Knowledge Elicitation for Design Task Sequencing
Knowledge

by
Janet E. Burge

A Thesis
Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the
Degree of Master of Science
in
Computer Science
By

December 1998

APPROVED:

Dr. David Brown, Major Advisor

Dr. EvaHudlicka, Adjunct Advisor

Dr. Micha Hofri, Head of Department

Abstract

There are many types of knowledge involved in producing a design (the process
of specifying a description of an artifact that satisfies a collection of constraints [Brown,
1992]). Of these, one of the most crucial isthe design plan: the sequence of steps taken
to create the design (or a portion of the design). A number of knowledge €elicitation
methods can be used to obtain this knowledge from the designer. The success of the
elicitation depends on the match between the knowledge €licitation method used and the
information being sought. The difficulty with obtaining design plan information is that
thisinformation may involve implicit knowledge, i.e. knowledge that can not be
expressed explicitly.

In thisthesis, an approach is used that combines two knowledge elicitation
techniques. one direct, to directly request the design steps and their sequence, and one
indirect, to refine this knowledge by obtaining steps and sequences that may be implicit.
The two techniques used in this thesis were Forward Scenario Simulation (FSS), a
technique where the domain expert describes how the procedure followed to solve it, and
Card Sort, atechnique where the domain expert is asked to sort items (usually entitiesin
the domain) along different attributes.

The Design Ordering Elicitation System (DOES) was built to perform the
knowledge elicitation. This system is aweb-based system designed to support remote
knowledge elicitation: KE performed without the presence of the knowledge engineer.

This system was used to administer knowledge elicitation sessions to evaluate the

effectiveness of these techniques at obtaining design steps and their sequencing. The

results indicate that using an indirect technique together with a direct technique obtains

more alternative sequences for the design steps than using the direct technique alone.

Acknowledgements

| would like to thank my advisor, Dr. Dave Brown for the guidance he provided
during thisthesis. | never would have completed this without his ideas, advice and
support. | would also like to thank my co-advisor, Dr. Eva Hudlickafor her help with
thisthesis. Besides providing her advice and comments on the thesis, she also isthe one
who got me interested in Knowledge Elicitation and Artificial Intelligencein the first
place. She also wasinstrumental in helping me find a part-time job in order to be able to
afford being in graduate school. | would also like to thank my reader, Dr. Carolina Ruiz
for reading this thesis, despite my giving it to her two days before she gave birth to her
first child. | would aso like to thank Dr. Nabil Hachem for hel ping me choose a domain
and task and Dr. Elke Rundensteiner for reviewing my user interface. And, of course, I'd
like to thank all my research subjects for taking the time out of their busy schedules to
perform my thesis experiment.

In addition, | would like to thank Dr. Greg Zacharias, of Charles River Analytics,
for giving me ajob that allowed me to disappear for two months while writing my thesis.
My friends out in industry are green with envy. | would aso like to thank Dr. Karen
Lemone, for encouraging me to return to graduate school full time and my parents, for
not thinking I was (too) crazy for leaving my full time job. | also want to thank all my

friends for supporting me throughout this. Y ou know who you are.

Table of Contents

CHAPTER L INTRODUCTION ...ttt 1
1.1 BACKGIOUNG....cueiuiiiieiieieiesie ettt sttt b e bbb b b ne s 1
1.2 Problem Description and MOtIVALION..........cociiierieniincesee e 3
1.3 APPIrOBCNo bbb 4
0 S O U = SRS 5

CHAPTER 2 KNOWLEDGE ELICITATION......ossiivirrriesesirssssssesssssess s 6
2.1 Knowledge Elicitation TEChNIQUES.........cccceieriiereerieeie e 6

280 St R B T < ok 7 1 o [= o SRS 7
N A [01 = = o (o Y/ L= USSP 8
20 R 1 (= AV 1= .Y oo SRS 10
2122 CASE SHUY oo eeeeeseeseeseeeeee e e s se s seseseee s s e eeees et ees e ees e eeseee s ees e ees e een e 12

N R B = (00 o L= SRR 12
N @) o U] o [T 13

B S = o] 1= Y 1 o TS 13
0 2 G TS T 4 0= (o TSRS 14

220 7 A = 0011/ o [oo USROS 15
2.1.2.8 TEACKDECKvcuiriireeictciieie et 15
20219 OBSEIVALION ...ttt et b bbbt 16
21210 GOBl REIGIEA. ...ttt bbbt 16
21211 LISt REIBLEH ...ttt sttt e et a e sb e b e e s e e e neeneseesaeseeseneennan 17
21212 CONSLIUCE ETICIEBLION ...ttt sttt b e b beee e ens 17
21.2.13 0] 1] o TSP 18
21214 (=" [0 (< 1 o OSSR 19
21215 20 QUESHIONS ...ttt ettt te s b e e et e seeseebeete e b e s e e s eseeseese et e ebe st et e e eneeneeReabenrente e entenen 19
21216 DOCUMENE ANAIYSIS....eiuieiieiiitie ettt sttt sttt be s te st et et e seeseesesteebesse s e s eseeseetesbessebeneenean 20
2.1.3 Typeof Knowledge OBtaiNed........ ..o 21
2131 PrOCEAUIES.....c.ciiretetititese sttt sttt bbbttt b etttk bt b bt 21
2.1.3.2 Problem SOIVING SITAEY ... cvcouerireiiriinieieeeteesesresteseeeeseetessessesseseessesestesbessessessessesessessessessessesens 24
N I e B € To = = T o o £ ST 25
P @ ==) o= 1 o] o 1TSS 26
2135 DependenCies/REEIONSNIPS. .. .ccciiiiieiieeeeee ettt see st se et st be st e e e e e e enesbesaeseeneeneenean 28

P e X G I V- U (o] o ST 29
2.2 Knowledge Elicitation SYStEMS........ccooeeiiriiiieieeeesee e 30
2.3 REGEA WOTK ...ttt 32

CHAPTER 3OBTAINING DESIGN PLAN KNOWLEDGEccccocvviiiiviieeciene 34

3.1 Typesof Design KNOWIEAQE..........cocuriiiiiriirieresiesiesesereee e 34
311 NEEOS AN DESIFES......coeereereeriereerreree sttt e r e r e en e n e nas 35
3.1.2 Requirements Formation KNOWIEAQEeceeeerieierese e see e ene 35
3.1.3 Problem Specification KNOWIEAGEcoeiiriiiiiie e 36
3.1.4 Problem Solving KNOWIEAGE......c.cooiiiiiieieeee e 36
3.15 Solution AnalySisS KNOWIEAGEcoviiiiiiiiiiiieee et 37
3.1.6 Documentation and Rationale Recovery KNowledge.........coceeereieneneneneneneeeseesie e 37
317 Presentation KNOWIEAGEcouiiiee ittt sn s 38

3.2 Design Plan KNOWIEAQE.cccueieeiieeeeciesie ettt se sttt sre e 38

3.3 Elicitation ChalleNgES........c.oooiiiiiiiesiee et 39
3.3.1 Level Of ADSITACHION ..ottt bbbt se b b nne s 40

TG 7 [41T o T oL A 0 11 =0 o = SRS 41

34 REGEA WOIK ...ttt ettt sre e 41
CHAPTER 4IMPLICIT KNOWLEDGE & DESIGN PLANS.......ccooiieeeeee 43
A1 HYPOLNESES. ... ittt sttt sttt et s re et e et s be e besntesaeesaeensesneenbens 43
4.2 Defining Implicit KNOWIEAQEccviiiiieeceseeseee e 44
4.3 DOES Knowledge EliCitation PrOCESS..........cccueereriiereerieeiesee e sie s see e e 45
CHAPTER S DOESDESIGN.....coiiiiiiiieeeeeee e 48
5.1 KEMethod SEIECION.......cociiieieeee e e 48
5.1.1 1SSUES DIIVING SEIECHION ...ttt sttt ae e nne s 48
5.1.1.1 Indirect KE Technique RESUIt MISMBEECKc.cceiiiiiiieieieiiceie ettt 48
5.1.1.2 Difficulty Of TECHNIQUE.......ce et b e b b e aenean 49
5113 SCAIADITLY ovveoevvereeeeseeeeeeeeeeeeeseseseesseseeesesesessseeeeseseeseeseses s s eeeeseeees e eeee s eees et seee s eees e ees s eeesee e 49

5.1.2 SElECted MELNOGS. ..ottt s se b e nne s 50
5.2 DOMAIN SEIECHION.ouiiiiiieiiesiirierieeiee ettt st i b sae e ne e 51
521 1SSUES DIIVING SEIECHION ...c.veivieeeeeiececre sttt e et ene e e e e e naesrennens 51
522 SEECEI DOMEIN.....cuiiiireerieiiereneseeree st ne s e nn e nas 52
5.3 DeSign Task SEECHION.......cceiiiieiieeie ettt e 52
5.3 1 1SSUES DIIVING SEIECHIONeeviieeiieieeie ettt et se b e nne s 52
532 SEECIEH TASK .t 53
5.4 Remote Knowledge ElICItation...........ccoiiiiiiirieneseee e 53
ot R 0 |V g = o =S USRS 54
5.4.2 DiISBOVANTAGES. ... coiuertirterteiteetieeeteseeste sttt sbe st e see e e beseestesbesaeese e e eneeseesbesbesbeaseaneenseseanbeseesaens 54
5.5 KE PIOCESS.......eiiiieeiieesie ettt nne e n e ne e nnn e 55
5.6 INLEITACE DESIGN....coiuiiiiieieiieeie ettt ettt b et ne e sre e 57
5.6.1 BaCKgroUNG SUMNVEYcceiuiiiiriiieieiie sttt sttt bbb s sbe e e e sbeseenne s 58
5.6.2 Knowledge EliCitation EXPEriMENT..........ccooiiiiiiiiiere et sn 59
5.6.21 Design Task INFOIMEIION.........ccuiiiiiiiiiiieieiei st e b st e s e e seesesresaesrenseseenean 59
5.6.22 DOESKnowledge Elicitation INtErfaCe..........ccoviiiiieieieicese e 59

5.6.3 USBDIILY SUMNVEY ...ttt ae e e et e nne s 60
CHAPTER 6 DOESIMPLEMENTATIONoiiiiiiie e 62
6.1 Alternatives CONSIAEIEd...........coiuiiiiiieeee e 62
6.2 DOES IMPlemMENLatiON........ccieeeeeeeseese e e eee e ste e sree e ae e e saeeaesreesreenneens 64
6.2.1 Experiment INtroduction DiSPlay........ccccveeeereereeriirese s e eeesee e ae e snens 65
6.2.2 Background SUrVEY DiSPlaycccevereieiiriiiieeereesese s e s e e et e e e e e snennens 66
6.2.3 DOESINSIUCLIONS DISPIAYceueeueeieeiesie ittt ettt st seesne s 68
6.24 DOESKnowledge Elicitation EXPerimentcccooeieienenienerieee e 69
6.2.4.1 Forward Scenario SIMUlation DISPlaycccovieiiiiineieieice et saeneas 71
6.2.4.2 SLEP ENIY DISPIAY ..veeeieeieeeeee ettt ettt sttt e ettt b e e e e e et et er e ae e e e eenean 72
6.2.4.3 SLEP Ordering DISPIAYcveoeeeeueeuieiesieeeereeeeee ettt st besee s e e e e e st besbeseeseeeneenesreaaeseenseneenean 73
6.2.4.4 Card SOM DiSPIAYcoveeueieeieeeiee ettt sttt s e s e e e eae s b e be st e s e e et e neereeaeseeeeeenean 74
6.2.4.5 Experiment COMPIEte DiSPlaY.......coeiuirerirerieieie ettt st st e e se e sbesae e seeeenean 76

6.25 Usability SUNVEY DiSPlaycceeeeiereiie et e e e et ere e ae e aenrennens 77
6.3 IMPIemMENalioN [SSUEScciieiiiriiiieie ettt 80
B.3.1 JAVA SECUITY ...ttt sttt bbb b ae s e et et e s e e e besbeebeeaeene et e e e nbesbenaens 80
6.3.2 Version INCOMPatiDIlITIES........coeeiiiiiere e 81
CHAPTER 7DOES EXPERIMENT ..o 83

7.1 Selecting the SUDJECEScc.ciiieeeee e 83

7.2 SUMUIT Preparalioncoceeieeieeieseese e seeseses s esteeeessaesseessssseesseessessessseesseens 83
7.3 Experimental PrOCEAUIE..........cooui ittt 84
7.4 POSSIDIE OUICOMES......ccueiiiiiiiiie et 85
CHAPTER 8 RESULTSAND EVALUATIONooiiiiiece e 87
8.1 DOES EXPEriment SUDJECES........cciieeeiierieeeeseesieeee st esieseesreessesee e saesneesreene e 88
8.2 DOES KE EXperiment RESUILSccoeeiirieiieieeesieee e 90
8.21 Resultsfrom Direct TEChNIQUE.........ccuiiuiiiiieeeeee e Q0
8.2.1.1 Forward SCenario SIMUIBLION...........covueueriiiriiiee et)

ST O 1 1= I = o} 11 VST TSR 92

ST I TS (= o IS0 1 1] 0 OSSR 93

8.2.1.4 EVAlUSLION Of SOIULTONSouiieiieieieite ittt ettt se ettt be st e s e e e e eneseeeaeseeneeneenean 93

8.2.2 Resultsfrom INAIreCt TECNNIQUE.......ccueiieiieeeeceeeeree e n e srennens 95
8.2.3 Comparison Detween MEthOUS..........coiiiiirieee e 97
8.24 Relationship Between Results and HYpOtheSEScooiiiiiiiiiieee e 99
8.2.4.1 Implicit Knowledgein Design Steps and Orderingcccoveererierierieeeisiesesesieseeesesessessesseseens 100

8.2.4.2 MorelInformation by Combining TEChNIQUES.........ccoueiieeririerie et e 100

8.24.3 Impact Of LeVEl Of EXPEITiSe.....ccui ittt s 101

8.2.4.4 Evaluation 0f REMOLE KE.........coiiiiiiiiieieeit ettt se e e neseesaesreneenene 101

8.3 Usability SUNVEY RESUILS........c.ooeiieiiieeieee e s 104
8.3 1 OVEEAll USBDIIILY...cueeeeiiierieieiriee ettt e e 104
8.3.2 Design Task Description EVAlUSLIONcccciiiiiiiiiiii e 104

8.3.3 Amount of Time Needed to Complete the EXperimentc.ccooeierenenenienienneene e 105

8.34 Prompted Thought about DESIGN PrOCESS.......cccoveriirirrieriereseeeeseeseesee e sresneeseeseeneeseessessenns 106

8.35 Completeness Of DESCIIPLIONcceierereieeereee e e e s ste e sreese e e e seesrenre e 106
8.3.6 COMMENES.....ooeeiiiteeeeterte ettt s r e s e e e s rese s s reneen e rennerenre e 107
CHAPTER S FUTURE RESEARCH ...ttt 108
9.1 DOES ENNANCEMENLS.ccueiiiriirieriieieie ettt st sbe s 108
0.2 AULOMELEA ANBIYSIS.... oottt st sbe b nns 109
0.3 Additional EXPEITMENLS........cciveiierieerieeieseesieseeseeseeeee e eseeeeesreesseeeesseessesnsesnes 109
CHAPTER 10 CONCLUSIONS.... ..ot 111
10.1 Design Steps and Orderingcceceeveerueeeereeniesieeseeseesseeseesseeeesseesseeseesseessens 111
10.2 The Remote KE APPrOach.......ccocoieeiiiiinieie e e 111
10.3 SUMIMEIY ..eoiiiiieiiie ettt be e s s e sab e sabe e e sabe e e naneeennes 112
CHAPTER 11 REFERENCES........o ottt 114
APPENDIX A TASK STIMULI ..o 121
A1 Task SHMUIT DA FTE ..o e 121
A.2 Design Problem DeSCription.........ccceieeieeieieeresee e sieesae e see e 121
A.3 DeSigN Task DESCIPLION.......coieeiriinie ettt ee e 122
A.4 DeSign StEP EXAMPIE......cci et 122
APPENDIX B SAMPLE OUTPUT FROM DOES........ccccoeee e 123
B.1 Usability SUNVEY RESUILS........cooeeeeeecece e 123

B.2 Knowledge Elicitation Experiment RESUILS..........cccoveriiriinieenenie e
B.3 Usability SUNVEY RESUILS........cooueeeeeeeceee et

Vil

Table of Figures

Figure 3-1. Design SEEP HIGrarChYc.ooeeiieeiieieieee e 40
Figure 4-1. DOES Knowledge EliCitation ProCeSS.........ccooueveeeereeiesieeseeseseeseesee e e 46
Figure 5-1. DOES KE PrOCESS.......ccouiiiiierieriiiee st ettt st nee e ses 56
Figure 6-1. DOES System ArChIitECIUNE........ccvvieecece et 65
Figure 6-2. Experiment Introduction DiSplaycccceveereeiinieneerie e 66
Figure 6-3. Background SUrvey Display.........cccceevieierieieere e 67
Figure 6-3. Background SUrvey DiSplaycccoeeiieiiiiinieeeeesee e 68
Figure 6-4. DOES INStructionS DiSPlaycccuveeerieiieiie e 69
Figure 6-5. Initial DOES Knowledge Elicitation Experiment Display.........cccceveevvrennne. 71
Figure 6-6. Forward Scenario Simulation Displaycccveveveeeeneese s 72
Figure 6-7. Step ENtry DISPlaYc.cooeeiiiierieeecee ettt 73
Figure 6-8. Step Ordering DiSPlaycccevereeeeieseeie et 74
Figure 6-9. Card SOrt DISPlayc.coveeiiriierieniesie et 75
Figure 6-10. Experiment Complete DiSPlayccoovevereereeie e see e 77
Figure 6-11. Usability Survey Display, Page L.........cccoiiiriinienieieee e 79
Figure 6-12. Usability Survey Display, Page 2.........cccooeveeieeiieieese e 80
Figure 7-1. Example Participation REQUESLccoueiiiiereeriereree e s 85
Figure 8-1. DOES State Diagram with Section NUmbers...........ccccecovvceveevecceceecece 87
Figure 8-2. ER Diagram for Airport Database..........cccoveereeienieeneeie e 94
Figure 8-3. Sorted Steps from Direct Methodcccooeeveeve e 96
Figure 8-4. Derived Order from Card SOort RESUILS.........ooeeieiriiiieieeeree e 97

viii

List of Tables

Table 2-1. KE Techniques Grouped by Interaction TYpe.......ccoccvveeiercnvinneniesee e 9
Table 2-2. INterview MeEthOUS..........oooiiiiiiee e 11
Table 2-3. Case Study MEtNOUS..........coiiiiieie e 12
Table 2-4. ProtoCol MEhOUS...........ooiiiiiiieee s 13
Table 2-5. Critiquing MethOdS...........ccooiiiiii e 13
Table 2-6. Role Playing MethOdS...........cccooviieiieiece e 14
Table2-7. SIMulation MethOds...........c.oooiiiiie e 14
Table 2-8. Prototyping MethOUS..........ccveieiiiiiereee e 15
Table 2-9. TeachbaCk MEthods............coviiiiiiiee e 15
Table 2-10. Observation MethOds..........c.ceirieieiirerese e 16
Table2-11. Goa Related MEthOdS..........cccoiieiieienieee e 17
Table 2-12. List Related Methods..........cccooiiiiiiieeesee e 17
Table 2-13. Construct Elicitation Methods...........ccocoiiiiinniiireeeeeeee e 18
Table 2-14. Sorting MEthOUSc.oocieiiee e nee s 19
Table 2-15. Laddering MEthOOS...........coveiiiieiiiinee e 19
Table 2-16. 20 QUESLIONS MELNOU.........cceiiiieceecee e ree 20
Table 2-17. Document AnalySISMethodSccccoiiiiiiiiiei e 20
Table 2-18. Methods that Elicit ProCEUIES...........cccoiieieninineeeeesese s 22
Table 2-19. Methods that Elicit Problem Solving Strategyccccoveererinveenenieeneenens 24
Table 2-20. Methods that Elicit Goals/SUDQOalSccveieeeeiieieceseese e 26
Table 2-21. Methods that Elicit Classification of Domain Entities..........cccocevevrivneennens 27
Table 2-22. Methods that Elicit REIationShips.........ccoiveiviieiieie e 29
Table 2-23. Methods that Elicit EVAlUSLIONS..........c.coiieiiiiieieeriece e 30
Table 8-1. Number of Subjects Completing the Experiment...........ccccoevvevevieeveeceneennnns 88
Table 8-2. Education Level of Research SUDJECLS.........ccoveeiieiieniinieee e 89
Table 8-3. REIEVANT EXPEITENCE.oieeiieeiecee ettt ae e snee e 89
Table 8-4. Forward Scenario Simulation RESUILS..........cccoovieiieniiiieeee e 91
Table 8-5. Initial Step ENtry RESUILS.ccceieeieeeceseee et 92
Table 8-6. Step SOrting RESUILS ..o 93
Table 8-7. Direct/INdireCt DiSCrepanCi€S.........civeieeeereerieeieseesseeeeseesseeseesseessesssesseessens 98
Table 8-8. Usability RESUITS.......c.oceeiiiieeieseee e 104
Table 8-9. Description Evaluation RESUILScccceiieieieeieeieeeeese e 105
Table 8-10. Amount of TiImeNeeded..........ccooiriiiiiie s 105
Table 8-11. Prompted Thought About Design ProCesSS..........ccceeveeveveeneeiieseesieeeeenes 106
Table 8-12. Completeness Of DESCIPLION.c.c.iieeierie e 106

Chapter 1 Introduction

There are many types of knowledge involved in producing adesign. Of these,
one of the most crucial isthe design plan: the sequence of steps taken to create the
design. Inthisthesis, an approach is presented that combines two knowledge elicitation

techniques to obtain design steps and their sequencing.

