Discovery of Design Methodologies

for the

Integration

of

Multi-disciplinary Design Problems

Cirrus Shakeri

Worcester Polytechnic Institute

November 4, 1998

Worcester Polytechnic Institute

Contents

- The problem
- Why is a solution important?
- We have a solution!
- How did we get the solution?
- The approach
- Contributions and Conclusions

Purpose of a Ph.D. Dissertation

• In General

• Advancing Frontiers of Knowledge

• In Engineering

• New Knowledge for the Benefit of Humans

Helping Designers

a team of designers wishing to find faster and less expensive ways to do design

They need integration:

Common Goals

Communication

Resolving Conflicts

Sharing Resources

Cirrus Shakeri

The Questions the Team of Designers Face

- What design methods to use?
- In what order?
- When to stop to exchange their designs?
- How to evaluate their designs?
- How to cooperate?
- How to do things concurrently?

How to do the design?

... and NOT:

What is the design?

- Product versus Process
 - Destination versus Journey
- Better Product versus Better Process

Better City

- lower cost of living
- better school system
- lower crime rate

Better Journey

- faster
- less expensive
- better roads
- Better Design Methodology
 - Better Route for the Journey:

Route 9 or Mass Pike make a Trip to Boston

• Why Need for New and Better <u>Methodologies</u>?

• Why Need for New and Better <u>Products</u>?

• Need for Continuous Improvement

- Need for Rapid Incorporation of New Technologies
- Need for Shorter Time-to-market
- Need for less Expensive Process
- Need for Integration
- Need for Concurrency

What can the team rely on?

- Experience
- Engineering Judgement

... what else?

Is there currently a method or a tool that the team could use to generate better methodologies?

- Systematically
- Incorporating Integration
- Incorporating New Technologies

• • •

The answer is: NO!

especially for multi-disciplinary designs:

- multiple points-of-view: conflicts
- multiple languages: no communication

•••

What can we do to:

- generate methodologies for the design team
- get a Ph.D.

Barriers

- Departmentalization
- Built-in Disciplinary Goals
- Disciplinary Design in Large Segments
- Counter-Intuitive Behavior
- Evolving Knowledge
- "Tragedy of the Commons"
- Highly Focused Disciplinary Knowledge
- Multifaceted Interactions

Design of a Robot

Design of a 2-DOF Robot

• Disciplinary Design Knowledge

Kinematic • workspace points **Structural Mechanics** • **Dynamics** ٠ accessible region Controls • workload length \sim material properties control gains cross section dimension, thickness, and shape deflection of the tip overshoot joint angle limits settling time location of the base

What methodology would you use for designing this type of robot?

Methodology:

IF:

Requirements:

- workspace: "small-M",
- workload: *easy*,
- settling time: *tough*,
- maximum overshoot: *tough*;

and ...

Constraints:

- deflection of the tip: *tight*,
- gain of the controller: *tight*.

THEN do the following ...

Methodology

- choose the location of the base of the robot: "left or below midway of the workspace length"
- choose the material: "steel stainless AISI 302 annealed"
- select the shape of the cross section of the link: "hollow round"
- choose the structural safety factor: "3"
 - **do** the design and proceed to the next step
- choose the link 2 to link 1 length ratio: "0.5"
 - **do** the design and proceed to the next step
- pick the configuration of the arm: "left-handed"
- **select** the ratio of the cross section dimension of the link to minimum required by stress analysis: "4"—if it fails select "3"
 - **do** the design and proceed to the next step
- find the accessible region: use Equation 2-4
- find the deflection of the tip: use Equation 2-14
- **choose** the type of controller: "PD"
 - **do** the design and finish the process.

15 Discovery of Design Methodologies for the Integration of Multi-disciplinary Design Problems

Why 'this' methodology?

Anticipation shows that this is the fastest and a well integrated way to design.

How was it generated?

16

By Simulating what a team of designers would do.

How was the design process simulated?

By implementing a knowledge-based model of the design process in the form of a multi-agent computer program.

Approach: Knowledge-based Design

Knowledge ()) Methodologies

Control Design Methods

Implementation: Multi-agent Systems

- Agent:
 - a self-contained problem solving system
 - an abstraction tool for managing complexity
 - autonomous
 - reactive
 - pro-active
 - social behavior
- Multi-agent Systems:
 - composed of multiple interacting agents
 - distributed
 - modeling and implementing social interactions
 - parallelism

Multi-agent Design System: Architecture

19

Cirrus Shakeri

Implementation in Java

Cirrus Shakeri

Software Development Challenges

- Design
 - incremental approach
 - message sequence charts
- Large Scale
 - packages
 - classes
 - inner classes
- Code

- 30,000 lines
- Platforms
 - SUN Ultra 5 Workstation
 - Digital Alpha Workstation

- Concurrency
 - multi-threading
 - synchronization
 - cycles of consistency
- Communication
 - message passing
 - KQML
- Run Time
 - few seconds: easy requirements and loose constraints
 - few hours: tough requirements and tight constraints

Design Projects

22

Range of Values for the Constraints and Requirements

Constraints	maximum ratio of deflection of tip to sum of link lengths	{0.01, 0.001}		
	maximum proportional gain1	{1000, 100}		
	workspace	{"small-M", "small-L", "big-M", "big-L"}		
Requirements	workload (kg)	$\{1.0, 2.0, 3.0, 4.0, 5.0\}$		
	settling time (sec)	{3.0, 2.0, 1.0}		
	maximum overshoot (%)	{50, 40, 20, 10}		

