gives an
accuracy of 95.12%.

• Hybrid greedy selection needs totally 28 executions
and learns a metric with four components giving an
accuracy of 91.23%.

• Hybrid exhaustive selection needs 33 executions
and yields a metric with 5 components giving an
accuracy of 94.26%.

In this evaluation, we find that greedy and hybrid
greedy approaches both yield metrics with the fewest
components, giving accuracy above the desired thresh-
old of 90%. The exhaustive and hybrid exhaustive ap-
proaches both give metrics with almost equal accuracy
in the best case. The exhaustive approach gives the

most accurate metric but the difference between the ac-
curacies of the metrics learned from exhaustive and hy-
brid exhaustive approaches is not much. However, the
hybrid exhaustive approach is a lot faster and learns a
metric with fewer components than the exhaustive ap-
proach.

8 Related Work.

In [6], an overview of distance metrics useful for similar-
ity search in multimedia databases is presented. How-
ever, they do not learn a single metric encompassing
various distance types. Tri-plots [10] provide a tool
for multidimensional data mining using intrinsic dimen-
sionality, cross correlations and cumulative distribution
functions of pair-wise distances between n-dimensional
objects. However, the focus in Tri-plots is on the overall
shape and dimensionality of objects. In our context the
basic shape and dimensionality of the graphs is similar.

Hinneburg et. al. [3] propose a learning method to
find relative importance of dimensions for n-dimensional
objects. Their focus is on dimensionality reduction. In
[14] they learn which type of position-based distance is
applicable for the given data starting from the general
Mahalanobis distance. They do not consider other
distance types besides position-based.

In [2], Das et. al. propose an algorithm to find
the distance between time series. Two sequences are
considered to be similar if there is a function using which
a long subsequence of one can be approximately mapped
to a long subsequence of the other. This definition of
similarity allows outliers in the sequences, differences of
scaling and variable rates of sampling. Chen and Ng
[1] learn a new metric based on the marriage of Lp-
Norm and Edit distance also for time-series data. This
metric called ERP (Edit Distance with Real Penalty)
satisfies metric properties and also local time shifting.
However such distance measures are more suitable for
continuously varying data where some of the properties
involved are needed for comparison.

Zhou et. al. [15] propose an approach for
ensembling neural networks. They train a number of
neural networks at first, then assign random weights
to them and employ a genetic algorithm to evolve
the weights to characterize the fitness of the neural
network in constituting an ensemble. In our context
each distance metric could be viewed as a learner, thus
in combining them we get an ensemble. Considering
such approaches presents interesting future issues.

9 Conclusions.

In this paper we address the problem of distance met-
ric learning for graphs that plot scientific functions.
We define a metric as a weighted sum of components



where each component represents a feature of the graph.
We consider four approaches for component selection
namely, greedy, exhaustive, hybrid greedy and hybrid
exhaustive. The weights are learned using our earlier
approach LearnMet. Experimental evaluation is con-
ducted with real data from Materials Science. It is found
that all approaches have their pros and cons.

Greedy selection is the most efficient and learns
a simple metric that gives accuracy above a desired
threshold. Exhaustive selection is the most time-
consuming but yields a metric with the highest accu-
racy. Hybrid greedy selection learns a metric with the
fewest number of components that give accuracy greater
the threshold. Hybrid exhaustive selection provides a
good trade-off between simplicity and accuracy. It is
more efficient than the exhaustive approach but less
than the greedy and hybrid greedy approaches. Hence
the preference of one approach over the other depends
on the requirements of specific applications. Our on-
going work includes considering more approaches and
conducting evaluation with data from other domains.
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