1.1 Background

Knowledge Elicitation (KE) is the process of obtaining knowledge from adomain
expert that describes how they perform a specific task and/or describes what general
knowledge they have about the domain. One use of KE is obtaining knowledge from a
person in order to transfer it to a computer program [McGraw & Harbison-Briggs, 1989].

For example, in order to build an expert system to perform medical diagnosis,
physicians would be interviewed by a"Knowledge Engineer" to determine what
symptoms they look for. The accessibility of this knowledge is dependent on the type of
task/knowledge and the subject being questioned. If the task is one that primarily
requires motor skills, the chances of the task being performed ‘automatically' are much
higher than for atask that involves analysis of a problem [Nisbett & DeCamp Wilson,
1977]. Also, different subjects vary in their ability to articulate their knowledge. Thisis
affected both by the skill level of the subject and by how well they are able to verbalize

their decisions. The higher the skill level, the more likely it is that the subject will be

performing al or parts of the task automatically and will not be able to explain every
action [Berry, 1987].

Different KE techniques have been developed in order to obtain knowledge
[Boose, 1989], [Cordingley, 1989]. They can be classified along many dimensions. The
most common one used is direct versus indirect, where direct techniques, such as
interviewing, are used to obtain information that is easily verbalized, and indirect
techniques, such as sorting domain entities into categories, are used to obtain information
that is not easily articulated in response to direct questioning [Hudlicka, 1997].
Classification can also be based on the type of interaction with the subject and the type of
knowledge most commonly obtained (sequencing, classification, etc.).

Thisthesisis concerned with the knowledge required to perform design [Brown,
1993]. For design, different types of knowledge are required at different stages of the
design process [Smithers, 1998]. Knowledge is required when creating/revising
requirements, creating a problem statement, creating a solution or solutions to the
problem, and analyzing the results. Design plans [Chandrasekaran, 1990], specifying the
actions taken to produce the design, are used to create solutions to the design problem
(requirements with a request to design something that satisfies them). These plans
reguire knowing the sequence in which the actions should be taken. The sequence of
actions can depend on many factors, including dependencies between subproblems and

designer preferences.

Sequencing knowledge can be obtained by using a direct technique such as
interviewing. One drawback, however, is that a designer may not be aware of the order
in which they perform the steps of their design or why the order isimportant. Indirect
techniques are effective at obtaining information that is less easily expressed. However,
indirect techniques are better suited to obtaining information about domain entities and
thelr attributes, not knowledge about process. In thisthesis, acombination of direct and
indirect techniques is therefore used to overcome this limitation and more effectively

elicit the information required to determine the sequencing of design subproblems.

1.2 Problem Description and Motivation

Determining the subproblems in a design plan and a good order in which to
perform them isacrucia step in the design process. Sequencing errors will cause the
design system to perform unnecessary backtracking or, as aworst case, fail to solve the
design problem. In order to determine a correct order the following information is
needed from the domain expert:

The decomposition of the problem,
The dependencies between the subproblems,
The degree to which the subproblem solutions are constrained (i.e. the size of
the solution space), and
The order in which the subproblems are normally solved, and why.
Ideally this information would be obtained using a direct technique. Asking the

domain expert for exactly the information needed appears to be the most efficient way to

get that knowledge. Unfortunately, experts may not be able to readily articulate this
knowledge. This could be due to several factors. the expert may have performed the task
so often that they are no longer aware of the order of the steps, or they may be aware of
the order but not know why (or if) the order isthe best one. This suggests that indirect
methods may be required to obtain this information.

Indirect techniques are best at classifying information, not identifying process. If
only an indirect technique is used, this results in a mismatch between the technique
chosen and the information type required. There are several ways to address this
problem. Oneisto modify the method to force it to get the type of information required.
For example, repertory grid analysis [Kelly, 1955] could be used to compare plans, rather
than domain entities (i.e. the components of the design). Another approach isto use

multiple techniques.

1.3 Approach

In order to fully utilize both types of techniques when obtaining sequencing
knowledge, a direct technique is used to establish a base of knowledge and an indirect
technique is used to identify additional knowledge that is not readily accessible directly.
These techniques are combined in an automated KE tool, the Design Ordering Elicitation
System (DOES), built as part of thisthesis. Thistool is administered remotely, so that
subjects can participate who are not located at the same location as the knowledge
engineer, and is web-based in order to make distribution and administration easier by

collecting all of the experiment results in one location. The results of experiments

conducted using DOES are analyzed to evaluate the effectiveness of the technique

combination.

1.4 Outline

The remaining chapters of this thesis are structured as follows. Chapter 2
discusses existing knowledge elicitation techniques and systems, Chapter 3 discusses
design knowledge, Chapter 4 presents the central hypotheses of the thesis, Chapter 5
presents the DOES design, Chapter 6 presents the DOES implementation, Chapter 7
describes the experiments conducted using DOES, Chapter 8 gives the results and
evaluation for DOES, and Chapter 9 discusses future research. Sample results from

DOES are provided in Appendix B.

Chapter 2 Knowledge Elicitation

Knowledge elicitation (KE) is the process by which knowledge is obtained from
the domain expert by the knowledge engineer. In this chapter, different knowledge
elicitation techniques and ways that they can be classified are discussed. Thereisalso a

brief discussion of existing systems that perform automated knowledge elicitation.

2.1 Knowledge Elicitation Techniques

There are many different knowledge elicitation techniques and it is often difficult
to choose between them. Because the success of a knowledge dlicitation effort is
dependent on the technique chosen, much work has been done to classify knowledge
elicitation techniques. In [Cordingley, 1989], KE techniques were grouped into twelve
categories. The primary means of classification was the type of interaction with the
subject. In[Geiwitz, et a., 1990], an expert system called KATALY ST was proposed for
selecting the most appropriate knowledge acquisition technique (KAT) for a specific
problem.

Three different classification dimensions for KE techniques are discussed here:

Direct/Indirect,
Interaction Type, and
Type of Knowledge Obtained
All of these classifications are important in selecting a KE technique. The choice

of direct or indirect can influence how successful the technique might be at capturing

knowledge that is not easily expressed. The "interaction type" isakey factor in
determining the amount of effort required to administer the technique. The type of
knowledge obtained isimportant so that the technique chosen can be matched to the type
of knowledge needed. The choice of technique will determine how easy and effective the

knowledge elicitation session will be.

2.1.1 Direct/Indirect

Most KE techniques can be classified as direct or indirect methods. Direct
methods are those that obtain the information directly from the expert, i.e., the required
information is obtained by asking direct questions or from direct observation. During KE
sessions using direct techniques, the expert verbalizes the needed information. Indirect
methods are those where the needed information is not requested directly. Instead, the
results of the knowledge elicitation session must be analyzed in order to extract the
needed information. The analysis required depends on the technique and the goals of the
knowledge elicitation session.

The advantage of an indirect approach is that these methods can sometimes obtain
additional information than that provided by direct methods. There are many reasons
why an indirect method might produce more information. One reason is that the indirect
method may end up probing aspects of the problem that the knowledge engineer did not
anticipate, and did not ask about in the direct KE session. Another reason is that some
subjects are not as verbal as other subjects and are unlikely to give full and detailed

answersto direct questions. A third reason is that some knowledge may be implicit.

Implicit knowledge is knowledge that either was learned implicitly and can not be
expressed explicitly, or that was once explicit but has become implicit over time as the

domain expert used it repeatedly and it became automatic [Berry, 1987].

2.1.2 Interaction Type
One way of grouping KE methods isto group them by the type of interaction with

the domain expert. Table 2-1 shows the categories and the type of information produced.

Theresults listed are typical results; other types of information can aso be obtained.

Table2-1. KE Techniques Grouped by Interaction Type

Category Technique Examples | Type Results
Interview Structured, Direct Varies depending
Unstructured, on questions asked
Semi-Structured
Case Study Critical Incident Direct Procedures
Method, followed, rationale
Forward Scenario
Simulation,
Critical Decision
Method
Protocols Protocol Analysis Direct Procedures
followed, rationale
Critiquing Critiquing Direct Evaluation of
problem solving
strategy compared
to alternatives
Role Playing Role Playing Indirect Procedures,
difficulties
encountered dueto
role
Simulation Simulation, Direct Procedures
Wizard of Oz followed
Prototyping Rapid Prototyping Direct Evaluation of
Storyboarding proposed approach
Teachback Teachback Direct Correction of
Misconceptions
Observation Observation Procedure
followed
Goal Related Goal Decomposition, Direct Goals and
Dividing the Domain subgoals,
groupings of goals
List Related Decision Analysis Direct Estimate of worth
of al decisions for
atask
Construct Repertory Grid, Indirect Entities, attributes,
Elicitation Multi-dimensional sometimes
Scaling relationships
Sorting Card Sorting Indirect Classification of
entities (dimension
chosen by subject)
Laddering Laddered Grid Indirect Hierarchical map
of the task domain
20 Questions 20 Questions Indirect Information used

to solve problems;
organization of
problem space

Category Technique Examples | Type Results

Document Document Analysis Indirect Varies depending

Analysis (usually) on available
documents;
interaction with
experts

The following subsections explain each interaction type and list the applicable KE

methods.

2.1.2.1 Interviewing

Interviewing consists of asking the domain expert(s) questions about the domain
of interest and how they perform their tasks. Interviews can be unstructured, semi-
structured, or structured. The success of an interview session is dependent on the
guestions asked -- it is difficult to know which questions should be asked, particularly if
the interviewer is not familiar with the domain. Its success aso depends on the ability of
the expert to articulate their knowledge. The expert may not remember exactly how they
perform atask, especially if it is one that they perform "automatically".

Some interview methods are used to build a particular type of model of the task.
The model is built by the knowledge engineer based on information obtained during the
interview and then reviewed with the domain expert. 1n some cases, the models can be
built interactively with the expert, especially if there are software tools available for
model creation. Table 2-2 showsalist of interview methods. Again, the output shownis
typical. Many of these methods produce raw text from which many different types of

information can be extracted.

10

Table 2-2. Interview Methods

Method Type Output Reference

Interviewing (structured, Direct Procedures followed, [Hudlicka, 1997],

unstructured, semi-structured) knowledge used (easily [Geiwitz, et a., 1990]
verbalized knowledge)

Concept Mapping Direct Concept map [Hudlicka, 1997],

[Thordsen, 1991], [Gowin
& Novak, 1984]

Interruption Analysis Direct Procedures, problem-solving [Hudlicka, 1997]
strategy, rationale

ARK (ACT-based Direct Goal-subgoal network [Geiwitz, et a., 1990],

representation of knowledge) Includes production rules [Geiwitz, et. al., 1998],

(combination of methods) describing goal/subgoal [Anderson, 1983]
relationship

Cognitive Structure Analysis Direct Representational format of [Geiwitz, et a., 1990],

(CsA) experts knowledge; content of | [Leddo& Cohen, 1988]
the knowledge structure

Problem discussion Direct Solution strategies [Geiwitz, et a., 1990],

[Leddo, et. a., 1988]

Tutoria interview Direct Whatever expert teaches [Geiwitz, et a., 1990],

[Boose, 1989]

Uncertain information Uncertainty about problems [Geiwitz, et a., 1990],

eicitation [Boose, 1989]

Data flow modeling Direct Data flow diagram (dataitems | [OTT, 1998], [Gane &
and data flow between them — | Sarson, 1977]
no sequence information)

Entity-relationship modeling Direct Entity relationship diagram [OTT, 1998], [Swaffield &
(entities, attributes, and Knight, 1990]
relationships)

Entity life modeling Direct Entity life cycle diagram [OTT, 1998], [Swaffield &
(entities and state changes) Knight, 1990]

Object oriented modeling Direct Network of objects (types, [OTT, 1998], [Riekert,
attributes, relations) 1991]

Semantic nets Direct Semantic Net (including [OTT, 1998], [Atkinson,
relationships between objects) | 1990]

IDEF (Integrated Definition Direct IDEF Model (functional [OTT, 1998], [McNeese &

L anguage) modeling decomposition) Zaff, 1991]

Petri nets Direct Functional task net [OTT, 1998], [Coovert et

al., 1990], [Hura, 1987],
[Weingaertner & Lewis,
1988]

Questionnaire Direct Sequence of task actions, [OTT, 1998], [Bainbridge,
cause and effect relationships | 1979]

Task action mapping Direct Decision flow diagram (goals, | [OTT, 1998], [Coury et al.,
subgoals, actions) 1991]

User Needs Analysis (decision | Direct Decision process diagrams [OTT, 1998], [Coury et al.,

process diagrams)

1991]

11

2.1.2.2 Case Study

In Case Study methods, different examples of problems/tasks within adomain are
discussed. The problems consist of specific cases that can be typical, difficult, or
memorable. These cases are used as a context within which directed questions are asked.
Table 2-3 shows a list of methods that use cases to obtain information.

Table 2-3. Case Study Methods

Method Type Output Reference
Critical incident strategy Direct Complete plan, plus factors [Geiwitz, et a., 1990],
that influenced the plan. [Cordingley, 1989],
[Flanagan, 1954]
Forward scenario simulation Direct Procedures followed, reasons | [Geiwitz, et a., 1990],
behind them [Cordingley, 1989],
[Burton& Shadbolt, 1987]
Critical Decision Method Direct Goals considered, options [Thordsen, 1991], [Klein
generated, situation et al., 1986]
assessment
Retrospective case description Direct Procedures used to solve past | [Geiwitz, et a., 1990],
problems [Cordingley, 1989]
Interesting cases Direct Procedures used to solve [Geiwitz, et a., 1990],
unusual problems [Cordingley, 1989]

2.1.2.3 Protocols

The KE technique called Protocol Analysis [Ericsson and Simon, 1984] involves
asking the expert to perform atask while "thinking aloud." The intent isto capture both
the actions performed and the mental process used to determine these actions. Aswith all
the direct methods, the success of the protocol analysis depends on the ability of the
expert to describe why they are making their decision. In some cases, the expert may not
remember why they do things a certain way. In many cases, the verbalized thoughts will

only be a subset of the actual knowledge used to perform the task.

12

One method used to augment thisinformation is Interruption analysis. For this

method, the knowledge engineer interrupts the expert at critical pointsin the task to ask

guestions about why they performed a particular action.

Table 2-4 lists protocol methods.

Table 2-4. Protocol Methods

M ethod

Type

Output

Reference

Protocol analysis (think aloud,
talk aloud, eidetic reduction,
retrospective reporting,
behavioral descriptions,

playback)

Direct

Procedures, problem-solving
strategy

[Hudlicka, 1997],
[Ericsson & Simon, 1984],
[Geiwitz, et a., 1990]

2.1.2.4 Critiquing

In Critiquing, an approach to the problem/task generated during previous KE

sessions is evaluated by the expert. Thisis used to determine the validity of results of

previous KE sessions with the same, or a different, expert. Table 2-5 lists critiquing

methods.
Table 2-5. Critiquing Methods
Method Type Output Reference
Critiquing Direct Evaluation of a problem [Geiwitz, et a., 1990],

solving strategy compared to
alternatives

[Cordingley, 1989],
[Miller, 1984]

2.1.25 RolePlaying

In Role Playing, the expert adapts arole and acts out a scenario where their

knowledge is used [Cordingly, 1989]. Theintent isthat by viewing a situation from a

13

different perspective, information will be revealed that was not discussed when the expert

was asked directly. For example, if the goal was to find out what information was used

in making amedical diagnosis, the expert could be asked to pretend they are interacting

with a patient. Table 2-6 shows role playing methods.

Table 2-6. Role Playing Methods

Method Type Output

Reference

role playing Indirect Procedures, difficulties
encountered due to role

[Geiwitz, et a., 1990],
[Cordingley, 1989]

2.1.2.6 Simulation

In Simulation methods, the task is simulated using a computer system or other

means. Thisisused when it is not possible to actually perform the task. For example,

the design process can be simulated using a multi-agent system to mimic a design team

[Shakeri, 1998]. Applying thistask to several design projects can be used to determine

design methodol ogies. Table 2-7 shows simulation methods.

Table2-7. Simulation M ethods

Method Type Output Reference

Wizard of Oz Direct Procedures followed [Geiwitz, et a., 1990],
[Cordingley, 1989],
[Diaper, 1986]

Simulations Direct Problem solving strategies, [Geiwitz, et a., 1990],

procedures [Cordingley, 1989]

Problem analysis Direct Procedures, rationale [Geiwitz, et a., 1990],

[Leddo, et. al.. 1988]

14

2.1.2.7 Prototyping

In Prototyping, the expert is asked to evaluate a prototype of the proposed system

being developed. Thisisusually done iteratively asthe systemisrefined. Table 2-8

shows prototyping methods.

Table 2-8. Prototyping Methods

Method Type Output Reference

System refinement Direct New test cases for aprototype | [Geiwitz, et a., 1990],
system [Leddo, €t. al., 1988]

System examination Direct Experts opinion on prototype's | [Geiwitz, et a., 1990],
rules and control structures [Leddo, et. al., 1988]

System validation Direct Outside experts evaluation of [Geiwitz, et a., 1990],
cases solved by expert and [Leddo, et. al., 1988]
protocol system

Rapid prototyping Direct Evaluation of [Geiwitz, et a., 1990],
system/procedure [Diaper, 1989]

Storyboarding Direct Prototype display design [OTT, 1998], [McNeese &

Zaff, 1991]

2.1.2.8 Teachback

In Teachback, the knowledge engineer attempts to teach the information back to

the expert, who then provides corrections and fillsin gaps. Table 2-9 shows teachback

methods.
Table 2-9. Teachback Methods
Method Type Output Reference
teachback Direct Correction of misconceptions | [Geiwitz, et a., 1990],

[Cordingley, 1989],
[Johnson& Johnson, 1987]

15

2.1.2.9 Observation

In Observation methods, the knowledge engineer observes the expert performing
atask. This preventsthe knowledge engineer from inadvertently interfering in the
process, but does not provide any insight into why the decisions were made. Table 2-10
shows observation methods.

Table 2-10. Observation M ethods

Method Type Output Reference

Discourse analysis Direct Taxonomy of tasks/subtasksor | [OTT, 1998], [Belkin &

(observation) functions Brooks, 1988]

On-site observation Direct Procedure, problem solving [Geiwitz, et a., 1990],
strategies [Cordingley, 1989]

Active participation (knowledge | Direct Knowledge and skillsneeded | [Geiwitz, et a., 1990],

engineer interacts with people for task [Cordingley, 1989],

being observed) [Spradley, 1980]

2.1.2.10 Goal Related

In Goal Related methods, focused discussion techniques are used to elicit
information about goals and subgoals. For example, in Reclassification, the domain
expert is asked to specify what evidence would indicate that a given goal is the correct

one [Cordingly, 1989]. Table 2-11 shows goal related methods.

16

Table2-11. Goal Related M ethods

Method Type Output Reference
Goal Decomposition Direct Goals and subgoals [Geiwitz, et a., 1990],
[Breuker & Weilinga,
1983]
Dividing the domain Direct How datais grouped to reach | [Geiwitz, et a., 1990],
agoal [Cordingley, 1989], [Hart,
1986]
Reclassification Direct Evidence needed to provethat | [Geiwitz, et a., 1990],
agoal was correct [Cordingley, 1989], [Hart,
1986], [Breuker &
Weilinga, 1983]
Distinguishing goals Direct Minimal sets of discriminating | [Geiwitz, et a., 1990],
features [Cordingley, 1989], [Hart,
1986]
Goal Directed Analysis (goal- Direct Goal-means network [OTT, 1998], [Woods &
means hetwork) Hollnagel, 1987]

21211 List Related

In List Related methods, the expert is asked to provide lists of information,

usually decisions. Table 2-12 shows list related methods.

Table2-12. List Related M ethods

M ethod

Type

Output

Reference

Decision analysis

Direct

Estimate of worth (value) for
all possible decisions for a
task

[Geiwitz, et a., 1990],
[Cordingley, 1989], [Hart,
1986]

2.1.2.12 Construct Elicitation

So far, all the KE methods discussed have been direct methods. The first

classification that includes indirect methods is Construct Elicitation. Construct

17

Elicitation methods are used to obtain information about how the expert discriminates
between entities in the problem domain. The most commonly used construct elimination
method is Repertory Grid Analysis [Kelly, 1955]. For this method, the domain expert is
presented with alist of domain entities and is asked to describe the similarities and
differences between them. These similarities and differences are analyzed to derive the
important attributes of the entities. After completing the initial list of attributes, the
knowledge engineer works with the domain expert to assign ratings to each
entity/attribute pair. The type of rating depends on the information being elicited. In
some cases, attributes are rated as present/not present for each entity, in othersascaeis
used where the attribute is ranked by the degree to which it is present [Hudlicka, 1997].
Table 2-13 shows construct elicitation methods.

Table 2-13. Construct Elicitation M ethods

Method Type Output Reference

repertory grid Indirect | Attributes (and entities if [Hudlicka, 1997], [Kelly,
provided by subject) 1955]

proximity scaling Indirect | Attributes and relationships [Hudlicka, 1997]

2.1.2.13 Sorting

In sorting methods, domain entities are sorted to determine how the expert
classifiestheir knowledge. The domain expert is presented with alist of entitiesto be
sorted. They are then asked to sort them either using pre-defined dimensions or along
any dimension they feel isimportant. Subjects may be asked to perform multiple sorts,

each using a different dimension. Table 2-14 shows sorting methods.