Indexing Projects

d/L ratio	gain 1	workspace	workload	settling time	overshoot	Project Index
0.01	1000	"small-M"	1.0	3.0	50	1
0.01	1000	"small-M"	1.0	3.0	40	2

0.01	1000	"small-L"	1.0	3.0	50	61		
0.001	100	"small-M"	1.0	1.0	10	732		
iiiiiii								
0.001	100	"big-L"	5.0	1.0	10	960		

Different Workspace Used as Requirements

23

Cirrus Shakeri

Example: Project 732

Constraints:

•••

- 0 < link1_length < workspace_rectangle_length
- 0 < link2_length < link1_length
- 0 < link1 cross section dimension < 0.1 * link1 length
- $0 < tip_deflection < 0.001 * (sum of link lengths)$
- $0 < accessible_region_area < 1.0 * workspace_rectangle_area$
- 0 < proportional gain 1 < 100
- 0.05 * section_dimension < link1_cross_section_thickness < 0.25 * section_dimension

Requirements:

workspace = {(0.5, 0.25), (0.75, 0.5), (1.0, 0.75), (1.25, 1.0), $(1.5, 0.75), (1.75, 1.0), (2.0, 0.75), (2.25, 0.5), (2.5, 0.25)\}$ m workload = 1.0 kgsettling_time = 1.0 sec maximum overshoot = 10%

Discovering Dependencies: Project 732

Design Path: Project 732

Path Trace: Project 732

Design Approaches

- ▲ Chosen Design Approach
- △ Not Chosen Design Approaches

Number of Possible Paths = $6 \times 2 \times 4 \times 2 \times 3 \times 2 \times 4 \times 1 \times 1 \times 1 = 2304$

Clustering Design Projects that Followed the Same Trace

Projects in the	Constraint on	Constraint	Workspace	Workload	Settling	Maximum
Cluster	Deflection	on Gain 1		(kg)	Time (sec)	Overshoot (%)
13 to 24	0.01	1000	small-M	2	(3 2 1)	(50 40 20 10)
121, 126, 132, 134, 139, 146 to 148, 151 to 152, 159 to 160, 163 to 164, 171 to 172, 175 to 176	0.01	1000	big-M	(1 2 3 4 5)	(3 2 1)	(50 40 20 10)
246, 252, 254 to 256, 259 to 260	0.01	100	small-M	(1 2)	(3 2 1)	(40 20 10)
364	0.01	100	big-M	1	3	10
493 to 504	0.001	1000	small-M	2	(3 2 1)	(50 40 20 10)
614, 619, 626 to 628, 631 to 632, 639 to 640, 643 to 644, 651 to 652, 655 to 656	0.001	1000	big-M	(2 3 4 5)	(3 2)	(40 20 10)
726, <mark>732</mark> , 734 to 736, 739 to 740	0.001	100	small-M	(1 2)	(3 2 1)	(40 20 10)

Projects that Followed Trace 1

Mapping Problems to Designs via Traces

Frequency of Successful Traces

Frequency of Traces

Distribution of Traces versus Projects

Discovery of Design Methodologies for the Integration of Multi-disciplinary Design Problems

Cirrus Shakeri

Correlation between Requirements and Approaches

WPI

Discovery of Design Methodologies for the Integration of Multi-disciplinary Design Problems

Cirrus Shakeri

Correlation between Clusters of Problems and Clusters of Traces

Distribution of requirements and constraints for projects that followed traces of cluster 1–0

METHODOLOGY 1-0:

IF	 constraints on deflection and the gain are loose, 						
	• workspace is of type "small-M";						
THEN	IF	 requirement on the workload is easy, i.e., less than 1.0 kg; for designers use their first or default approaches. 					
	THEN						
	ELSE IF	• requirement	• requirement on the workload is in the range of 2.0 kg;				
	THEN	• use a dimension for the cross section that is not more than 3 times the minimum required dimension by stress criteria.					
• •	• •	• •	• •	• •	• •		
ELSE IF	• constraints on deflection and the gain are both tight, and						
	• requirem	 requirements on workload is rather "easy"; 					
THEN	IF	• workspace is of type "small-M";					
	THEN	 use a dimension ratio for the cross section equal to 4 —if it fails reduce the ratio to 3, 					
		• for all other designers use their first approaches.					

The Outcome

- An Approach to Discover Design Methodologies
 - Type of Design
 - Knowledge Acquisition
 - Small Design Methods
 - Design Approaches
 - Designer Agents
 - Multi-agent Design System
 - Design Experiments
 - Experiments

- Analysis of Traces
- Generate Methodologies

Evaluation

- Return in Investment
- Type of Design
- Scalable
- Automated Extraction of Methodologies
- Quality of the Methodologies
- Quality of the Design

Contributions

- Theoretical
- Experimental
- Implementation
- Robot Design

Summary

38

- Problem: Lack of Systematic Approaches for Integration
- Approach: Knowledge-based Simulation
- Implementation: Multi-agent System
- Results: Promising

Final Conclusion

Computers can help to discover superior methodologies for design problems.

Future Work

- Other types of design problems
- Other multi-disciplinary domains
- Rules for simplification of the process
- Evaluation of the methodologies
- Scaling up
- Enrich the design methodologies
- Biased methodologies: "Design for X"

- Change the order of approaches
- Convert the tool to a sensitivity analysis tool
- Introduce new types of design approaches
- Close the feedback loop around the system
- Adaptive Mesh Generation in the Problem Space
- Trade-off between the design quality and correct traces

Extensions

- Exploratory Tool in Complex Systems
- Supply Chain Management
- Shop Floor Job Scheduling