18

Table 2-14. Sorting M ethods

Method Type Output Reference
card sorting Indirect Many types of clustering. [Burton & Shadbolt,
(classification) 1987], [Geiwitz, et al.,
1990], [Cordingley, 1989]

2.1.2.14 L addering

In Laddering, ahierarchical structure of the domain isformed by asking questions
designed to move up, down, and across the hierarchy. Examples of concepts would be
goals and subgoals, tasks and subtasks. For example, to elicit concepts that are higher in
the hierarchy the expert is asked "why" questions. To get concepts lower in the hierarchy
the expert is asked "how" questions. To get concepts at the same level, the expert is
asked for alternatives [Cordingly, 1989]. Table 2-15 shows laddering methods.

Table 2-15. Laddering Methods

Method Type Output Reference
Laddered grid Indirect | A hierarchical map of thetask | [Geiwitz, et al., 1990],
domain [Cordingley, 1989],
[Fransella& Bannister,
1977]

2.1.2.15 20 Questions

Thisis amethod used to determine how the expert gathersinformation. The
knowledge engineer selects an item in the problem space (such as a problem or a
solution) and the expert questions them to determine what item the knowledge engineer

has chosen. Table 2-16 shows the 20 questions method.

19

Table 2-16. 20 Questions M ethod

Method Type Output Reference
20 questions Indirect | Amount and type of [Cordingley, 1989],
information used to solve [Geiwitz, et a., 1990],

problems; how problem space | [Spradliey, 1979]
is organized, or how expert
has represented
Task-relevant knowledge.

2.1.2.16 Document Analysis

Document analysis involves gathering information from existing documentation.
This may or may not involve interaction with a human expert to confirm or add to this
information. Some document analysis techniques, particularly those that involve a
human expert, can be classified as direct. Others, such as collecting artifacts of
performance, such as documents or notes, in order to determine how an expert organizes
or process information [Cordingly, 1989], are classified as indirect.

Table 2-17 shows documentation analysis methods.

Table 2-17. Document Analysis Methods

Method Type Output Reference
Collect artifacts of task Indirect How expert organizes or [Geiwitz, et a., 1990],
performance processes task information, [Cordingley, 1989]

how it is compiled to present

to others
Document analysis Direct Conceptual graph [OTT, 1998], [Gordon et

al., 1993

Goal Directed Analysis (goal- Direct Goal-means network [OTT, 1998], [Woods &
means network) Hollnagel, 1987]

20

2.1.3 Typeof Knowledge Obtained
Besides being grouped into direct and indirect categories, KE methods can also be
grouped by the type of knowledge obtained. For example, many of the indirect KE
methods are best at obtaining classification knowledge (i.e. the classes that exist in the
domain and what entities fit into them) while direct methods are more suited for
obtaining procedural knowledge.
Information types used here are:
Procedures
Problem solving strategy
Goals, sub-goals
Classification
Relationships
Evaluation
Many methods fit into more than one category and are listed more than once.
Also, this classification shows the information most commonly extracted using a method

and does not imply that only that type of information can be elicited.

2.1.3.1 Procedures

Table 2-18 lists methods used to determine the steps followed to compl ete a task

and the order in which they are taken.

21

Table 2-18. Methodsthat Elicit Procedures

Method Category Output Type Reference
Interviewing (structured, | Interviewing Procedures followed, Direct [Hudlicka,
unstructured, semi- knowledge used 1997], [Geiwitz,
structured) et al., 1990]
Concept Mapping Interview Concept Map Direct [Hudlicka,
1997],
[Thordsen,
1991], [Gowin &
Novak, 1984]
Interruption Analysis Interviewing Procedures, problem- Direct [Hudlicka, 1997]
solving strategy,
rationale
Problem discussion Interview Solution strategies Direct [Geiwitz, et dl.,
1990],
[Leddo, et. dl.,
1988]
Tutoria interview Interview Whatever expert Direct [Geiwitz, et dl.,
teaches! 1990], [Boose,
1989
Entity life modeling Interview Entity life cycle Direct [OTT, 1999],
diagram (entities and [Swaffield &
state changes) Knight, 1990]
IDEF modeling Interview IDEF Model Direct [OTT, 1999],
(functional [McNeese &
decomposition) Zaff, 1991]
Petri nets Interview Functional task net Direct [OTT, 1999],
[Coovert et dl.,
1990], [Hura,
1987],
[Weingaertner &
Lewis, 1988]
Questionnaire Interview Sequence of task Direct [OTT, 1999],
actions, cause and [Bainbridge,
effect relationships 1979]
Task action mapping Interview Decision flow diagram | Direct [OTT, 1999],
(goals, subgoals, [Coury et al.,
actions) 1991]
Retrospective case Case Study Procedures followed Direct [Geiwitz, et dl.,
description 1990],
[Cordingley,
1989
Critical incident strategy | Case Study Complete plan, plus Direct [Geiwitz, et dl.,
factors that influenced 1990],
the plan. [Cordingley,
1989],
[Flanagan, 1954]

22

Method Category Output Type Reference
Forward scenario Case Study Procedures followed, Direct [Geiwitz, et dl.,
simulation reasons behind them 1990],
[Cordingley,
1989], [Burton &
Shadbolt, 1987]
Retrospective case Case Study Procedures used to Direct [Geiwitz, et dl.,
description solve past problems 1990],
[Cordingley,
1989
Interesting cases Case Study Procedures used to Direct [Geiwitz, et dl.,
solve unusua problems 1990],
[Cordingley,
1989
protocol analysis (think Protocols Procedures, problem- Direct [Hudlicka,
aloud, talk aloud, solving strategy 1997], [Ericsson
retrospective reporting, & Simon, 1984],
behavioral descriptions, [Geiwitz, et dl.,
playback) 1990]
teachback Teachback Correction of Direct [Geiwitz, et dl.,
misconceptions 1990],
[Cordingley,
1989], [Johnson
& Johnson,
1987]
critiquing Critiquing Evaluation of aproblem | Direct [Geiwitz, et dl.,
solving strategy 1990],
compared to [Cordingley,
aternatives 1989], [Miller,
1984]
role playing Role Playing Procedures, difficulties | Direct [Geiwitz, et dl.,
encountered dueto role 1990],
[Cordingley,
1989
Wizard of Oz Simulation Procedures followed Direct [Geiwitz, et dl.,
1990],
[Cordingley,
1989], [Diaper,
1986]
Simulations Simulation Problem solving Direct [Geiwitz, et dl.,
strategies, procedures 1990],
[Cordingley,
1989
Problem analysis Simulation Procedures, rationale Direct [Geiwitz, et dl.,
1990], [Leddo,
et. al., 1988]
On-site observation Observation Procedure, problem Direct [Geiwitz, et dl.,
solving strategies 1990],
[Cordingley,
1989

23

2.1.3.2 Problem Solving Strategy

Table 2-19 lists methods that elicit a problem solving strategy. These methods

attempt to determine how the expert makes their decisions.

Table 2-19. Methodsthat Elicit Problem Solving Strategy

Method Category Output Type Reference
Interviewing (structured, | Interviewing Procedures followed, Direct [Hudlicka,
unstructured, semi- knowledge used 1997], [Geiwitz,
structured) et al., 1990]
Interruption Analysis Interviewing Procedures, problem- Direct [Hudlicka, 1997]
solving strategy,
rationale
Problem discussion Interview Solution strategies Direct [Geiwitz, et dl.,
1990],
[Leddo, et. al.,
1988]
Tutoria interview Interview Whatever expert Direct [Geiwitz, et dl.,
teaches! 1990], [Boose,
1989]
Uncertain information Interview Uncertainty about Direct [Geiwitz, et dl.,
eicitation problems 1990]
Critical incident strategy | Case Study Complete plan, plus Direct [Geiwitz, et dl.,
factors that influenced 1990],
the plan. [Cordingley,
1989],
[Flanagan, 1954]
Forward scenario Case Study Procedures followed, Direct [Geiwitz, et dl.,
simulation reasons behind them 1990],
[Cordingley,
1989], [Burton &
Shadbolt, 1987]
protocol analysis (think Protocols Procedures, problem- Direct [Hudlicka,
aloud, talk aloud, solving strategy 1997], [Ericsson
retrospective reporting, & Simon, 1984],
behavioral descriptions, [Geiwitz, et dl.,
playback) 1990]

24

Method Category Output Type Reference
critiquing Critiquing Evaluation of aproblem | Direct [Geiwitz, et dl.,
solving strategy 1990],
compared to [Cordingley,
aternatives 1989], [Miller,
1984]
Wizard of Oz Simulation Procedures followed Direct [Geiwitz, et dl.,
1990],
[Cordingley,
1989], [Diaper,
1986]
Simulations Simulation Problem solving Direct [Geiwitz, et dl.,
strategies, procedures 1990],
[Cordingley,
1989
Problem analysis Simulation Procedures, rationale Direct [Geiwitz, et dl.,
(like simulated 1990], [Leddo,
interruption analysis) et. al., 1988]
Reclassification Goal Related Evidence needed to Direct [Geiwitz, et dl.,
prove that adecision 1990],
was correct [Cordingley,
1989
On-site observation Observation Procedure, problem Direct [Geiwitz, et dl.,
solving strategies 1990],
[Cordingley,
1989
Goal Directed Analysis Interview/Docu | Goal-means network Direct [OTT, 1999],
(goal-means network) ment Analysis [Woods &
Hollnagel, 1987]
20 questions 20 Questions Amount and type of Indirect [Cordingley,
information used to 1989], [Geiwitz,
solve problems; how et al., 1990],

problem spaceis
organized, or how
expert has represented
Task-relevant
knowledge.

[Spradiey, 1979]

2.1.3.3 Goalsg/Subgoals

Table 2-20 lists methods are used to extract the goals and subgoals

(decomposition) that are used when performing atask. These methods are listed

separately from procedures since ordering is not necessarily provided.

25

Table 2-20. Methodsthat Elicit Goals/Subgoals

Method Category Output Type Reference
ARK (ACT-based Interview Goal-subgoal network Direct [Geiwitz, et dl.,
representation of Includes production 1990],
knowledge) rules describing [Geiwitz, et. al,
(combination of goal/subgoal 1999],
methods) relationship [Anderson,
1983]
Task action mapping Interview Decision flow diagram | Direct [OTT, 1999],
(goals, subgoals, [Coury et al.,
actions) 1991]
Critical Decision Method | Case Study Goals considered, Direct [Thordsen,
options generated, 1991], [Klein et
situation assessment al., 1986]
goa decomposition Goal Related Goals and subgoals Direct [Geiwitz, et dl.,
1990], [Breuker
& Weilinga,
1983]
Dividing the domain Goal Related How dataisgroupedto | Direct [Geiwitz, et dl.,
reach agoal 1990],
[Cordingley,
1989], [Hart,
1986]
Reclassification Goal Related Evidence needed to Direct [Geiwitz, et dl.,
prove that adecision 1990],
was correct [Cordingley,
1989], [Hart,
1986], [Breuker
& Weilinga,
1983]
Distinguishing goals Goal Related Minimal sets of Direct [Geiwitz, et dl.,
discriminating features 1990],
[Cordingley,
1989], [Hart,
1986]
Goal Directed Analysis Interview/Docu | Goal-means network Direct [OTT, 1999],
(goal-means network) ment Analysis [Woods &
Hollnagel, 1987]

2.1.3.4 Classification

Figure 2-21 lists methods used to classify entities within a domain.

26

Table2-21. Methodsthat Elicit Classification of Domain Entities

Method Category Output Type Reference

Cognitive Structure Interview Representational format | Direct [Geiwitz, et dl.,

Analysis (CSA) of experts knowledge; 1990],
content of the [Leddo& Cohen,
knowledge structure 1988]

Data flow modeling Interview Data flow diagram Direct [OTT, 1999],
(dataitems and data [Gane & Sarson,
flow between them — no 1977]
sequence information)

Entity-relationship Interview Entity relationship Direct [OTT, 1999],

modeling diagram (entities, [Swaffield &
attributes, and Knight, 1990]
relationships)

Entity life modeling Interview Entity life cycle Direct [OTT, 1999],
diagram (entities and [Swaffield &
state changes) Knight, 1990]

Object oriented modeling | Interview Network of objects Direct [OTT, 1999],
(types, attributes, [Riekert, 1991]
relations)

Semantic nets Interview Semantic Net (inc. Direct [OTT, 1999],
relationships between [Atkinson, 1990]
objects)

Distinguishing goals Goal Related Minimal sets of Direct [Geiwitz, et dl.,
discriminating features 1990],

[Cordingley,
1989

Decision analysis List Related Estimate of worth for Direct [Geiwitz, et dl.,
all possible decisions 1990],
for atask [Cordingley,

1989

Discourse analysis Observation Taxonomy of Direct [OTT, 1999],

(observation) tasks/subtasks or [Belkin &
functions Brooks, 1988]

Collect artifacts of task Document How expert organizes Indirect [Geiwitz, et dl.,

performance Anaysis or processes task 1990],
information, how itis [Cordingley,
compiled to present to 1989]
others

Document analysis Document Conceptual graph Direct [OTT, 1999],

Anaysis [Gordon et al.,
1993
repertory grid Construct Attributes (and entities | Indirect [Hudlicka,
Elicitation if provided by subject) 1997], [Kelly,
1955]

multi-dimensional Construct Attributes and Indirect [Hudlicka, 1997]

scaling Elicitation relationships

proximity scaling Construct Attributes and Indirect [Hudlicka, 1997]

Elicitation relationships

27

M ethod

Category

Output

Type

Reference

card sorting

Sorting

Hierarchical cluster
diagram (classification)

Indirect

[Burton &
Shardbolt, 1987],
[Geiwitz, et dl.,
1990],
[Cordingley,
1989]

laddered grid

Laddering

A hierarchical map of
the task domain

Indirect

[Geiwitz, et dl.,
1990],
[Cordingley,
1989], [Fransella
& Bannister,
1977]

Ranking augmented
conceptual ranking

Other

Conceptua Ranking
(ordering by value)

Direct

[OTT, 1998],
[Chignell &
Peterson, 1988],
[Kagel, 1986],
[Whaley, 1979]

2.1.3.5 Dependencies/Relationships

Table 2-22 lists methods that obtain relationships between domain entities.

28

Table 2-22. Methodsthat Elicit Relationships

Method Category Output Type Reference

Data flow modeling Interview Data flow diagram Direct [OTT, 1999],
(dataitems and data [Gane & Sarson,
flow between them — no 1977]
sequence information)

Entity-relationship Interview Entity relationship Direct [OTT, 1999],

modeling diagram (entities, [Swaffield &
attributes, and Knight, 1990]
relationships)

Object oriented modeling | Interview Network of objects Direct [OTT, 1999],
(types, attributes, [Riekert, 1991]
relations)

Semantic nets Interview Semantic Net (inc. Direct [OTT, 1999],
relationships between [Atkinson, 1990]
objects)

Questionnaire Interview Sequence of task Direct [OTT, 1999],
actions, cause and [Bainbridge,
effect relationships 1979]

Discourse analysis Observation Taxonomy of Direct [OTT, 1999],

(observation) tasks/subtasks or [Belkin &
functions Brooks, 1988]

multi-dimensional Construct Attributes and Indirect [Hudlicka, 1997]

scaling Elicitation relationships

Proximity scaling Construct Attributes and Indirect [Hudlicka, 1997]

Elicitation relationships

card sorting Sorting Hierarchical cluster Indirect [Burton &

diagram (classification) Shardbolt, 1987],
[Geiwitz, et dl.,
1990],
[Cordingley,
1989]

Laddered grid Laddering A hierarchical map of Indirect [Geiwitz, et dl.,

the task domain 1990],
[Cordingley,
1989], [Fransella
& Bannister,
1977]

2.1.3.6 Evaluation

Table 2-23 lists methods that are used to evaluate systems, usually prototype

systems, or other types of KE session results.

29

Table 2-23. Methodsthat Elicit Evaluations

Method Category Output Type Reference
teachback Teachback Correction of Direct [Geiwitz, et dl.,
misconceptions 1990],
[Cordingley,
1989], [Johnson
& Johnson,
1987]
critiquing Critiquing Evaluation of aproblem | Direct [Geiwitz, et dl.,
solving strategy 1990],
compared to [Cordingley,
aternatives 1989], [Miller,
1984]
System refinement Prototyping New test cases for a Direct [Geiwitz, et dl.,
prototype system 1990], [Leddo,
et. al., 1988]
System examination Prototyping Experts opinion on Direct [Geiwitz, et dl.,
prototype’ s rules and 1990], [Leddo,
control structures et. a., 1988]
System validation Prototyping Outside experts Direct [Geiwitz, et dl.,
evaluation of cases 1990], [Leddo,
solved by expert and et. a., 1988]
protocol system
Rapid prototyping Prototyping Evaluation of Direct [Geiwitz, et dl.,
system/procedure 1990], [Diaper,
1989
Storyboarding Prototyping Prototype display Direct [OTT, 1999],
design [McNeese &
Zaff, 1991]
Decision analysis List Related Estimate of worth for Direct [Geiwitz, et dl.,
all possible decisions 1990],
for atask [Cordingley,
1989
Ranking augmented Other Conceptua Ranking Direct [OTT, 1999],
conceptual ranking (ordering by value) [Chignell &
Peterson, 1988],
[Kagel, 1986],
[Whaley, 1979]

2.2 Knowledge Elicitation Systems

Performing knowledge €elicitation manually has several drawbacks. Itistime-

consuming for the knowledge engineer and often results in large amounts of unstructured

30

data, needing analysislater. It can often be difficult to be consistent from session to
session and subject to subject. To overcome these problems, automated K E tools [Boose,
1989] have been devel oped.

These KE tools follow several different approaches to knowledge elicitation.
Some tools, such as Protégé [Munsen, 1998] and DNA [Shute, 1998], are actually KE
tool generators. These tools generate domain-specific KE tools that gather information
about their domain.

Other tools, such as TEIRESIAS [Davis, 1979] and ASK [Gruber, 1989] perform
knowledge elicitation in the context of performing a specific task. In TEIRESIAS, a
program used for KE for amedical diagnosis system, the system interacts with the user to
refine errors from an existing knowledge base. ASK follows a similar approach except
the goal isto obtain strategic knowledge.

There are also KE systems built to support a specific Problem Solving Method
(eg. PSM). TEIRISIASfallsinto this category by supporting the Heuristic Classification
PSM. MOLE [Eshelman, et. al., 1987] also supports Heuristic Classification and is also
used for performing KE for amedical diagnosis system. Another system, SALT [Marcus
& McDermott, 1989], a KE tool used to obtain design knowledge, supports the Propose
and Revise PSM. The advantage of these toolsis that they obtain specific knowledge of
interest and structure it in aformat that can be used by the expert system, guided by the

PSM.

31

Other tools automate the process of conducting the KE session and recording the
results, but are not domain specific or PSM specific. Two examples of thisare TOPKAT
[Kingston, 1994] and VIEW [Zacharias et al., 1995]. In TOPKAT, severa KE
techniques (card sort, repertory grid, and laddered grid) are used to obtain classification
knowledge in aformat similar to that in CommonKADS [Van de Velde, 1994].

In VIEW, the knowledge engineer can create the experiment using many
different types of KE methods, either alone or together. The experiment can then be
"played” for the domain expert who provides information either by typing it into forms
that get stored into a database or by speaking into a microphone and having it recorded on
the computer. The advantage of this systemisthat it is very flexible, the disadvantageis
that the data stored is not structured. VIEW is currently being used to conduct computer-
assisted KE sessions to obtain data about Military Decision-Making. The system
introduced in thisthesis, DOES, also automates the KE session and is not domain

dependent.

2.3 Reated Work

There have been many efforts to classify KE techniques. Cordingly [1989]
groups technigues into twelve types: interviewing, focused talk, teach back, construct
elicitation, sorting, laddering, '20 questions, matrix generation, critiquing, protocols, role

play, and simulations.

32

Geiwitz, et. al. [1990] designed a conceptual model of the knowledge acquisition
process to guide the design of KATalyst, an expert system for choosing an effective
knowledge acquisition technique (KAT). They created alist of 150 dimensions for
choosing KATS (KE techniques); these dimensions fall into six categories. Domain,
Expert, User, Solutions, Errors, and Resources. They aso created a catalog of KATS in
order to develop a prototype knowledge base for KATalyst.

There have also been severa studies comparing different KE techniques. In
McCloskey, et. a. [1991], ARK (astructured interview technique) and repertory grid
Analysis were compared. The repertory grid technique was successful in obtaining
classification knowledge while ARK was successful at obtaining procedural knowledge.
When Thordsen [1991] compared concept mapping and critical decision method (CDM),
he found that concept mapping captured an overview of the user'simage of the task while
CDM obtained decisions critical cues, situation assessment and others, including deeper
knowledge that separates experts from novices. In Hudlicka[1996], three indirect
techniques were compared: repertory grid, multi-dimensional scaling, and hierarchical
clustering. Of the three techniques, repertory grid was the easiest to analyze and
provided all the attributes produced by the other two methods.

In the next chapter, design knowledge, and its acquisition, is discussed.

33

Chapter 3 Obtaining Design Plan Knowledge

The KE system developed for this thesis is designed to obtain design plan
knowledge, one type of sequencing knowledge. This chapter describes the types of
knowledge involved in design, followed by a discussion of design plan knowledge and

issues encountered in obtaining it.

3.1 Typesof Design Knowledge
In Smithers model of Engineering design, [Smithers, 1998], the following types
of design knowledge are described:
Needs and desires: what the customer wants.
Requirements formation knowledge and requirements revision knowledge:
required to write the system requirements.
Problem synthesis and specification knowledge, and problem revision knowledge:
required to formulate a problem statement.
Problem solving knowledge: required to generate proposed solutions to the
problem.
Problem analysis, assessment, and evaluation knowledge: required to analyze the
design solutions.
In addition, design presentation knowledge is needed to keep the customer
informed about the progress of each step, and design documentation and rational

recovery knowledge is required to document the design.

34

These knowledge requirements are presented at a high level. What information is
available at each step will vary depending on the problem to be solved and how much
information is provided by the customer. In some cases, only the needs and desires of the
customer are specified, in others the designer may be given a detailed problem
specification [Bernaras, 1993]. Many cases fall in between when the designer is
presented with initial requirements that may or may not be complete. The following

subparagraphs discuss what is involved with each kind of knowledge.

3.1.1 Needsand Desires

Thisinvolves a statement of what the customer wants (or thinks he or she wants).

Thelevel of detail varies depending on the customer and the problem.

3.1.2 Requirements Formation Knowledge
This consists of additional information needed to turn the needs and desires into
actual requirements. In the software world, these are often referred to as "testable
requirements.” Requirements revision knowledge will also be needed since requirements
are likely to require adjustment throughout the process.
Knowledge needed to form requirements includes:
Description of the artifact or system to be designed;
Requirements on its behavior;

Resources required (if applicable).

35

3.1.3 Problem Specification Knowledge

Thisisthe knowledge needed to transform the requirements into an actual
specification of the item being built. Knowledge needed to create a problem specification
includes:

What the design components are (includes information specifying if the
component is always required);

Attributes and possible values for these components,

Constraints between components,

Priorities on constraints, information on which constraints can be relaxed;

Rel ationshi ps (dependencies) between components;

3.1.4 Problem Solving Knowledge

This involves knowledge required to turn the specification into a solution (or
solutions). This consists of a strategy (or perhaps a plan) for how to perform the design
and knowledge of what resources are available to build the artifact. Note that resources
available is different from the resources required stated in the requirements. In some
cases, the client/customer may want specific components involved for various reasons.
For example, the company may have a warehouse full of a particular part and would like
to reduce their inventory. In other cases, the actual choice of component can be deferred
until an exact solution is designed.

Knowledge used to solve the problem, given a specification, includes (not

exhaustive):

36

Decomposition of the design problem;

Design subproblem ordering;

Rel ationshi ps between subproblems;

How to recompose the subproblems into afinal solution;
Resources available (such as a part catalog);

The decomposition, ordering, and relationships together create a design plan.

3.1.5 Solution Analysis Knowledge
This involves knowledge needed to determine if a given solution meets the
requirements. Solution analysis knowledge includes:
Requirements
Problem specification
Solution description

Rationale for design decisions

3.1.6 Documentation and Rationale Recovery Knowledge

Thisis knowledge required to both document the process and justify design
decisions. This knowledge needs to be captured at each step of the process. Some of this
information will be (or should be) a natural output of previous design steps, others will
need to be explicitly captured (such asrationale). Documentation and rationale recovery
knowledge contains the same information as solution analysis knowledge plus the results

of the solution analysis.

37

3.1.7 Presentation Knowledge

Thisisthe knowledge required to provide feedback to the customer about the
design process. How detailed this information should be will depend on the needs of the
customer. It should, however, provide the customer with enough information so that they
can determine if their needs and desires are being met. The knowledge used will be a

subset of that needed for documentation and rationale recovery.

3.2 Design Plan Knowledge

The type of design knowledge discussed in thisthesisis the design plan
[Chandrasekaran, 1990]. Design plans are a subset of the problem solving knowledge
described earlier. The design plans discussed here use a decomposition method/model
[Maher, 1990] to perform the design. Thisinvolves breaking the problem into
subproblems. These subproblems are either solved sequentially or, when possible, in
parallel. Since subproblems may depend on other subproblems, it is necessary to solve
the problemsin the (or a) correct order. Otherwise, the system would need to backtrack
and make adjustments before coming up with the final solution [Liu & Brown, 1994].
The design plan needs to indicate both the decomposition and the order in which the
problems should be solved.

Two factors influence the order in which subproblems should be addressed: the
dependencies between subproblems and the number of constraints on a subproblem. |If
one subproblem depends on the solution to another, they need to be solved in the correct

order. If asubproblem isheavily constrained, it makes sense to solve it first. Thereare

38

two reasons for this: minimizing the amount (and/or length) of backtracking and to
ensure that a solution is even possible. A heavily constrained subproblem islikely to
have few solutions, hence putting it early in a plan quickly determines whether it has a
solution (minimizing backtracking) and reduces the search space in subsequent
subproblems. The ordering information (dependencies and constraints) needs to be
obtained by some method. This thesis concentrates on obtaining design steps, which are
subproblems at adetailed level, and their dependencies. We will consider "steps” to

contain enough knowledge to make a single design decision [Brown, 1989].

3.3 Elicitation Challenges

Obtaining design steps and their order could be obtained in a number of ways.
The most obviousisto simply ask for them. There are difficulties with this approach.
The first difficulty is that the number of possible orderswill vary with the level of
abstraction used to approach the problem. There may be only one order of the abstract
steps, but if broken down into greater detail they may involve steps that can be
interleaved to produce several possible orders. The second difficulty isthat some of the
knowledge used in design may be implicit, i.e. not easily expressed explicitly. The

following subsections discuss these issues.

39

3.3.1 Levd of Abstraction

The number of design steps, and the number of orders for these steps, is highly
dependent on the level of abstraction of the steps. For example, given the hierarchy in

Figure 3-1, the design steps can be ordered at a detailed or a more abstract level.

Decompaostion
= Dependency Problem

. +2\5

Subp-1 — Subp- — Subp-3

4 v ¥ 4
Sepl-l Sepl-2 Sep2l P Sep3l Sep32

I A A

Figure 3-1. Design Step Hierarchy

If the problem was approached at the higher level of abstraction, two orders of the
steps would be given: Stepl-1->Stepl-2->Step2-1->Step3-1->Step3-2 and Stepl-1-
>Stepl-2->Step2-1->Step3-2->Step3-1. I the step dependencies are analyzed at the
lowest level of abstraction, with only the dependencies remaining fixed, five more orders
are found:

Stepl-1->Step2-1->Stepl-2->Step3-1->Step3-2
Stepl-1->Step2-1->Stepl-2->Step3-2->Step3-1
Stepl-1->Step2-1->Stepl-2->Step3-1->Step3-2
Stepl-1->Step2-1->Step3-1->Step3-2->Stepl -2

Stepl-1->Step2-1->Step3-2->Step3-1->Stepl-2

40

This suggests that the less abstract the steps are, the more potential orders exist.
For complex design problems, this would result in large numbers of steps and even larger
numbers of potential orders for the steps. For thisreason, it isimportant to either pick a
high enough level of abstraction that will allow for a manageable number of design steps
for the problem or to determine the number of steps for specific subproblems and not try

to interleave them.

3.3.2 Implicit Knowledge

The second issue affecting knowledge elicitation of design steps is the impact of
implicit knowledge. It is quite possible that the process of designing may include actions
that the designer can not express explicitly, either because they do not view them as
something that needs mentioning or because they have become implicit over time. This

means that determining steps and their ordersis not as simple as just asking for them.

3.4 Related Work

There are many knowledge elicitation methods that could be used for obtaining
design knowledge. The method that has been used the most extensively is protocol
anaysis[Ericsson & Simon, 1984]. It isconsidered by some [Cross, et. a, 1996] to be
the best method for obtaining insight into the design activity. One way of collecting
protocol analysis datais videotaping the subjects while they perform the design. This has
been done in knowledge elicitation sessions for ADD [Garcia, et. al, 1993], in a study of

iteration in ateam design task [Smith & Tjandra, 1997] and in knowledge €elicitation

41

sessions for the Design History Tool [Chen, et. a., 1990]. In Chen, et al. [1990], it is
stated that it takes up to twenty minutes to analyze one minute of protocol data. They
were able to decrease this to five minutes with practice.

Very little work was found that was performing knowledge elicitation specifically
for design steps and their ordering. Severa systems were found, however, that used this
type of knowledge. The KADESS system [Price & Kingston, 1993] is based on the
KADS methodology [Wielinga, et a., 1993]. The KADESS system is used to support the
designer in making safety and stability checks on abuilding design. The system used a
four layer model of expertise: domain, inference, task, and strategy. Design steps and
their ordering would be part of the task layer (lower level steps) and strategy layer (order
of tasks). PROSUS [Blessing, 1996] is a process-based support system. It usesadesign
matrix to represent the design process and aid the designers in documenting their design.
A strategy matrix was proposed as a means of finding the best way of ordering the design
steps but its specification was left as atopic for future research [Blessing, 1994].

One experiment, although not design related, did obtain steps and ordering using a
method other than protocol analysis. Kingston & Aitken, [1997] performed knowledge
elicitation of intelligence analysis via interviews where high level steps were obtained by
asking the domain experts to imagine a textbook teaching intelligence analysis and to
then name the book chapters.

In the next chapter, the relationship between implicit knowledge and design plans

is discussed.

42

Chapter 4 Implicit Knowledge & Design Plans

This thesis proposes a process for obtaining design plans that can be used to
obtain both implicit and explicit knowledge. This chapter discusses the hypotheses
proposed in this thesis, how implicit knowledge is defined for the experiment performed,

and the experiment process followed.

4.1 Hypotheses

There are many factors affecting the presence of implicit knowledge in design
plans and the success of a KE technique at finding this knowledge. The following
hypotheses are examined in this thesis:

Design plan steps and their order contain implicit knowledge;

The combination of a direct technique with an indirect technique obtains more

information than using the direct technique alone;

The level of expertise affects the presence of implicit knowledge.;

The way KE is done (remote vs. in person) affects the quality of the results

obtained;

The amount of implicit knowledge involved depends on the type of domain;

The amount of implicit knowledge involved depends on the type of task.

43

4.2 Defining Implicit Knowledge

One difficulty with performing knowledge €elicitation specifically to obtain
implicit knowledge is determining if something isimplicit. Thisis made harder by the
fact that the definition of implicit variesin the literature. By some definitions, implicit
knowledge is knowledge that cannot be expressed explicitly. However, if some piece of
knowledge is not expressed during the knowledge €elicitation session but can be derived
from post-processing the session results, it may not be knowledge that isimplicit by the
previous definition (knowledge that cannot be expressed explicitly).

For example, if adomain expert provides a set of design steps and oneisfound to
be missing, is that because the step isimplicit or did the domain expert forget to mention
it? For the case of design step orderings, if an order is not expressed directly but is
derived from the step dependencies, isit necessarily implicit?

Because there is no way to definitively prove that a given piece of knowledge is
implicit, the concept of "relative implicitness' isintroduced here [Brown, 1998]. By this
definition, knowledge is viewed as implicit relative to the number of knowledge
elicitation sessions conducted where the knowledge is not stated explicitly. If n
knowledge elicitation sessions are conducted and the knowledge is not stated, the
knowledge israted asimplicit at timen, or t, implicit. As n approaches infinity, the
knowledge is more likely to be implicit, for small n, the information may have been

forgotten when it was first requested. This measurement indicates the level of

implicitness of the knowledge for a particular subject given a specific set of KE

techniques administered in a specific order.

4.3 DOESKnNowledge Elicitation Process

Indirect KE techniques are often used to obtain implicit knowledge. For the
Design Ordering Elicitation System (DOES), the system built for this thesis, the results of
adirect technique and an indirect technique will be used to determine if implicit
knowledge has been obtained. Figure 4-1 shows how the two techniques are used in

DOES.

45

Design problem

SME 44 Direct KE Technique

steps steps& ordering: Direct

SME Indirect KE Technique
dependencies steps
KE » Andysis

steps& ordering: Indirect

v

Compam

KE

4

SME: Subject Matter Expert
KE: Knowledge Engineer

Figure 4-1. DOES K nowledge Elicitation Process

The direct technique will be used to elicit an initial set of design steps and their
order from the subject matter expert (SME). The steps are then fed into the indirect
technique to obtain additiona steps, if any, and dependencies between the steps. The
knowledge engineer (KE) then analyses the dependencies to determine additional orders.
Steps or order that did not result from the direct KE technique are considered t; implicit

because they were not obtained during the first technique applied. Some of these might

46

be explicitly stated during the indirect KE. Any additional orders resulting from analysis
of the indirect KE technique results are considered t, implicit because they were not
stated directly by either of the two techniques. There may still be t, implicit (n > 3) steps
or ordering knowledge that was not obtained during this process.

In the next chapter, the design of DOES is described.

47

Chapter 5 DOES Design

This chapter discusses the design of DOES, the Design Ordering Elicitation
System. Thisincludes the selection of the KE methods implemented, the domain, and the

task. The KE process used and the interface design are aso discussed.

5.1 KE Method Selection

As described in Section 2, the choice of KE technique used is crucial to the
success of the KE effort. The following sections discuss the issues driving technique

selection and the techniques chosen.

5.1.1 IssuesDriving Selection

There were several issues that drove the selection of an appropriate KE technique
for this experiment. Thefirst isthe hypothesis that design steps and their ordering
involvesimplicit knowledge. The second isthat the technique chosen needs to be easy to

administer and analyze. The following sections discuss why the selection was not an

easy task.

5.1.1.1 Indirect KE Technique Result Mismatch

In Chapter 2, KE techniques were grouped by the type of knowledge obtained. In
Chapter 3, design steps and their ordering were defined as procedural knowledge. In
Chapter 4, the hypothesis was presented that design steps and sequencing may involve

implicit knowledge.

48

The KE techniques best suited for procedural knowledge €elicitation are all direct
techniques. The KE techniques best suited for deriving implicit knowledge are dll
indirect techniques. Therefore, in order to obtain implicit knowledge that is procedural in
nature, it is appropriate to adapt an indirect technique to provide information in the

needed form or to combine multiple techniques.

5.1.1.2 Difficulty of Technique

KE techniques vary in how difficult they are to administer. For some, the
knowledge engineer needs to be familiar with the domain in order to guide the sessionin
the desired direction. For others, the technique itself requires an experienced knowledge
engineer to know which questions should be asked when. Some techniques also rely on
the knowledge engineer tailoring their questions based on previous responses; this makes
these technigues more difficult to automate and remotely administer (administer with no

knowledge engineer present).

51.1.3 Scalability

Thefirst indirect technique considered for this experiment was repertory grid
anaysis[Kelly, 1955]. Thisisacommonly used indirect technique that has been used
successfully in remote KE in the past [Shaw& Gaines, 1995]. The original plan, givenin
the thesis proposal, was to present the design steps to the subject in groups of three and
ask the subjects to indicate the similarities and differences in terms of the information

required in order to complete the step. Thiswould have been an interesting approach.

49

Unfortunately, this method does not scale well. The technique would require that the
subject be presented with all possible groups of three steps out of the entered design
steps. For example, if the subject entered five stepsin the design, they would be asked to
compare 10 groups of three steps. If the subject had entered twenty stepsin the design,
they would be asked to compare 1,140 groups of three steps. Since the subjects are not
being forced to limit the number of steps they use, the repertory grid technique is not
practical. A better solution would be one where the number of questions presented to the

subject was linear with respect to the number of design steps.

5.1.2 Selected Methods

Since direct methods are best for obtaining procedural knowledge and indirect
methods are best for obtaining implicit knowledge, a combination of a direct and an
indirect method was used for this project. Olsen and Biolsi [1991] suggest that a direct
method can be used to determine objects in adomain and an indirect method used to find
the relationships between them. In another study, Thordsen [1991] compared Critical
Decision Method and Concept Mapping and came to the conclusion that the two
techniques could be used very effectively together.

The two techniques chosen for this project were Forward Scenario Simulation
(direct) and Card Sort (indirect). Forward Scenario Simulation (FSS) [Burton& Shadbolt,
1987] is atechnique where the domain expert is presented with a description of the task
and then asked to describe the procedures followed to solve it and the reasons underlying

their decisions. This technique was chosen because it does not require that the domain

50

expert be able to perform the task during the KE session or that the knowledge engineer
have prior knowledge about how the task is performed. For this experiment, the domain
expert was asked to describe how they would perform their design.

Card Sort [Gammack & Young, 1984] is atechnique where the domain expert is
asked to sort items along different dimensions. For this experiment, the items to be
sorted were the design decision steps, and the sort dimension used was their dependencies
on prior steps. This method was chosen because it is an indirect method with a high
potential for providing multiple orders of steps and because administering it islinear in
the number of steps. For this method, twenty steps would involve twenty comparisons, a

significant decrease from the 1,140 needed for repertory grid analysis.

5.2 Domain Selection

Many different design domains could have been used for this experiment. The

following sections describe the domain chosen and the reasons for that selection.

5.2.1 IssuesDriving Selection

There were two primary issues driving the domain selection: the ability of the
knowledge engineer (the author) to design the experiment and perform the analysis
herself and the availability of research subjects. Because of the limited time available in
which to perform the experiments, and to analyze and document the results, it was
necessary to choose a domain that was familiar enough to the researcher so that experts

from domains other than computer science would not be required to create the

51

experiment and aid in the analysis. It was aso necessary to chose a domain where there

were many potential research subjects available.

5.2.2 Sedected Domain

The domain chosen was database design. The knowledge engineer has been
trained in database design and has done some simple design projects. Also, therearea
large number of faculty and graduate students in the WPI computer science department

available to enlist as research subjects.

5.3 Design Task Selection

After selecting the domain, the next step was to choose a task within the domain.
The following sections describe the issues driving the task selection, and the task

selected.

5.3.1 IssuesDriving Selection

There were several issues driving the selection of the database design task. First,
it had to be a frequently performed task so it would be easy to find research subjects who
could doit. Thisruled out tasks such as query optimization or database tuning which are
done by advanced database designers. Second, it needed to be atask where the steps
could be performed in more than one order. This suggested that the task should be one
that was normally approached at adetailed level. Third, it needed to be atask where

some steps were dependent on each other.

52

5.3.2 Selected Task

The task selected was Entity Relationship Diagram Design. Thisisatask that is
familiar to al, or most, database designers. It isthe most critical step in the database
design process because it determines what data will be stored in the database and how
data items relate to each other. It isalso one of the first subjects taught in the graduate
level Database Management System course so that even students who had not finished
the course could serve as research subjects. Thisis atask where agiven design problem
will have multiple solutions and where the steps in a solution could have multiple orders.
It is al'so one where the steps are dependent on each other. For example, it is not possible
to determine the relationship between two entities until the entities themselves have been
defined.

For this experiment, the subjects were asked to design an ER diagram for an
airport database. This database needed to describe entities such as airplanes, airport
employees, tests performed on the airplanes, etc. The task stimuli for the experiment are

given in Appendix A of this document.

54 Remote Knowledge Elicitation

DOES was designed as a Remote Knowledge Elicitation Tool. Remote
knowledge elicitation is when the elicitation is performed with the knowledge engineer
not being physically present during the experiment. The following sections describe the

advantages and disadvantages of this approach.

53

54.1 Advantages

The advantages of remote KE include the following:
Domain experts can be used who are not collocated with the knowledge
engineer.
Remote KE is cheaper to administer because no travel isinvolved for the
domain experts or the knowledge engineer.
Data from all experiments can be easily collected in one place.
Elicitation sessions can be conducted at times convenient to the domain
expert.
Elicitation sessions can be performed in parallel for multiple users because the
knowledge engineer does not need to be involved in each one. This reduces
the amount of calendar time it takes to perform knowledge elicitation.
All domain experts are presented with the same stimuli in the same order and

results do not depend on their rapport with the knowledge engineer.

5.4.2 Disadvantages
Remote KE has its disadvantages. These include:
There is no way for the domain expert to ask questions during the experiment.
It isdifficult to predict when the domain experts will perform the experiment.
KE session results (data produced) are often not as expected since there is no
monitoring of how the experiment is performed. Results may be unusable
because instructions were misinterpreted or ignored.

54

Thereistherisk that technical difficulties may occur with collection. Itis
difficult, if not impossible to recover lost data or get the expert to repeat the
elicitation session. If the knowledge engineer were present, some of these
problems could be prevented.

The knowledge engineer cannot ask questions that emerge or become relevant

during the KE session.

5.5 KE Process

Figure 5-1 shows how the two KE techniques were combined to create the DOES
System. The shaded items are part of the DOES implementation. The outputs of the
Forward Scenario Simulation (FSS) technique are analyzed and compared with the output
of the Card Sort technique. Thisis done to compare the results obtained using the direct
technique alone with the results obtained using the direct technique and the indirect

technique combined.

55

Pick Characteristics of suitable
KE — «—
‘Super” task/domain
SME
“ ” Indication of level of steps
Su
gt (abstraction)

Problem Defn

v

defn of problem

SME

. DOES
SME — Step Extraction
SME 7 > | Step Ordering |

»/Steps l
s

dependencies steps steps& ordering: Direct

e o

steps& ordering: Indirect

Comparison

KE »

SME: Subject Matter Expert
KE: Knowledge Engineer

Figure5-1. DOESKE Process

The KE process starts with selecting a domain and a " super Subject Matter

Expert" (SME). The "super SME" assists the knowledge engineer in selecting an

56

appropriate domain. The "super SME" for DOES was Dr. Nabil Hachem, of the
Worcester Polytechnic Institute Computer Science Department. After the problem has
been defined, the DOES system is used to collect information from the research subjects
serving as SMEs for the experiment. The subjects first perform the FSS portion of the
experiment to create an initial set of steps and their order. They are then instructed to sort
the steps based on the dependencies between them. The analysis consists of two parts:
using the steps and dependency information to determine the order or ordersin which the
steps can be performed and comparing the results of the direct technique with the results

of both techniques combined.

5.6 Interface Design

The DOES system consists of three parts. a background survey used to obtain
information on the level of expertise of the experiment subject, the knowledge elicitation
experiment, where the two techniques are used to obtain the design steps and their order,
and a usability study to allow the user to evaluate both the design problem and the
knowledge elicitation process. Figure 5-2 shows a state transition diagram for the DOES

system.

57

Background
Survey

KE Experiment

Not All Sorted;
New Steps Added

All Sorted;
No New Steps

Usabhility
Survey

Figure5-2 DOES System State Diagram

5.6.1 Background Survey

The background survey was created to obtain the following information:
Contact information - This allows the experimenter to keep track of who has
performed the experiment. It also provides away to contact the subjects if
there were any questions about the results.

Subject design experience - This includes the educationa background of the

subject, years of experience in database design, and any relevant training

58

and/or projectsin thisarea. Thisinformation will be used to examine the

effect of the subjects level of expertise on the results.

5.6.2 Knowledge Elicitation Experiment

The knowledge €licitation experiment is where the knowledge €elicitation

techniques are used to obtain the design steps and their ordering.

5.6.2.1 Design Task Information

The user was given three types of information describing the task:
System Requirements - this information describes the requirements that the
design needs to meet.
Design Task - this information describes the specific design task that the
subject isto perform.
Design Sep Example - thisinformation gives examples of typical design steps
for thistype of task. Thisis needed to indicate the level of detail needed in

the design solution entered into DOES.

5.6.2.2 DOESKnowledge Elicitation Interface
The knowledge €licitation interface consists of four parts:
FSSentry - this part of the experiment requests that the subject describe
("walk through™) the design process.
Sep entry - this part of the experiment asks the subject to break the process

down into discrete steps.

59

Sep sorting - this part of the experiment asks the subject to take the
previously entered steps and sort them into the order in which they were most
likely to perform them.

Card sort - this part of the experiment presents the subject with each
previously entered step, the "current step”, one at atime. For each "current
step”, the subject isto indicate which of the remaining steps must have been

performed before the current step.

5.6.3 Usability Survey
The usahility survey was designed to obtain immediate feedback on the DOES
system. Information requested includes:
Overall usability - thisis used to get the user's overall opinion about the
software.
Design problem description evaluation - this is used to determine if the
subject had any difficulties solving the problem given the task and problem
description.
Time to complete the experiment - thisis used to measure how long each
subject took to perform the experiment.
Evaluation of the approach - thisis used to see if the knowledge elicitation
approach helped the user to produce a better design or to better understand
how they perform the design.

Comments - thisis used to gather any additional feedback from the user.

60

In the next chapter, the implementation of DOES is described.

61

Chapter 6 DOES Implementation

This chapter discusses how DOES was implemented.

6.1 Alternatives Considered

After choosing the KE methods and KE process, the next choices that needed to
be made were the platform and the programming language. This was done by first
examining other remote KE systems. Two systems were studied: DNA [Shute, 1998],
and Web Grid Il [Shaw & Gaines, 1998]. For DNA, the KE software is given to the
domain expert on afloppy disk. They install the program on their computer, perform the
experiment, and then store the data on a floppy and return it to the knowledge engineer.
For Web Grid I1, the KE application consists of a seriesof HTML formsand is
administered viathe World Wide Web. Results are stored at a central server.

The advantage of locally installed software is that it does not depend on a
computer network. Dataare not as likely to get lost or garbled in transmission. Since the
environment is more stable, it is easier to test the software. There are several
disadvantages to this approach. One disadvantage is that distributing the software and
data could be time consuming depending on where the domain expert is located relative
to the knowledge engineer and how prompt the domain expert is about sending back the
results once the experiment has been completed. Another disadvantage is that the domain

expert has to perform the software installation him or herself. This adds to the amount of

62

work they have to perform. A third disadvantage is that the knowledge engineer will then
need to manage data from multiple experts received on multiple floppies.

There are several advantages to a web-based approach. Thefirst isthat it offers
fast turn-around for administering the experiment. All the domain expert needs to
perform the experiment isthe URL. This can be e-mailed to them and will avoid the
delay of distributing experimental materials. Also, the experiment results are stored in a
central location immediately upon completion of the experiment. This allows
management of the results to be built into the experiment rather than being performed
manually by the knowledge engineer. Another advantage is that web-browsers run on
multiple platforms -- this means that the domain expert is not required to use a specific
machine to perform the experiment. There are also disadvantages. One disadvantage is
that it requires the network to be reliable. Another is that the software might not perform
consistently across platforms and web-browsers. The web-based approach was chosen for
DOES because it is much easier to administer and does not involve the time delays
involved in distributing the materials and receiving the results.

The next decision was to choose how to implement the application. The two
options considered were HTML forms and Java. HTML forms are easy to implement
and behave consistently across platforms. Javais not as easy to implement and behaves
differently depending on the version of the web-browser used. It does, however, have the

advantage of offering more dynamic displays and more control over user actions than

63

HTML. For these reasons, Java was chosen as the primary implementation language for

DOES.

6.2 DOESImplementation

DOES was implemented in a combination of HTML forms, Java, and Perl. It was
designed to be design task independent, i.e. a different design problem could be
substituted without modifying any code. It was also designed to be as platform
independent as possible. Thiswas done by using Perl, JavaScript, Java, and HTML
forms, rather than a compiled language.

Figure 6-1 shows the DOES System Architecture.

= =
_ _
< =

Research Subj ECI\ / Research Subject

User Interface

-
KE Steps
Methods

Control

DOES

Domain and /\/7} Elicitation Results

Task Description

DataFiles
(owl.wpi.edu)

Figure 6-1. DOES System Ar chitecture

6.2.1 Experiment Introduction Display

The experiment began by presenting the subject with a brief description of the
three major parts of the experiment: the background survey, knowledge €elicitation
experiment, and usability survey. They were also provided with contact information in
case they had any questions. This page wasan HTML form with a"Start" button at the
bottom that invoked a Perl script to continue the experiment. Figure 6-2 shows the

Experiment Introduction Display.

65

¥ Design Ordering Elicitation System - Netscape

Eil= Edit “iew Go Communicator Help

D A T SR VR B S S

Back Forward Reload Home Search Metzcape Print Securty Stop
wt " Bookmarks 4% Location: [u/ “jburge/DOES j (=]l what's Related
ﬁ Inztant Message whebbdail Contact Feople reflow Pages Download |’_‘|' Channelz

A
Desigr Ordering Elicitation System

Welcome to the Design Ordering Elicitation System!

Thiz svstern has been used to gather information about the design process, It
consists of three parts:

1. & short survey to obtain backeround mformation on your design experience.
2. A series of exercizes used to obtain mformation about how you would
preform a specific design task
3. Another short survey to get feedback on this system.
Thus 15 not a test of your design ability, it 15 an experiment to compare different
methods of obtaining design knowledge. All individual results will be reported
anonymously.

Thus application runs best under Metscape version 4.0 and ugher.

Thank you very rmuch for your participation and please contact me, Janet Burge, at
{burge@es. wpt edu if vou have any questions.

Start |
=

| (== | |Document: Done EE = e

Figure 6-2. Experiment Introduction Display

6.2.2 Background Survey Display

The background survey was written using a Perl script. This script creates the
HTML forms used for the survey questions. The Perl script adds the type of design task
being performed to the survey introduction so the user can base their answers on the

exact task and domain. Figure 6-3 shows the Background Survey Display.

66

% Design Ordering Elicitation System - Netzcape
File Edit %iew Go Communicator Help
oW o A N a2 W | k| &
i Back Fapward, Feload Home Search Metscape Frint Security St
T “' Bookmarks \gg Location:Ihttp:Nwww.cs.wpi.eduf’cgi-binJiburgefthesis.f’backgrouncl.|:|I? j @'What's Fielated
i ,5% Instant Message bk il Contact Peaple Telow Pages Download @ Channels
=l
Background Questionnaire
Please provide some information on your design experience in Entity Relationship
Diagram Design and information needed to contact you to verify the results of the
expetiment.
Name: I
Email address: I
Educational Background: |E|S 'I
Years of Design Experience: IU "I
Please describe any relevant, post-graduate training in this discipline:
=
4 II
Please describe any relevant projects you have worked on previously:
=
A PI
Submit | Clear Fislds | —
=
| (== | Prinit thiz page: Sl T S EE A 2

Figure 6-3. Background Survey Display

JavaScript is used to check that the name and e-mail fields have been entered and
that the e-mail field isafull address (i.e. including the"@" character). If there are errors,
the user isinformed and they can not submit the form until corrections have been made.
The JavaScript code for this was based on an example given in [Flanagan, 19973).

Figure 6-3 shows the error message displayed.

67

www_cs wpi.edu - [JavaScnpt Application]

A\

The farm was nat zubmitted because of the fallowing ermarlz).
Fleaze correct these emar(z] and re-zubmit.

- The following required field(z) are empty:
hare
email

Figure 6-3. Background Survey Display

When the form is submitted, the results are stored in atext file. Theuser ID is
extracted from the e-mail addressand "_background.dat” is appended to create the file

name.

6.2.3 DOESInstructions Display

After completing the background survey, a set of instructionsis displayed. These
instructions explain the remainder of the experiment. Figure 6-4 shows the DOES

Instructions Display.

68

File Edit “iew Go Communicator Help

< @ A 4 e W @ &

Back Forward Reload Home Search Metscape Frint Security

)
“ " Bookmarks Jg Lacation: |4Dcs&education=ES&experience:ﬂ&training=&proiects=&submit=5ubmit j @' What's Related

e,’%lnstantMessage Wbt ai Contact People ellow Pages Download @ Channels
Experiment Description

The next screen will present the following:

=

® 4 Dhst of links along the left side of the display. These point to information about the design problem and to
another copy of this deseription.

® A series of pink displays that will ask you questions abonat the design task. After following the imstmetions on
each display, you should use the "contitme" button to move to the next ona.

The pink displays are:

1. Duasign Deseription Display:
This display asks you to deserbe (™aralk through™) howr you wonald perform the design task.

2. Step Entry Display:
This display asks you to break your design deseription down into individual steps. The display
provides wouwith a field where wou can add the design steps by typing them m and lutting the
"add" button. The steps will appear in a list. Steps can be deleted by selacting them with the
mouse and hitting the "delete" button.

3. Step Ordering Display:

This display asks you to sort your design steps into chronological order. If there 15 more than
one possible order, choose the one you prefer.

4. Step Dependency Displays:

These displays will present each step to you one at a time. You will be asked to indicate (in any
order] which steps nmst ooy before the ourrently presented step. You can add a step at any
titne during this process if wou realize that additional steps ave needad. If a step is addad, all the
steps willbe re-presented to you so you can indicate if the newr step ocours before any of the
others.

5. Experiment Complete Display:

The last display will indicate that the experiment has conchided and instrmet you to proceed to
the Usability Survey.

Donel ;I
[P (== | |Documnent; Dore =S R e v

Figure 6-4. DOES Instructions Display

6.24 DOESKnowledge Elicitation Experiment

The DOES knowledge €licitation experiment isimplemented using a Perl script
that creates an HTML form with an embedded Java applet. The form contains links to

the experiment stimuli, the applet, and a button that transitions from the knowledge

69

elicitation experiment to the usability study. The experiment stimuli links are generated
from atext file, shown in Appendix A, that contains domain and task specific stimuli. If
adifferent domain or task is used, the file can simply be replaced or modified. The Java
applet contains no domain or task specific information Figure 6-5 shows the initial DOES

Knowledge Elicitation Experiment Display.

70

~=lolx]|

Fle Edit ¥ew Go Communicator Help

[- T B - L

Back Femward Reload Horme Search Metscape Print Security Stan;
w!' Bookmarks £ Lucalion:Ihllp:f.r‘www.cs.wpi.edu.r‘:gi-bim’iburge/lhes\s.r‘saveﬁquest pl?email=iburge % 40csbContinue=Done _'I @v\h’hal's Related
i &InstantMessagE “wiebh all Contact People ‘Vellow Pages D ownload |’_‘|' Channels

WI I WORCESTER POLYTECHNIC INSTITUTE

,Dzzﬂ'f;z f»‘n{tzﬂ'nf LElicitation 5752‘3;%
P oy

Please wiew the information deseribing the design task and the experiment, listed in the
left column, as needed. They will open in a separate browser window.

‘ It iz important that the design steps be given at a detailed level. Examples are provided
‘ by one of the links in the left column,

‘ Describe {in any format) how you would perform your design:

Design Description: =
‘ 1) Identify the relations (entities)
2) Identify the atfributes for each relation
3 Identify the primary key for each relation
4y [dentify the relationships between the tables
) Morarnlize - reduce redundancy
B) Identify the foreign keys

Continue -

[=0=] EE N Al

Figure 6-5. Initial DOES Knowledge Elicitation Experiment Display

The following sub-sections describe each of the knowledge €elicitation displays.
These are al written in Java with some Perl scripts used for file 1/O. Code used to lay out

some of the displays was modified from [Flanagan, 1997b].

6.2.4.1 Forward Scenario Simulation Display

The first display in the knowledge elicitation experiment uses the Forward
Scenario Simulation method. For this method, the subject is presented with atext entry
areaand is asked to describe how they would perform the design task, entering the
actionstaken in any format. After this has been completed, the Java applet stores the
resultsin afile by invoking a Perl script viaHTTP. Thestring"_knowledge.dat” is

71

appended to the subject's user 1D (created earlier) to create the file name for the
"knowledgefile".

Figure 6-6 shows the Forward Scenario Simulation Display.

Desctibe {in any farmat) how yau would perform your design:

Design Description: =
|1]| [dentify the relations (entities)

21 [dentify the attributes for each relation

3 Identify the primary key for each relation

43 |dentify the relationships hetween the tables

o) Maramlize - reduce redundancy

B) ldentify the fareign keys

oftitne

Figure 6-6. Forward Scenario Simulation Display

6.2.4.2 Step Entry Display

After the subject has described their design process in free text, they are asked to
break it down into discrete steps. They are presented with a non-editable display of their
original description and then given atext box that they can use to enter the steps. Asthey

add each step, it isdisplayed in alist. They can delete steps from the list by selecting

72

them and using a"delete”" button. The final list of steps is appended to the knowledge file
created earlier.

Figure 6-7 shows the Step Entry Display.

Break your design down inta individual steps:

13 Identify the relations (entities)

2 [dentify the attributes for each relation

2 ldentify the primary key for each relation __1;’
¥

'Design Description: i_l

Enter each new step, then press Design Steps:

Add 1o add to the list. airplane(regnumber, t
modelimodnumber, ©
technicianiname, S5k
1-1 Relationship airpl

S testiFASnUm, name, r
| employees(SSN, unionlD) 1-1 Relationship testi
N 2

Add
Dielete |

Continue |

Figure 6-7. Step Entry Display

6.2.4.3 Step Ordering Display

The user may not have entered their steps in the order in which they would
perform them. The Step Ordering Display asks them to take their list of steps and

arrange them in the order in which they would normally be performed. Thisis done by

73

moving them from alist displaying them in their original order into asecond list. They
can be moved in either direction so that if astep is moved into the wrong position it can

be removed and added again. All steps are placed at the end of the list when moved over.

Figure 6-8 shows the Step Ordering Display.

Arrande your design steps into chronological order.

Design Steps:

Sorted Steps:
techmicianname, 551

atrplane regnumher,
test(AL, natne, trodel tnodinber, ¢
1-1 Felationship testi 1-1 Felationship airpl
etnployess(S, v

All steps must be sorted before proceeding!

Continue |

Figure 6-8. Step Ordering Display

6.2.4.4 Card Sort Display

The Card Sort Display presents the subject with each step (the "current step") one
at atime and asks them to indicate which steps must occur prior to the current one. This

74

is done by moving the steps from alist containing all stepsto anew list of prior steps. |If

the subject realizes that a step is missing, they are allowed to add it.

Figure 6-9 shows the Card Sort Display.

1-1 Relationship airplane_n

technicianiname, 35
testiFAANUM, name,

1-1 Relationship testi
employees(SSM, unio

airplane{regnumber,
mndel{mndnumher! C

Figure 6-9. Card Sort Display

If steps are added, the sorting process needs to be repeated to incorporate the new

step. This continues until all steps have been sorted without any new steps being added.

75

At this point, each step, and the set of steps considered to be prior to it, are written to the

knowledgefile.

6.2.4.5 Experiment Complete Display

After the steps have been sorted and written to afile, afinal Javadisplay is shown
that instructs the subject to proceed to the usability survey. Figure 6-10 showsthe

Experiment Complete Display.

76

Figure 6-10. Experiment Complete Display

6.2.5 Usability Survey Display

The usability survey was written using a Perl script that generates the HTML
form for the survey. All questions, except for the optional comments, are done using

radio buttons and pull-down menus so JavaScript error checking is not needed. All

7

survey results are written to an output file. The name of the output file is created by
appending "_survey.dat" to the user ID entered during the background survey.

Figures 6-11 and 6-12 show the Usability Survey Display.

78

B

File Edit “iew Go Communicator Help

< & A 4 2 W o & @
Back Fomwerd Reload Home Search Netscape Frint Securty Gtap
v ‘;‘f' Bookmarks \k Locatmn:lhttp A, oz wpl. edudcgl-bindburgesthesis/usabiliy. pl ?email=jburge? 40cstContinue=0 one j @'What's Fielated
4 ﬁ Instart Message Webhdail Contact People Telow Pages Download D" Channels
=
Usability Questionnaire
Flease answer the following gquestions about the knowledge acguisition task you just completed:
I found the sofiware:
! Easyto Use
' Difficult to TTse
@ Adeguate
I found that the description of the desizn problem I had to solve was:
© Jufficient to describe the task
© Insufficient to describe the task
& Wo Opinion
The time it took me to complete this experiment was:
less than 30 minutes: 'l
Performing this experiment:
€ Made me think more sbout how [do design
' Did nat make me think ahout how I da design
& Wo Opinion
i
[== | Document: Dione T AP EEl A 2

Figure 6-11. Usability Survey Display, Page 1

79

B =loix]

File Edit View Go Communicator Help

L e 2 A A . W o & @
H Back Fopwad Fleload Home Search Metscape Print Securily Stop
v _,& " Bookmarks J‘ anation:lhttp vy, oz wpi.edud cai-bindburge /thesis/usability. pl?email=jburge®40cskContinue=Done ;l ﬁ' What's Related
i & Instant Message Wfebi ail Contact People ellow Pages Download L‘i Channels
=
At the end of the experiment, the design process was described:
© More completely than if had simply been asked to describe it.
0 The same if] had just been agked to describe it.
® No Opition
Any other comments ?
L =
; B
Subimit | Clear Fields |
[== | Dacument: Done N B B R

Figure 6-12. Usability Survey Display, Page 2

6.3 Implementation Issues

Javais an easy language to learn and use, especially when compared to other
languages and toolkits such as Visual C++ and X-Windows. There were still several
difficulties encountered while implementing DOES. The major ones were Java security

issues and version incompatibilities.

6.3.1 Java Security

Since Javais run on the remote client machine, there are built-in security features
that exist to protect both the client and the server. The problem that arose during this
implementation was the restriction on file I/O. There was no way to write the experiment
results directly to afile from Java. Thiswas worked around by writing Perl scriptsto

perform file 1/0. The scripts wereinvoked viaHTTP. Thisworked well for small

80

amounts of data but did not work for larger sets. In particular, the data transfer did not
work when the final set of steps and prior steps was sent to the server. Thiswas due to
limitations on the amount of data that could be sent inasingle HTTP request. The
solution to this problem was to send each step and its associated prior steps to the server
individually. This meant that there was a HT TP request sent for each step. Thiswas

time consuming and did not always work on remote machines.

6.3.2 Version Incompatibilities

Another difficulty was in Java version incompatibilities. Most Java books and
classes teach the Java 1.1 event model. The Java code for DOES was written using the
Java 1.0 event model. Thiswas done because the browser version installed on several of
the WPI Computer Science department PCs did not support Java 1.1. Asking research
subjectsto install anew web browser before running the experiment was not considered a
reasonabl e request.

This had two impacts on DOES development: first, any code based on manual
examples or downloaded from the web had to be modified to use the 1.0 event model.
Second, this limited what features could be used for DOES. In particular, cut and paste
was not availablein 1.0. If the 1.1 event model had been used, the step sorting would
have been done by allowing cut and paste directly into the correct spot in the list rather
than moving steps from the original list to the sorted list.

Version incompatibilities continued to cause problems during DOES testing and

deployment. In one case, DOES ran successfully on an older version of Netscape and did

81

not run on anewer version. This problem was corrected but it is still not clear why the
code was incompatible. There are also problems running DOES using the Internet
Explorer browser. Asaresult, it isrecommended that DOES be run using Netscape,

version 4.0 or higher.

82

Chapter 7 DOES Experiment

This chapter discusses the experiment performed for this thesis.

7.1 Selecting the Subjects

Fourteen subjects were selected who had varying levels of experience performing
database design. Thiswas done so that the relationship between level of expertise and
presence of implicit knowledge could be examined. All subjects were familiar with
entity relationship design.

Three Computer Science faculty members who specialize in databases,
Three Computer Science Ph.D. students who specialize in databases;
Five Computer Science graduate students who had taken or were in the
process of taking an introductory database course;

Three industry professionals who specialize in databases.

7.2 Stimuli Preparation

The design problem given to the subjects was atextbook exercise (number 14.8)
from [Ramakrishnan, 1997, p. 392]. The exercise chosen was one that was sufficiently
complex that different steps and orders of the steps could be produced by different
subjects but not so complex that the exercise could not be completed in about one hour.
The subjects were asked to create an entity relationship diagram for an airport database.

The requirements for the database, a description of the specific task (i.e., create an entity

83

relationship diagram), and examples of design steps were created and incorporated into

the DOES experiment. Appendix A shows the task stimuli.

7.3 Experimental Procedure

Subjects were sent an e-mail message requesting their participation in the
experiment. They accessed the experiment viathe Web and did it at their convenience.
They were requested to run the experiment only once unless told otherwise. All results
were saved to files for analysislater. The experimenter was able to examine these filesto
determine who had and who had not taken the experiment and to determineif it had been
completed correctly.

Figure 7-1 shows an example of the e-mail participation request.

Hello,

I'd like to request your participation in an experiment that | am conducting as part of my Masters Thesis
research. The experiment is entirely web-based and should only require about an hour of your time.

The experiment is designed to use a combination of knowledge elecitation techniques to obtain the design
steps (and their order) taken when performing a simple design task. For this experiment, you will be asked
to design an entity relationship diagram.

Thisisnot atest of your design abilities - it isatest of how effective the techniques are at elicitating
knowledge. Sinceitisintended to simulate a"live" knowledge dlicitation session (where a knowledge
engineer interviews the domain expert) it isimportant that you complete the experiment from begininng to
end once and only once (i.e. if you feel you have made a mistake with your design do not repeat the
experiment to correct it).

I'd really appreciate any help you can give mein this. Because | am hoping to graduate this semester, |
need to ask you to compl ete this experiment by October 26th. If you are not able to participate in the
experiment, or if you can participate but not between now and October 26th, please contact me.

The experiment can be found at:

http://www.cs.wpi.edu/~jburge/DOES

Please contact me if you experience any difficulties running it. 1t works best under Netscape 4.0.
Thank you very much.

Janet Burge
jburge@cs.wpi.edu

Figure 7-1. Example Participation Request

7.4 Possible Outcomes
Aswith all experiments, there are many possible outcomes. For each subject, any
one of the following outcomes might occur:
Additional steps and additional orders are produced (that were not produced
by the direct technique alone) - thiswould occur if implicit knowledge was

involved in both the steps and the orders.

85

Additional orders, but no additional steps produced - this would occur if
implicit knowledge was involved in step ordering but was not present in the
steps for this specific design task or if implicit knowledge was present but the
experiment was not successful at obtaining it.
No additional steps or additional orders were produced - this would occur if
implicit knowledge was not involved for this design task or if the experiment
was not successful at obtaining it.
Results were produced but not usable - this would occur if there were
problems with either the experiment or if the subject did not perform the
experiment as instructed.
The subject does not perform the experiment - some subjects may be unable to
perform the experiment because of other obligations.

Chapter 8, experiment results, discusses the actual outcomes of the experiment

and how they relate to the hypotheses proposed in Chapter 4.

86

Chapter 8 Resultsand Evaluation

This chapter discusses the results from each part of the experiment and discusses
how they relate to the hypotheses proposed. Section 8.1 discusses the DOES subjects and
the results of the background survey, section 8.2 discusses the KE experiment, and
section 8.3 discusses the usability survey results. Figure 8-1 shows the DOES State

Diagram and indicates which sections of this chapter discuss each part of the experiment.

Background
Survey 8.1
Done

KE Experiment

8.2.1.2
Not All Sorted;
New Steps Added
>
— 8.2.1.3

All Sorted;
No New Steps

U sability
Survey 8.3

Figure 8-1. DOES State Diagram with Section Numbers

87

8.1 DOES Experiment Subjects

As described in the previous section, fourteen subjects with avariety of
backgrounds were asked to participate in the experiment. Of these subjects, eleven
subjects completed all or part of the experiment. Ten subjects completed the experiment
remotely, i.e. without the presence of the experimenter. One of these ten had an office
near the experimenter and walked over to ask questions during the experiment. The
eleventh subject completed the experiment in the presence of the experimenter and was
able to show the experimenter intermediate results and ask questions.

Table 8-1 shows the number of subjects completing each portion of the
experiment.

Table 8-1. Number of Subjects Completing the Experiment

Experiment Portion Number of Subjects
Background Survey 11

Forward Scenario Simulation 10

Step Entry 9

Step Ordering 7

Card Sort 5

Usahility Survey 9

There were several reasons why subjects did not compl ete the experiment. Some
subjects tried running the experiment using Internet Explorer rather than Netscape.
Errors were not always reported, but the results were not recorded properly. Other
subjects did not follow the instructions and complete the experiment: after entering the
steps, they decided that since they had already entered them in order they did not need to

order them again or perform the Card Sort portion of the experiment. Of the subjects

88

who completed all portions of the experiment, two of them performed it twice: one
because their solution was abstract, rather than the detailed solution requested, and one
because they felt their result for the Forward Scenario Simulation had sufficient detall
and therefore they did not need to complete the rest of the experiment. Only subjects
who asked the experimenter if their results were complete were asked to repeat the
experiment.

All eleven subjects completed a background survey as part of the experiment.
Table 8-2 shows the education levels for the subjects who completed any portion of the
experiment. The third column shows the education levels for subjects who completed all
parts of the experiment.

Table 8-2. Education Level of Research Subjects

Level of Survey Entire Experiment
Education

Ph.D. 3 1

MS. 6 3

BS. 2 1

Table 8-3 shows the number of years of relevant experience.

Table 8-3. Relevant Experience

Y ears of Experience Number of Subjects
0 2
1-5 7
6-10 1
11-15 1

The default response to the question was zero, one zero response was for someone

taking the introductory graduate database class, the other was for someone who had

89

worked in databases and probably did not choose a response to the question. The
majority of the respondents selected 1-5. Thisincluded two faculty members who
specialized in databases. The subject who entered 11-15 is student currently taking the
introductory database class. Their answer to the question on relevant training mentioned
OOA and OOD classes so their answer may have included experience with related topics

aswell as with databases.

8.2 DOESKE Experiment Results

Results were obtained from both the direct technique as well as the direct and
indirect technique combined. The following sections present the results for both and the

comparison between them.

8.2.1 Resultsfrom Direct Technique

The direct technique consisted of three parts: Forward Scenario Simulation where
the subjects were asked to describe how they would perform their design, Step Entry
where subjects were asked to break their design into steps, and Step Ordering where they

were asked to arrange their steps into chronological order.

8.2.1.1 Forward Scenario Simulation

For the Forward Scenario Simulation (FSS) part of the experiment, the subjects
were asked to describe how they would design the entity relationship diagram for an
airport database (described in Appendix A). Ten subjects entered a free-text description

of their design process. The results can be classified into five categories:

90

detailed entity relationship diagram (ERD) descriptions -- this was the result
that was requested,;

descriptions of the database design process -- these descriptions included the
mappings from the entity relationship diagrams to database tables and how the
tables would be normalized;

abstract descriptions -- high level descriptions of how an ERD would be
constructed without referring to the specific problem that was given;

abstract descriptions of the object oriented design process -- object diagrams
have similar features but thisis not the problem that was proposed,;
incomplete descriptions -- not all of the needed information was present.
Table 8-4 summarizes the results.

Table 8-4. Forward Scenario Simulation Results

Category

Number of Subjects

Detailed ERD Description

Database Design Description

Abstract ERD Description

Abstract Object Oriented Design Description

Incomplete Description

N RN R

This portion of the experiment was intended as a warm-up exercise so the subjects

were not required to enter detailed descriptions. It is clear from the results, however, that

several subjects did not understand that the task was to design an ER diagram, not the

entire database.

91

8.2.1.2 Initial Step Entry

After entering their initial description of the design task, the subjects were asked
to break their design down into discrete steps. Nine subjects completed this portion of
the experiment. Even though all subjects were given instructions that the task was to
design an entity relationship diagram and were given examples of the level of detail
needed for design steps, the solutions were not consistent in the task performed or the
level of detail. These solutions can be broken into three categories: abstract steps
(descriptions of the ERD process that did not refer to the problem given), detailed ERD
designs, and detailed ERD designs with foreign keys (rel ationshi ps between database
tables). Table 8-5 summarizes the results.

Table 8-5. Initial Step Entry Results

Category Number of Subjects Number of Steps
Abstract Steps 2 6, 8

Detailed ERD Designs 4 11 (2), 14, 43
Detailed ERD Designs with 3 16, 19, 25
Foreign Keys

The number of steps given was consistent for each category with the notable
exception of the subject who reported 43 steps for his design. This subject started by
listing each attribute definition as a separate step, rather than listing them along with the
entity as demonstrated by the example steps given. For example, rather than specifying
the entity airport as airport(ID, name, address, phone) they listed airport entity, airport
DI, airport name, airport address, airport phone al as separate steps. This accounted for

22 of the 43 steps. He aso specified "looking into requirements’ as a step and specified

92

an abstract step of identifying relations. If these steps are subtracted, 19 steps remain,
which is closer to the results from the other subjects and more consistent with the

instructions.

8.2.1.3 Step Sorting

After the subjects entered their steps, they were then asked to arrange them into
the order in which they would normally be performed. Seven subjects completed this
part of the experiment. Table 8-6 summarizes the results.

Table 8-6. Step Sorting Results

Category Number of Subjects
No change in order 2

Order changed to correct original order 1

Order changed, reason unknown 1

Relationships and/or keys moved to directly follow | 3

the entitiesinvolved

All but one subject who completed this portion of the experiment had approached
the problem at a detailed level. The subject who provided abstract steps did not change

their order.

8.2.1.4 Evaluation of Solutions

Solutions were evaluated against the solution provided by [Ramakrishnan, 1987],

shown in Figure 8-2.

93

union_mem_no

Employees

addr&m

model_no
Model Technician Traffic_control

|:| Entity Test Test_info Plane
Q Attribute

<> Relationship reg.no
—_— Required @

<+ Key Constraint

name Primary key

Figure 8-2. ER Diagram for Airport Database

The results were as follows:
One subject gave an answer that matched the book solution exactly
One subject missed the relationship specifying who the plane was tested by.
One subject missed the relationship between test and plane.
One subject missed the Test entity completely. This subject also had many
items that could have been attributes defined as entities.
Three subjects had difficulties with the relationships between employees,
technicians, and traffic controllers. Two of these solutions still met the

requirements, they were just less efficient.

94

Of these subjects, three gave solutions that would meet all the requirements. Most gave
solutions that were close. Two of the subjects giving correct solutions were Ph.D.
students specializing in databases. The student who gave the exact solution was a student

who was currently taking the introductory graduate database course.

8.2.2 Resultsfrom Indirect Technique

Five of the eleven subjects completed the Card Sort portion of the experiment. In
this part of the experiment, each step was displayed one by one to the subject. They were
asked to choose which steps from the remaining steps had to occur prior to the presented
step.

The results were analyzed to determine the following: were any additional step
added and were any additional orders obtained? No additional steps were entered by any
of the subjects completing this part of the experiment. Four out of the five subjects chose
what they believed to be the minimal set of steps that had to occur before each step. For
these subjects, many different orders could be derived for the design task. The fifth
subject did not select any of the steps as being prior to any other steps.

Of the four subjects who provided dependencies, one had an obvious error in the
order specified in the Card Sort: this subject indicated that a primary key should be
created without specifying that the corresponding relation must be created first. Another
subject chose prior steps that conflicted with the order specified when they sorted the
steps originaly. In these results, the Card Sort order dependencies were correct. The

third subject chose an incorrect entity as being required before a relationship was defined.

95

It appears that they simply moved the wrong item over to the list of prior steps by

mistake (there were no other errors). The fourth subject (who did not perform the

experiment remotely) made one error by not moving a step over to the prior step list

when they should have. This same subject (who had 43 steps total) got tired of indicating

all the prior steps and started to only indicate the most recent prior step; thiswas

observed by the person administering the experiment.

Figure 8-3 shows an example of a provided order and figure 8-4 shows an

example of an order that was derived from the Card Sort results.

agrwONE

B ©o©owo~No

12.
13.
14.
15.
16.
17.

18.

19.

20.

Create an entity Model with attributes (M odel Number, capacity, weight)

create primary key Model .M odel Number

create an Airplane entity with attributes (RegistrationNumber, M odel Number)

create primary key Airplane.RegistrationNumber

create an m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model .M odel Number

Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)
create primary key Technician.SSN

create an m-to-n relationship TechExpert bewteen Technician and Model

Create an entity TechExpert with attributes (SSN, Model Number)

create an n-to-1 relationship techExpert between TechExpert and Technician where TechExpert.SSN =
Technician.SSN

. create an n-to-1 relationship techModel between TechExpert and Airplane where

TechExpert.Model Number = Airplane.Model Number

Create an entity TrafficController with attributes (SSN, DateOfExam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity Test with attributes (FAANumber, Name, MaxScore)

create primary key Test. FAANumber

create an m-to-m relationship TestingEvent between Test and Airplane

create an entity TestingEvent with attributes (Techl D, AirplaneRegistrationNumber, date,
NumberOfhours, score)

create an n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent.TechnicianlD = Technician.SSN

cretae an n-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create an n-to-1 relationship test between Test and TestingEvent where TestingEvent. FAANumber =
Test. FAANumber

Figure 8-3. Sorted Stepsfrom Direct Method

96

create an Airplane entity with attributes (RegistrationNumber, M odel Number)

create primary key Airplane.RegistrationNumber

create an entity Test with attributes (FAANumber, Name, MaxScore)

create an entity Employees with attributes (SSN, unionMembershipl D)

create primary key Test. FAANumber

Create an entity TrafficController with attributes (SSN, DateOfExam)

Create an entity Model with attributes (M odel Number, capacity, weight)

create primary key Model .M odel Number

create an m-to-one relationship, airPlaneModel, between Airplane and Model where

Airplane.ModelNumber = Model .M odel Number

10. Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)

11. create primary key Technician.SSN

12. create an m-to-n relationship TechExpert bewteen Technician and Model

13. Create an entity TechExpert with attributes (SSN, Model Number)

14. create an n-to-1 relationship techExpert between TechExpert and Technician where TechExpert.SSN =
Technician.SSN

15. create an n-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.Model Number = Airplane.Model Number

16. create an m-to-m relationship TestingEvent between Test and Airplane

17. create an entity TestingEvent with attributes (Techl D, AirplaneRegistrationNumber, date,
NumberOfhours, score)

18. create an n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent.TechnicianlD = Technician.SSN

19. cretae an n-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

20. create an n-to-1 relationship test between Test and TestingEvent where TestingEvent. FAANumber =

Test. FAANumber

©oNoO A~ WNE

Figure 8-4. Derived Order from Card Sort Results

8.2.3 Comparison between M ethods

By isolating the dependencies, the indirect method produced the information
needed to create multiple step orderings for the task. Unfortunately, the technique was
also proneto errors and inconsistencies. 1n one case, there were two discrepancies

between the two techniques. The differencesin order are shown in Table 8-7.

97

Table 8-7. Direct/Indirect Discrepancies

Steps and Order from Direct Steps and Order from Indirect
Create an Airplane entity with attributes Create aModel entity with attributes model #,
registration # and model capacity, and weight; model # is the key
Create aModel entity with attributes model #, - Create an Airplane entity with attributes
capacity, and weight; model # is the key registration # and model
Create a Technician entity with attributesname, | - Think about the address attribute. 1t might be
SSN, address, phone number, salary just asimple attribute or a separate entity, if
Think about the address attribute. 1t might be each technician might have more than one
just asimple attribute or a separate entity, if address
each technician might have more than one - Create a Technician entity with attributes name,
address SSN, address, phone number, salary

The difficulty with the stepsin the first row of the table is the way the problem
statement was ordered. The problem statement indicated that an airplane exists and it has
aregistration number and is of a specific model. The problem statement then indicated
that each model has amodel 1D, capacity, and weight. The resulting steps provide be the
correct way to design the database tables, and either of the two orders would be correct,
but for the entity relationship diagram, the airplane should not have had a model number
attribute. Instead, there should have been a relationship between airplane and model.

For the second set of steps, they could have been done in any order. It would be
possible to create the technician entity and then think about the address format or to think
about the format and then decide to make it an attribute.

The subject was asked why there was a discrepancy between the two methods.
The reason given was that the sorted steps given in the direct method were the way that
he had performed the design, the dependencies given in the indirect method were the way

the design should have been done. This was the only subject who gave a detailed solution

98

who did not change the order of their steps when given the opportunity to do so after
initially entering them.

In summary, using two techniques increased the number of orders produced for
the design steps. It aso produced errors and inconsistencies that could result in incorrect

orders. A way to avoid or correct these errors needs to be provided.

8.2.4 Relationship Between Results and Hypotheses

The following hypothesis were proposed in Chapter 4:
Design plan steps and their order involve implicit knowledge.
The combination of a direct technique with an indirect technique obtains more
information than using the direct technique aone.
The level of expertise affects the presence of implicit knowledge.
The way KE is done (remote vs. in person) affects the quality of the results
obtained.
The amount of implicit knowledge involved depends on the type of domain
The amount of implicit knowledge involved depends on the type of task

The following sections discuss the first four hypothesis and how they relate to the

results of the experiment. The remaining two are discussed in Chapter 9 as potential

future work.

99

8.24.1 Implicit Knowledgein Design Stepsand Ordering

The indirect approach did not add any additional stepsto thisdesign. This could
be for several reasons. The subjects may have been sure enough of their results that they
did not look for the possibility of missing information. They also may not have been
"expert enough” to perform the task automatically. The type of problem chosen may not
have been one where implicit knowledge isinvolved in determining the steps. Another
possibility isthat implicit knowledge is involved but is not seen as something that needs
to be stated when specifying the steps to the problem.

The two-method combination was effective at determining the dependencies
needed to derive multiple orders of design steps. These aternative orders can be
considered to-implicit with respect to this experiment since two KE techniques were

applied without directly obtaining the information.

8.24.2 Morelnformation by Combining Techniques

Adding the indirect technique did not result in any additional steps. It did,
however, provide the information needed to generate many alternative orders. This
indicates that adding the second technique did obtain more information. This did come at
acost -- the indirect technique meant that the subjects had to specify the dependencies for
each step. For problems with many steps this could be difficult. 1t was also prone to
error. This may have been because the subjects were all volunteers and were in ahurry to

complete the experiment and get back to their other work. One solution to this problem

100

would have been to ask them to verify all results - thiswould result in fewer errors but

would increase the time needed to complete the experiment.

8.24.3 Impact of Level of Expertise

The four subjects who completed the implicit portion of the experiment were one
Ph.D. specializing in databases, two Ph.D. students specializing in databases, and one
Ph.D. student who had studied databases but did not specialize in them. All subjects
chose, or tried to choose, the minimal number of prior steps for each design step.

The level of expertise did appear to have an impact on the number of design steps
provided but did not affect the quality of the solution. The "best" solution was provided
in asmall number of steps by a M S student who was just taking the database class. One
reason for this may have been that the student had recently learned ERD design from the

same book that the exercise was from.

8.2.4.4 Evaluation of RemoteKE

The remote KE approach proved to have many problems. The first difficulty was
in getting subjectsto participate. All subjects contacted to perform the experiment either
did so or responded via e-mail that they would participate. Despite this, only eleven out
of fourteen started the experiment and only five produced results for al parts. Of the
seven subjects who produced detailed solutions, only three met all the stated

requirements. Of the four who used the Card Sort to sort their steps, two had errors. A

101

third had inconsistencies but was able to explain them. The fourth had assistance from the
knowledge engineer during the experiment.

Even though the subjects were presented with detailed instructions, many of the
subjects did not follow them. Four subjects did not follow the instructions, which stated
the level of abstraction to usein their solution. Two of these subjects were asked to re-
take the experiment.

Datawas lost for severa subjects. Two of them were performing the experiment
from an off-campus location, which may have caused data transfer problems. Another
performed the experiment using Internet Explorer and experienced Java errors.

Several subjects did not complete the project because they decided some parts
were not necessary. Two entered their steps into the free-text area and then skipped the
rest of the experiment because they had already provided steps. One entered the discrete
steps but then stopped when asked to sort them because they had already entered them in
the order in which they should be performed. One entered the discrete steps and sorted
them, but did not provide any dependencies.

Some of these problems may have been avoided if the KE sessions had been
scheduled. The subjects could have been encouraged to spend more time reading the
instructions. They aso could have been prompted to provide detailed solutions and

complete the experiment.

102

Because of these difficulties, one subject performed the experiment in the
presence of the knowledge engineer. The following difficulties and misunderstandings
were observed:

The subject did not refer to the experiment stimuli (requirements for the
airport database, description of the design task, and example steps) at all
during the experiment. He had looked through it earlier and relied completely
on his memory.

The subject did not like having to type in their steps and started combining
stepsin order to save typing.

During the Card Sort exercise, the subject started to just give back the same
order that he gave earlier. He had to be instructed to only state a step as being
prior to another step if there were dependencies involved.

During the Card Sort, the subject listed all the dependencies for thefirst few
steps but started only specifying the closest prior step to save time.

Performing the experiment under the supervision of the knowledge engineer
resulted in a complete experiment at the correct level of detail. It aso resulted in a Card
Sort that correctly identified dependencies (although, for some, only the nearest
dependency in the chain). It did not, however, result in a correct solution. Thiswas
probably because the subject relied on his memory and did not want to consult the
instructions (although prompted to) during the experiment. He may have wanted to show

that he did not need to look at them to complete the experiment.

103

8.3 Usability Survey Results

The usability survey had six questions. Nine subjects completed the survey. The

following sections give the results for each question.

8.3.1 Overall Usability
The first question asked for an overall assessment of the usability of the system.

Table 8-8 summarizes the results.

Table 8-8. Usability Results

Response Number of Subjects
The system was easy to use. 2
The system was neutral to use. 3
The system was hard to use. 4

These results are not surprising considering the difficulty that many of the
subjects had in compl eting the experiment. A magjor factor in this was the narrowness of
some of theinput fields. Java does not provide away to specify afield width when

creating lists and no other way to do it was found when the experiment was created.

8.3.2 Design Task Description Evaluation

The second question asked for an assessment of the data provided that described
the requirements and task specification for the design problem. Table 8-9 summarizes

the results.

104

Table 8-9. Description Evaluation Results

Response Number of Subjects
Data provided was sufficient to solve the problem 7

Neutral response 0

Data provided was not sufficient to solve the 2

problem

From these responses, it seems that most subjects found the data provided to be
adequate. Of the two who did not, one commented that she had needed to make some
assumptionsin order to complete her solution. The other person only provided high level
steps and appeared to be performing an object oriented design project, not a database

design project.

8.3.3 Amount of Time Needed to Complete the Experiment

The experiment was designed so it could be completed in one hour. In order to
verify that estimate, the third question asked the subjects to give the amount of time
needed to complete the project. Table 8-10 summarizes the results.

Table 8-10. Amount of Time Needed

Results Number of Subjects
L ess than 30 minutes 2
31-60 minutes 4
61-90 minutes 3

The time-stamps from the data files were examined to obtain the actual time used
to complete the experiment. Three of the subjects underestimated the time that they used

by asmall amount. One subject indicated that they used 61-90 minutes but actually used

105

only 19. They may have experienced difficulties using the software and had to repeat the

experiment.

8.34 Prompted Thought about Design Process

The fourth question in the survey asked the subjects if performing the experiment
made them think more about how they did design. Table 8-11 summarizes the results.

Table 8-11. Prompted Thought About Design Process

Response Number of Subjects
Yes 6
No-opinion 1
No 2

Most subjects responded that performing the experiment made them think more

about how they performed design.

8.3.5 Completeness of Description

The fifth question asked the subjectsif, at the end of the experiment, the design
process was described more completely than if they had ssmply been asked about it, the
same asif they had just been asked about it, or if they had no opinion. Table 8-12
summarizes the results.

Table 8-12. Completeness of Description

Response Number of Subjects
Better description 3
No opinion 3
Same description 3

106

Of the four subjects who completed the Card Sort portion of the experiment, two
felt that the experiment provided a better description, had no opinion, and the other

thought it was the same.

8.3.6 Comments
Three subjects did not provide any comments on the experiment. Those who did
had the following comments:
Text entry fields needed to be wider (3 subjects)
General guestions/comments on their results (2 subjects)
Explanation of assumptions about the task that were made (1 subject)

Text of a Java error message encountered when using Internet Explorer

In the next chapter, ideas for future work on DOES are discussed.

107

Chapter 9 Future Research

This chapter presents some ideas for future work on DOES. These include DOES

enhancements, automated analysis of results, and additional experiments.

9.1 DOESEnhancements
The research subjects had some problems with understanding how to use DOES
and with using the interface. The following list suggests some improvements to the user
interface, the result collection, and the documentation of the experiment.
Increase the width of data entry and display fields - there does not seem to be
an easy way to do thisin Java but it must be possible.
Test DOES on additional platformsto avoid difficulties like those experienced
by subjects using Internet Explorer.
Take advantage of Java 1.1 features - this would make the application easier
to use.
Add alog-in to the project to prevent subjects from taking the experiment
more than once - this has to be balanced with the inconvenience to the
subjects that this might cause.
Record the time at the start and end of each part of the experiment - this can
be used to determine where most of the time is spent.

Come up with amore robust method for saving data to text files.

108

Write the usability survey in Java so the user will be forced to complete all the

proceeding sections of the experiment before proceeding to the survey.

9.2 Automated Analysis

The results from DOES consist of the dependency information needed to obtain
al the alternative orders for the design steps. Determining these ordersis not easily done
manually - depending on the number of steps and dependencies the number of orders
could be quite large. If the goal isto enumerate all the orders, software needs to be

written to automate this process.

9.3 Additional Experiments

There are several additional experiments that could be performed using DOES:
Additional subjects: the number of subjects completing this experiment was
small. The experiment should be run (successfully) with alarger number of
subjects so that results obtained are representative of the general population of
domain experts.

Different domains: the amount of implicit knowledge involved in design
varies depending on the domain. For this experiment, the domain chosen was
software, more specifically databases. It would be interesting to try using
DOES in other domains to see how the results vary.

Different tasks: the amount of implicit knowledge involved might also vary

depending on the design task. The ERD task used here was one that was

109

fairly straightforward to solve. If the subjects had been asked to perform a
different task, perhaps database tuning or physical database design, the results
may have been different.

Different KE techniques/combinations of KE techniques: substituting a
different technique for the FSS or Card Sort would probably produce different
results. The techniques could be compared to determine the most effective
combination.

The next chapter presents the conclusions of thisthesis.

110

Chapter 10 Conclusions

This chapter examines the results from the experiment in two major areas. the
effectiveness at obtaining the design steps and ordering and in the effectiveness of the

remote KE approach.

10.1 Design Stepsand Ordering

The results from the direct method (Forward Scenario Simulation) and the direct
method with the indirect method (Card Sort) were compared. Using the indirect method
did not result in discovering any missing design steps. It did, however, result in
producing the data needed to produce many different orders for the design steps. These
additional orders can be considered to-implicit knowledge. While many subjects had a
difficult time completing the experiment, six out of nine felt that it made them think

about how they performed design.

10.2 The Remote KE Approach

Performing the experiment remotely was less than successful. Out of the ten
subjects who started the KE portion of the experiment, only five finished it completely
and of the five, one stepped through the last portion without entering any information. Of
the four who produced useful results, one performed the experiment under the
supervision of the knowledge engineer. This seemsto indicate that despite its
convenience, remote KE is not necessarily the most effective approach. The experiment

could be modified to provide more guidance to the user; the drawback to thisisthat if

111

they are given too much information on the goals of the experiment it may bias their
results.

Part of the reason for the difficulty in performing the experiment is that all
subjects were volunteers and had many tasks that were a higher priority than completing
this experiment. If time had been scheduled for each subject to perform the experiment,
they may have been more likely to spend adequate time on it. Thismay have resulted in

fewer user errors and more time spent reading the instructions.

10.3 Summary

In conclusion, DOES, and the combination of KE methods it used, was successful
at obtaining multiple orders of design steps. It was not as successful as a remote KE tool.
There were many problems encountered by the subjects during the experiment. These
ranged from browser crashes to misinterpreted instructions to lost data. Doing the
application in Java allowed more control of the experiment than if HTML forms had been
used but also caused problems with data transfer, input field size, and browser
incompatibilities.

The DOES results, although fewer than desired, were good. Although no new
steps were produced during the Card Sort, this may have been do to the fact that the task
was not difficult or that the research subjects did not have alot of time to spend on the
project. All of the subjects who provided the dependencies for their design steps
produced the minimal set of dependencies. This shows that the two KE techniques

chosen, Forward Scenario Simulation and Card Sort were successful in producing the

112

data required to obtain the maximum number of possible orders for the design steps. Itis
clear from our experiment that combinations of direct and indirect methods are useful but

more work needs to be done to determine productive combinations.

113

Chapter 11 References

Anderson, J. (1983). The architecture of cognition. Cambridge, MA: Harvard
University Press.

Atkinson, G. (1990). Practical experience using an automated knowledge acquisition
tool, Proceedings of the Second Annual Conference of the International Association
of Knowledge Engineers, pp. 87-97.

Bainbridge, L. (1979). Verbal reports as evidence of the process operator's
knowledge, International Journal of-Man-Machine Studies, 11, pp. 411-436.

Belkin, N. J., Brooks, H. M. (1988). Knowledge €licitation using discourse analysis,
In B. Gaines and J. Boose (Eds.) Knowledge Based Systems, Vol. 1, pp. 107-124.
Academic Press Limited.

Bernaras, A. (1993). Models of Design for the CommonKADS Library, ESPIRIT
Project P5248 KADSII.

Berry, D. (1987). The problem of implicit knowledge, Expert Systems, August 1987,
Voal. 4, No. 3.

Blessing, L. (1996). Design Process Capture and Support, Proceedings of the 2™
Workshop on Product Sructuring, Delft, June 1996, M. Tichem et. a (Eds), pp. 109-
121.

Blessing, L (1994). A Process-Based A pproach to Computer-Supported Engineering
Design, Cambridge: Black Bear Press.

Boose, J.H. (1989). A survey of knowledge acquisition techniques and tools, In
Buchanan, B., Wilkins, D. (Ed.), Readings in Knowledge Acquisition and Learning,
Cdlifornia Morgan Kaufmann, pp. 39-56.

Breuker, J., Weilinga, B. (1983). Analysis techniques for knowledge based systems.

Part 2: Methods for knowledge acquisition, Esprit Project 12, Report 1.2, University
of Amsterdam.

Brown, D., Chandrasekaran, B. (1989). Design Problem Solving: Knowledge
Structures and Control Strategies, California: Morgan Kaufmann.

Brown, D. (1992). Design, In Shapiro, S. (Ed.), Encyclopedia of Artificial

114

Intelligence, Vol. 1, New Y ork: John Wiley & Sons, pp. 331-339.

Brown, D. (1993). Intelligent Computer Aided Design, Encyclopedia of Computer
Science and Technology, Marcel Dekker, Inc., pp. 153-166.

Brown, D. (1998). Personal Communication, October, 1998.

Burton, A.M., Shadbolt, N. R. (1987). Knowledge Engineering, In N. Williams and
P. Holt (Eds.), Expert systems for users, London: McGraw Hill.

Chandrasekaran, B. (1990) Design Problem Solving: A Task Analysis, Al Magazine,
pp. 59-71.

Chen, A., McGinnis, B., Ullman, D., Dieterich, T. (1990). Design History Knowledge
Representation and Its Basic Computer Implementation, The 2™ International
Conference on Design Theory and Methodology, ASME, Chicago, IL, pp. 175-185.

Chignell, M. H., Peterson, J. G. (1988). Strategic issuesin knowledge engineering,
Human Factors, 30(4), 381-394.

Coovert, M. D., Cannon-Bowers, J. A., & Salas, E. (1990). Applying mathematical
modeling technology to the study of team training and performance, Paper presented
at The 12th Annual Interservice/lndustry Training Systems Conference, Orlando, FL,
November.

Cordingley, E. S. (1989). Knowledge elicitation techniques for knowledge-based
systems, InD. Diaper (Ed.), Knowledge dlicitation: Principles, techniques and
applications, Chichester, England: Ellis Horwood Ltd.

Coury, B. G., Motte, S., & Seiford, L. M. (1991). Capturing and representing decision
processes in the design of an information system, In Proceedings of the Human
Factors Society 35th Annual Meeting, Santa Monica, CA: Human Factors Society,

pp. 1223-1227.

Cross, N., Christiaans, H. , Dorst, K. (1996). Introduction: The Delft Protocols
Workshop, In Cross, N., Christiaans, H. , Dorst, K. (Ed.), Analysing Design Activity,
New York, NY: Wiley & Sons, pp. 1-16.

Diaper, D. (1986). Identifying the knowledge requirements of an expert system's

natural language processing interface, in Harrison, M., Monk A. (Eds.), People and
computers: designing for usability, Cambridge University Press, pp. 263-280.

115

Diaper, D. (Ed.). (1989). Knowledge €elicitation: Principles, techniques and
applications, Chicester, England: Ellis Horwood Ltd.

Davis, Randall. (1979). Interactive Transfer of Expertise: Acquisition of New
Inference Rules, In Buchanan, B., Wilkins, D. (Ed.), Readings in Knowledge
Acquisition and Learning, California: Morgan Kauffman, pp. 221-239.

Eshelman, L., Ehret, D., McDermott, J., Tan, M. (1987). MOLE: atenacious KA tooal,
International Journal of Man-Machine Studies, 26, pp. 41-54.

Ericsson, K.A., Simon, H.A. (1984). Protocol Analysis: Verbal Reports as Data,
Cambridge, MA: The MIT Press.

Flanagan, D. (19974a). Javascript The Definitive Guide, Caifornia O'Reilly &
Associates, pp. 249-264.

Flanagan, D. (1997b). JAVA Examplesin a Nutshell, California O'Reilly &
Associates, pp. 104-138.

Flanagan, D. (1997c). JAVA In A Nutshell, California: O'Reilly & Associates.

Flanagan, J. (1954). The critical incident technique, Psychological Bulletin, 51, pp.
327-358.

Fransella, F., Bannister, D. (1977). A manual for repertory grid technique, London:
Academic Press.

Gane, C., Sarson, T. (1977). Structured Systems Analysis:--Tools and Techniques,
Unpublished document, McDonnell Douglas Corporation.

Garcia, A., Howard, H., Stefik. M. (1993). Active Design Documents: A New
Approach for Supporting Documentation in Preliminary Routine Design, Tech.
Report 82, Stanford Univ. Center for Integrated Facility Engineering, Stanford, CA.

Geiwitz, J., Kornell, J., McCloskey, B. (1990). An Expert System for the Selection of
Knowledge Acquisition Techniques, Technical Report 785-2, Contract No. DAABO7-
89-C-A044. California: Anacapa Sciences.

Geiwitz, J,, Klatzky, R., McCloskey, B. (1988). Knowledge acquisition techniques

for expert systems: Conceptual and empirical comparisions. Santa Barbara, CA:
Anacapa Sciences, Inc.

116

Gero, J. (Winter 1990). Design Prototypes:. Knowledge Representation Schemafor
Design, Al Magazine, pp. 26 - 36.

Gordon, S. E., Schmierer, K. A., & Gill, R. T. (1993). Conceptua graph analysis:

Knowledge acquisition for instructional system design, Human Factors, 35, pp. 459-
481.

Gowin, R., Novak, JD. (1984). Learning how to learn, New York: Cambridge
University Press.

Gruber (1989). The Acquisition of Strategic Knowledge, San Diego, CA: Academic
Press.

Hart, A. (1986). Knowledge acquisition for expert systems, London: Kogan Page.
Hudlicka, E. (1997). Summary of Knowledge Elicitation Techniques for
Reguirements Analysis, Course Material for "Human Computer Interaction”,
Worcester Polytechnic Institute.

Hura, G. S. (1987). Petri net applications, |EEE Potentials, October, pp. 25-28.
Johnson, L, Johnson, N. (1987). Knowledge dlicitation involving teachback
interviewing, in Kidd, A. (Ed.), Knowledge acquisition for expert systems: a practical
handbook, London: Pitman Press.

Kagel, A. S. (1986). The unshuffle algorithm, Computer Language, 1(11), pp. 61-66.
Kelly, G. (1955). The Psychology of Personal Constructs, New Y ork: Norton.

Klein, G. A., Calderwood, R., Clinton-Cirocco, A. (1986). Rapid decision making
on the fireground, Proceedings of the 30th Annual Human Factors Society, 1, Dayton,
OH: Human Factors Society, pp. 576-580.

Kingston, J. (1994). Linking Knowledge Acquisition with CommonKADS
Knowledge Representation, Presented at BCS SGES Expert Systems 1004
Conference, St. John's College, Cambridge, Dec. 1994.

Kingston, J., Aitken, S. (1997). Eliciting Process Models of Intelligence Analysis,
Report of the HPKB Knowledge Acquisition Sessions of 30/31 October, 1997.

Leddo, J., Cohen, M. (1988). Cognitive structure analysis. A method of eliciting
expert knowledge. Lexandria, VA: Army Research Institute.

117

Leddo, J., Mullin, T., Cohen, M., Bresnick, T., Marvin, F., O'Connor, M. (1988).
Knowledge dlicitation: Phase | final report, Vol. 1, Technical Report 87-15,
Alexandria, VA: Army Research Institute.

Liu J., Brown D. (1994). Generating Design Decomposition Knowledge for
Parametric Design Problems, Proceedings of AID-94, Kluwer Academic Publishers,
pp. 661-678.

Maher, M. (Winter 1990). Process Models for Design Synthesis, Al Magazine, pp. 49
- 58.

Marcus, S., McDermott, J. (1989). SALT: A knowledge acquisition language for
propose-and-revise systems, Artificial Intelligence, 39, pp. 1-37.

McCloskey, B., Geiwitz, J., Kornell, J. (1991). Empirical Comparisions of
K nowledge Acquisition Techniques, Proceedings of the Human Factors Society 35™
Annual Meeting, Santa Monica, CA: Human Factors Society, pp. 268 - 272.

McGraw K, Harbison-Briggs, K. (1989). Knowledge Acquisition Principles and
Guidelines, New Jersey: Prentice Hall.

McNeese, M. D., Zaff, B. S. (1991). Knowledge as design: A methodology for
overcoming knowledge acquisition bottlenecks in intelligent interface design,
Proceedings of the Human Factors Society 35th Annual Meeting, Santa Monica, CA:
Human Factors Society, pp. 1181-1185.

Miller, P. (1984). A critiquing approach to expert computer advice: ATTENDING,
Research Notesin Artificial Intelligence 1, London: Pitman Advanced Publishing
Program.

Munsen, M. (1998) Protégé, http://smi-web.stanford.edu/projects/protege/,
Knowledge Modeling Group, Stanford University School of Medicine.

Nisbett, R., DeCamp Wilson, T. (1977). Telling More Than We Can Know: Verbal
Reports on Mental Processes, Psychological Review, Vol., 84, No. 3, pp. 231-259.

Olson, J., Biolsi, K. (1990), Techniques for Representing Expert Knowledge, In
Ericsson, A., Smith, J. (Eds.) Toward a General Theory of Expertise, Cambridge
University Press.

OTT (1998). http://www.ott.navy.mil/2 2/2 2 6/, Task Analysis, Chief of Naval

118

Operations Office of Training Technology.

Price, S., Kingston, J. (1993). The KADESS Knowledge-Based System: Employing

the KADS methodology in an engineering application, Presented at 6" International

Conference on Industrial and Engineering Applications of Artificial Intelligence and
Expert Systems, Edinburg, 1-4 June 1993.

Riekert, W. (1991). Knowledge acquisition as an object-oriented modeling process, In
M. J. Tauber and D. Ackermann (Eds.) Mental models and human computer
interactions, Amsterdam: Elsevier Sciences Publishers B. V., pp. 373-381.

Shakeri, C. (1998). Discovery of Design Methodol ogies for the Integration of Multi-
disciplinary Design Problems, Ph.D. Dissertation, ME Department, Worcester
Polytechnic Institute.

Shaw, L., Gaines, B. (1995). Comparing Constructions through the Web, Proceedings
of Computer Supported Cooperative Learning. Bloomington, October, 1995.

Shaw, L., Gaines, B. (1998). WebGrid |1: Developing Hierarchical Knowledge
Structures from Flat Grids, Proceedings of the 11" Workshop on Knowledge
Acquisition, Modeling, and Management, Banff, Alberta, Canada, April, 1998.

Shute, V. J. (1998). DNA: Towards an Automated Knowledge Elicitation and
Organization Tool, submitted for Cognitive Tools-11.

Smith, R., Tjandra, P. (1998). Experimental Observation of Iteration in Engineering
Design, Research in Engineering Design, Val. 10, No. 2.

Smithers, T. (1998). Towards a Knowledge Level Theory of Design Process,
Proceedings of AID-98, Kluwer Academic Publishers.

Spradley, J. (1980). Participant observation, London: Holt, Rienhart, & Winston.
Spradley, J. (1979). The ethnographic interview, London: Holt, Rienhart, & Winston.

Swaffield, G., Knight, B. (1990). Applying system analysis techniques to knowledge
engineering, Expert Systems, 1, pp. 82-93.

Thordsen, M. (1991). A Comparison of Two Tools for Cognitive Task Analysis:

Concept Mapping and the Critical Decision Method, Proceedings of the Human
Factors Society 35th Annual Meeting.

119

Van de Velde, W. (1994). An Overview of CommonKADS. In J. Brueker, W. Van de
Velde (Ed.) CommonKADS Library for Expertise Modeling, Amsterdam: 10S Press,
pp. 9-30.

Weingaertner, S. T., Lewis, A. H. (1988). Evaluation of decision aiding in submarine
emergency decision making, In J. Ranta (Ed.) Analysis, Design, and Evaluation of
Man-Machine Systems: Selected Papers from the 3rd IFAC/IEA/IFORS Conference,
1, Oxford, UK: Pergamon, pp. 95-201.

Whaley, C. P. (1979). Collecting paired-comparison data with a sorting algorithm,
Behavior Research Methods and Instrumentation, 11, pp. 147-150.

Witt, G. (1998). A Comparison of Knowledge Elicitation Techniques for Describing
Conceptual Knowledge in Declarative and Procedural Domains, Ph.D. Dissertation,
Psychology Department, George Mason University

Woods, D. D., Hollnagel, E. (1987). Mapping cognitive demands in complex

problem-solving worlds, International Journal of Man-Machine Studies, 26, pp. 257-
275.

120

Appendix A Task Stimuli

This appendix contains the data file that specifies where the task stimuli islocated

and the task stimuli themselves.

A.1 Task Stimuli Data File

Design Problem Description
http://cs.wpi.edu/~jburge/DOES/design_problem.html
Design Task Description
http://cs.wpi.edu/~jburge/DOES/design_task.html
Design Step Examples
http://cs.wpi.edu/~jburge/DOES/design_step.html

A.2 Design Problem Description

Airport Database Design
The overall problem isto design an airport database system.
From [Ramakrishnan, "Database Management Systems”, 1997]:
Airport Database Requirements:

Every airplane has a registration number, and each airplane is of a specified
model.

The airport accommodates a number of airplane models, and each model is
identified by a model number (e.g., DC-10) and has a capacity and aweight.
A number of technicians work at the airport. Y ou need to store the name,
SSN, address, phone number, and salary of each technician.

Each technician is an expert on one or more plane model(s), and his or her
experience may overlap with that of other technicians. Thisinformation about
technicians must also be recorded.

Traffic controllers must have an annual medical examination. For each traffic
controller, you must store the date of the most recent exam.

All airport employees (including technicians) belong to a union. Y ou must
store the union membership number of each employee. Y ou can assume that
each employeeis uniquely identified by the social security number.

121

The airport has a number of tests that are used periodically to ensure that
airplanes are still airworthy. Each test has a Federal Aviation Authority (FAA)
test number, a name, and a maximal possible score.

The FAA requires the airport to keep track of each time that a given airplane
istested by agiven technician using a given test. For each testing event, the
information needed is the date, the number of hours the technician spent doing
the test, and the score that the airplane received on the test.

A.3 Design Task Description

Design Task Instructions

Please describe how you would design an ER diagram for the airport database. Be
sure to describe the various attributes of each entity and relationship set; also describe
the key and participation constraints for each relationship set. Describe any necessary
overlap and covering constraints as well.

A.4 Design Step Example
Design Step Example

Design steps should be the "elementary” tasks and decisions made during the
design process.

Examples of "elementary” tasks for ER diagram design would be:
For entity creation:
Create an [entity name] entity with attributes [attribute list].
For relationship creation:
Create a one-to-one relationship, [relationship name] between [entity 1] and

[entity 2] where [entity 1] [relationship name] one-and-only-one [entity 2].

The steps listed should be specific enough that an entity relationship diagram
could be drawn from them without looking at the original
problem description.

122

Appendix B Sample Output from DOES

This appendix contains examples of DOES output files. All names have been

removed to maintain the anonymity of the subjects.

B.1 Usability Survey Results

Background Information

Subject Name:
--name--

Email address;
--email--

Educational Background:
MS

Relevant Experience:
1-5

Relevant Training:
-one year employment at aresearch company in Germany (systems design)

Relevant Projects:

-software purchase database system for a university CS dept.
-all-purpose information management system for engineering companies
-workflow system for engineering companies

B.2 Knowledge Elicitation Experiment Results

Design Description:
1) Identify the relations (entities)
2) ldentify the attributes for each relation
3) Identify the primary key for each relation
4) ldentify the relationships between the tables

123

5) Noramlize - reduce redundancy
6) Identify the foreign keys

Initial Steps:

create an Airplane entity with attributes (RegistrationNumber, ModelNumber)
Create an entity Model with attributes (M odel Number, capacity, weight)

Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)
Create an entity TechExpert with attributes (SSN, Model Number)

Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity Test with attributes (FAANumber, Name, MaxScore)

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

create am-to-n relationship TechExpert bewteen Technician and Model

create a m-to-m relationship TestingEvent between Test and Airplane

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent.TechnicianID = Technician.SSN

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create an-to-1 relationship test between Test and TestingEvent where
TestingEvent.FAANumber = Test. FAANumber

create a n-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

createcreate primary key Airplane.RegistrationNumber

create primary key Model.M odel Number

create primary key Technician.SSN

create primary key Test. FAANumber

Sorted Steps:

Create an entity Model with attributes (M odel Number, capacity, weight)
create primary key Model.Model Number

create an Airplane entity with attributes (RegistrationNumber, ModelNumber)
createcreate primary key Airplane.RegistrationNumber

124

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)
create primary key Technician.SSN

create a m-to-n relationship TechExpert bewteen Technician and Model

Create an entity TechExpert with attributes (SSN, M odel Number)

create an-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity Test with attributes (FAANumber, Name, MaxScore)

create primary key Test.FAANumber

create a m-to-m relationship TestingEvent between Test and Airplane

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent. TechnicianID = Technician.SSN

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create an-to-1 relationship test between Test and TestingEvent where
TestingEvent.FAANumber = Test. FAANumber

Current Step:
create an Airplane entity with attributes (RegistrationNumber, ModelNumber)

Prior:

Others:

Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)
Create an entity TechExpert with attributes (SSN, Model Number)

Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity Test with attributes (FAANumber, Name, MaxScore)

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

125

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

create a m-to-n relationship TechExpert bewteen Technician and Model

create a m-to-m relationship TestingEvent between Test and Airplane

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent. TechnicianID = Technician.SSN

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create an-to-1 relationship test between Test and TestingEvent where
Testingevent.FAANumber = Test. FAANumber

create an-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

createcreate primary key Airplane.RegistrationNumber

create primary key Model.Model Number

create primary key Technician.SSN

create primary key Test.FAANumber

Create an entity Model with attributes (M odel Number, capacity, weight)

Current Step:
Create an entity Model with attributes (M odel Number, capacity, weight)

Prior:

Others:

create an Airplane entity with attributes (RegistrationNumber, Model Number)

Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)
Create an entity TechExpert with attributes (SSN, M odel Number)

Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity Test with attributes (FAANumber, Name, MaxScore)

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

create am-to-n relationship TechExpert bewteen Technician and Model

126

create a m-to-m relationship TestingEvent between Test and Airplane

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent. TechnicianID = Technician.SSN

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create an-to-1 relationship test between Test and TestingEvent where
TestingEvent.FAANumber = Test. FAANumber

create a n-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

createcreate primary key Airplane.RegistrationNumber

create primary key Model.Model Number

create primary key Technician.SSN

create primary key Test.FAANumber

Current Step:
Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)

Prior:

Others:

create an Airplane entity with attributes (RegistrationNumber, ModelNumber)
Create an entity Model with attributes (M odel Number, capacity, weight)

Create an entity TechExpert with attributes (SSN, M odel Number)

Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity Test with attributes (FAANumber, Name, MaxScore)

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

create am-to-n relationship TechExpert bewteen Technician and Model

create a m-to-m relationship TestingEvent between Test and Airplane

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent. TechnicianID = Technician.SSN

127

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create an-to-1 relationship test between Test and TestingEvent where
Testingevent.FAANumber = Test. FAANumber

create an-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

createcreate primary key Airplane.RegistrationNumber

create primary key Model.Model Number

create primary key Technician.SSN

create primary key Test.FAANumber

Current Step:
Create an entity TechExpert with attributes (SSN, M odel Number)
Prior:

Create an entity Model with attributes (M odel Number, capacity, weight)
Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)

Others:

create an Airplane entity with attributes (RegistrationNumber, ModelNumber)
Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity Test with attributes (FAANumber, Name, MaxScore)

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

create a m-to-n relationship TechExpert bewteen Technician and Model

create a m-to-m relationship TestingEvent between Test and Airplane

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent. TechnicianID = Technician.SSN

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create a n-to-1 relationship test between Test and TestingEvent where
Testingevent.FAANumber = Test. FAANumber

128

create an-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

createcreate primary key Airplane.RegistrationNumber

create primary key Model.Model Number

create primary key Technician.SSN

create primary key Test.FAANumber

Current Step:
Create an entity TrafficController with attributes (SSN, DateOf Exam)

Prior:

Others:

create an Airplane entity with attributes (RegistrationNumber, ModelNumber)
Create an entity Model with attributes (M odel Number, capacity, weight)

Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)
Create an entity TechExpert with attributes (SSN, M odel Number)

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity Test with attributes (FAANumber, Name, MaxScore)

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

create a m-to-n relationship TechExpert bewteen Technician and Model

create a m-to-m relationship TestingEvent between Test and Airplane

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent. TechnicianID = Technician.SSN

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create an-to-1 relationship test between Test and TestingEvent where
Testingevent.FAANumber = Test. FAANumber

create an-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

129

createcreate primary key Airplane.RegistrationNumber
create primary key Model.Model Number

create primary key Technician.SSN

create primary key Test. FAANumber

Current Step:
create an entity Employees with attributes (SSN, unionMembershipl D)

Prior:

Others:

create an Airplane entity with attributes (RegistrationNumber, ModelNumber)
Create an entity Model with attributes (M odel Number, capacity, weight)

Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)
Create an entity TechExpert with attributes (SSN, M odel Number)

Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Test with attributes (FAANumber, Name, MaxScore)

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

create a m-to-n relationship TechExpert bewteen Technician and Model

create a m-to-m relationship TestingEvent between Test and Airplane

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent. TechnicianID = Technician.SSN

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create an-to-1 relationship test between Test and TestingEvent where
Testingevent.FAANumber = Test. FAANumber

create an-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

createcreate primary key Airplane.RegistrationNumber

create primary key Model.Model Number

create primary key Technician.SSN

create primary key Test.FAANumber

130

Current Step:
create an entity Test with attributes (FAANumber, Name, MaxScore)

Prior:

Others:

create an Airplane entity with attributes (RegistrationNumber, ModelNumber)
Create an entity Model with attributes (M odel Number, capacity, weight)

Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)
Create an entity TechExpert with attributes (SSN, M odel Number)

Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

create a m-to-n relationship TechExpert bewteen Technician and Model

create a m-to-m relationship TestingEvent between Test and Airplane

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent. TechnicianID = Technician.SSN

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create an-to-1 relationship test between Test and TestingEvent where
Testingevent.FAANumber = Test. FAANumber

create an-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

createcreate primary key Airplane.RegistrationNumber

create primary key Model.Model Number

create primary key Technician.SSN

create primary key Test.FAANumber

Current Step:

131

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

Prior:

create an Airplane entity with attributes (RegistrationNumber, M odel Number)
create an entity Test with attributes (FAANumber, Name, MaxScore)
Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)

Others:

Create an entity Model with attributes (M odel Number, capacity, weight)

Create an entity TechExpert with attributes (SSN, M odel Number)

Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

create a m-to-n relationship TechExpert bewteen Technician and Model

create a m-to-m relationship TestingEvent between Test and Airplane

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent. TechnicianID = Technician.SSN

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create an-to-1 relationship test between Test and TestingEvent where
Testingevent.FAANumber = Test. FAANumber

create an-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

createcreate primary key Airplane.RegistrationNumber

create primary key Model.Model Number

create primary key Technician.SSN

create primary key Test.FAANumber

Current Step:

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

132

Prior:

create an Airplane entity with attributes (RegistrationNumber, ModelNumber)
Create an entity Model with attributes (M odel Number, capacity, weight)

Others:

Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)
Create an entity TechExpert with attributes (SSN, M odel Number)

Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity Test with attributes (FAANumber, Name, MaxScore)

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

create a m-to-n relationship TechExpert bewteen Technician and Model

create a m-to-m relationship TestingEvent between Test and Airplane

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent. TechnicianID = Technician.SSN

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create an-to-1 relationship test between Test and TestingEvent where
Testingevent.FAANumber = Test. FAANumber

create an-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

createcreate primary key Airplane.RegistrationNumber

create primary key Model.Model Number

create primary key Technician.SSN

create primary key Test.FAANumber

Current Step:
create a m-to-n relationship TechExpert bewteen Technician and Model
Prior:

Create an entity Model with attributes (M odel Number, capacity, weight)
Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)

133

Others:

create an Airplane entity with attributes (RegistrationNumber, ModelNumber)
Create an entity TechExpert with attributes (SSN, Model Number)

Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity Test with attributes (FAANumber, Name, MaxScore)

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

create a m-to-m relationship TestingEvent between Test and Airplane

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent. TechnicianID = Technician.SSN

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create an-to-1 relationship test between Test and TestingEvent where
Testingevent.FAANumber = Test. FAANumber

create an-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

createcreate primary key Airplane.RegistrationNumber

create primary key Model.Model Number

create primary key Technician.SSN

create primary key Test.FAANumber

Current Step:
create a m-to-m relationship TestingEvent between Test and Airplane
Prior:

Create an entity Model with attributes (M odel Number, capacity, weight)
create an entity Test with attributes (FAANumber, Name, MaxScore)

Others:

create an Airplane entity with attributes (RegistrationNumber, ModelNumber)
Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)

134

Create an entity TechExpert with attributes (SSN, M odel Number)

Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

create a m-to-n relationship TechExpert bewteen Technician and Model

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent. TechnicianID = Technician.SSN

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create a n-to-1 relationship test between Test and TestingEvent where
Testingevent.FAANumber = Test. FAANumber

create an-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

createcreate primary key Airplane.RegistrationNumber

create primary key Model.Model Number

create primary key Technician.SSN

create primary key Test.FAANumber

Current Step:

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent. TechnicianID = Technician.SSN

Prior:

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)
Others:

create an Airplane entity with attributes (RegistrationNumber, ModelNumber)

Create an entity Model with attributes (M odel Number, capacity, weight)

Create an entity TechExpert with attributes (SSN, Model Number)
Create an entity TrafficController with attributes (SSN, DateOf Exam)

135

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity Test with attributes (FAANumber, Name, MaxScore)

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

create a m-to-n relationship TechExpert bewteen Technician and Model

create a m-to-m relationship TestingEvent between Test and Airplane

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create an-to-1 relationship test between Test and TestingEvent where
Testingevent.FAANumber = Test. FAANumber

create an-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

createcreate primary key Airplane.RegistrationNumber

create primary key Model.Model Number

create primary key Technician.SSN

create primary key Test.FAANumber

Current Step:

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

Prior:

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)
create an Airplane entity with attributes (RegistrationNumber, Model Number)

Others:

Create an entity Model with attributes (M odel Number, capacity, weight)

Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)
Create an entity TechExpert with attributes (SSN, Model Number)

Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity Test with attributes (FAANumber, Name, MaxScore)

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

136

create a m-to-n relationship TechExpert bewteen Technician and Model

create a m-to-m relationship TestingEvent between Test and Airplane

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent. TechnicianID = Technician.SSN

create a n-to-1 relationship test between Test and TestingEvent where
Testingevent.FAANumber = Test. FAANumber

create an-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

createcreate primary key Airplane.RegistrationNumber

create primary key Model.Model Number

create primary key Technician.SSN

create primary key Test.FAANumber

Current Step:

create an-to-1 relationship test between Test and TestingEvent where
TestingEvent.FAANumber = Test. FAANumber

Prior:

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)
create an entity Test with attributes (FAANumber, Name, MaxScore)

Others:

create an Airplane entity with attributes (RegistrationNumber, ModelNumber)
Create an entity Model with attributes (M odel Number, capacity, weight)

Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)
Create an entity TechExpert with attributes (SSN, M odel Number)

Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

create a m-to-n relationship TechExpert bewteen Technician and Model

create a m-to-m relationship TestingEvent between Test and Airplane

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent. TechnicianID = Technician.SSN

137

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create an-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

createcreate primary key Airplane.RegistrationNumber

create primary key Model.Model Number

create primary key Technician.SSN

create primary key Test.FAANumber

Current Step:

create a n-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

Prior:

Create an entity TechExpert with attributes (SSN, Model Number)
Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)

Others:

create an Airplane entity with attributes (RegistrationNumber, ModelNumber)
Create an entity Model with attributes (M odel Number, capacity, weight)

Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity Test with attributes (FAANumber, Name, MaxScore)

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

create a m-to-n relationship TechExpert bewteen Technician and Model

create a m-to-m relationship TestingEvent between Test and Airplane

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent. TechnicianID = Technician.SSN

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create a n-to-1 relationship test between Test and TestingEvent where
Testingevent.FAANumber = Test. FAANumber

138

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

createcreate primary key Airplane.RegistrationNumber

create primary key Model.Model Number

create primary key Technician.SSN

create primary key Test.FAANumber

Current Step:

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

Prior:

create an Airplane entity with attributes (RegistrationNumber, ModelNumber)
Create an entity TechExpert with attributes (SSN, M odel Number)

Others:

Create an entity Model with attributes (M odel Number, capacity, weight)

Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)
Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity Test with attributes (FAANumber, Name, MaxScore)

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

create a m-to-n relationship TechExpert bewteen Technician and Model

create a m-to-m relationship TestingEvent between Test and Airplane

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent. TechnicianID = Technician.SSN

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create an-to-1 relationship test between Test and TestingEvent where
Testingevent.FAANumber = Test. FAANumber

create an-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

createcreate primary key Airplane.RegistrationNumber

create primary key Model.Model Number

139

create primary key Technician.SSN
create primary key Test.FAANumber

Current Step:

createcreate primary key Airplane.RegistrationNumber

Prior:

create an Airplane entity with attributes (RegistrationNumber, Model Number)
Others:

Create an entity Model with attributes (M odel Number, capacity, weight)

Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)
Create an entity TechExpert with attributes (SSN, M odel Number)

Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity Test with attributes (FAANumber, Name, MaxScore)

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

create am-to-n relationship TechExpert bewteen Technician and Model

create a m-to-m relationship TestingEvent between Test and Airplane

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent. TechnicianID = Technician.SSN

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create an-to-1 relationship test between Test and TestingEvent where
TestingEvent.FAANumber = Test. FAANumber

create a n-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

create primary key Model.Model Number

create primary key Technician.SSN

create primary key Test.FAANumber

140

Current Step:

create primary key Model.Model Number

Prior:

Create an entity Model with attributes (M odel Number, capacity, weight)
Others:

create an Airplane entity with attributes (RegistrationNumber, ModelNumber)
Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)
Create an entity TechExpert with attributes (SSN, M odel Number)

Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity Test with attributes (FAANumber, Name, MaxScore)

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

create a m-to-n relationship TechExpert bewteen Technician and Model

create a m-to-m relationship TestingEvent between Test and Airplane

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent.TechnicianID = Technician.SSN

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create an-to-1 relationship test between Test and TestingEvent where
TestingEvent.FAANumber = Test. FAANumber

create a n-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

createcreate primary key Airplane.RegistrationNumber

create primary key Technician.SSN

create primary key Test.FAANumber

Current Step:

create primary key Technician.SSN

141

Prior:
Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)
Others:

create an Airplane entity with attributes (RegistrationNumber, Model Number)
Create an entity Model with attributes (M odel Number, capacity, weight)

Create an entity TechExpert with attributes (SSN, Model Number)

Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity Test with attributes (FAANumber, Name, MaxScore)

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

create a m-to-n relationship TechExpert bewteen Technician and Model

create a m-to-m relationship TestingEvent between Test and Airplane

create a n-to-1 relationship tech between TestingEvent and Technician where
TestingEvent. TechnicianID = Technician.SSN

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create an-to-1 relationship test between Test and TestingEvent where
TestingEvent.FAANumber = Test. FAANumber

create a n-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

createcreate primary key Airplane.RegistrationNumber

create primary key Model.Model Number

create primary key Test. FAANumber

Current Step:
create primary key Test. FAANumber
Prior:

create an entity Test with attributes (FAANumber, Name, MaxScore)

142

Others:

create an Airplane entity with attributes (RegistrationNumber, ModelNumber)
Create an entity Model with attributes (M odel Number, capacity, weight)

Create an entity Technician with attributes (Name, SSN, address, phoneNumber, salary)
Create an entity TechExpert with attributes (SSN, Model Number)

Create an entity TrafficController with attributes (SSN, DateOf Exam)

create an entity Employees with attributes (SSN, unionMembershipl D)

create an entity TestingEvent with attributes (TechlD, AirplaneRegistrationNumber, date,
NumberOfhours, score)

create a m-to-one relationship, airPlaneModel, between Airplane and Model where
Airplane.ModelNumber = Model.Model Number

create am-to-n relationship TechExpert bewteen Technician and Model

create a m-to-m relationship TestingEvent between Test and Airplane

create an-to-1 relationship tech between TestingEvent and Technician where
TestingEvent.TechnicianID = Technician.SSN

cretae an-to-1 relationship model between TestingEvent and Airplane where
TestingEvent.RegistrationNumber = Airplane.RegistrationNumber

create an-to-1 relationship test between Test and TestingEvent where
TestingEvent.FAANumber = Test. FAANumber

create a n-to-1 relationship techExpert between TechExpert and Technician where
TechExpert.SSN = Technician.SSN

create an-to-1 relationship techModel between TechExpert and Airplane where
TechExpert.ModelNumber = Airplane.Model Number

createcreate primary key Airplane.RegistrationNumber

create primary key Model.Model Number

create primary key Technician.SSN

B.3 Usability Survey Results

Usability Survey Results:

Usahility:
easy

Data sufficient:
ok

Time it took was;
31-60 minutes

143

Made me think:
yes

Better explanation of design:
yes

Comments:

Design Process. | found myself trying to order steps and modify/merge/decompose
entities/relations at the onset (question 1). Consequently, I'm not
sureif theinformation | provided is what you were really looking for - unless, of course,
this was part of the experiment. Not much moved around in
terms of ordering steps.

Ul: Having wider text entry controls would make it easier to see and select adesired
entity/relationship.

144

