Discovery of Design Methodologies for the Integration of
Multi-disciplinary Design Problems

by
Cirrus Shakeri

B.S. (University of Tehran, Iran) 1989
M.S. (University of Tehran, Iran) 1994

A Dissertation Submitted to the Faculty of the
WORCESTER POLYTECHNIC INSTITUTE
in partial satisfaction of the requirements for the
Degree of Doctor of Philosophy
in
Mechanical Engineering

by

Fall, 1998

Approved (in alphabetical order):

Professor David C. Brown, Advisor

Professor Michael A. Demetriou, Member

Professor Allen H. Hoffman, Graduate Committee Representative

Dr. Susan E. Lander, Member

Professor Mohammad N. Noori, Advisor

Professor John M. Sullivan, Jr., Member

Discovery of Design Methodologies for the

Integration of Multi-disciplinary Design Problems

Copyright[] 1998
by
Cirrus Shakeri
All rights reserved

Abstract

Discovery of Design Methodologies for the
Integration of Multi-disciplinary Design
Problems

by
Cirrus Shakeri
Doctor of Philosophy in Mechanical Engineering

Worcester Polytechnic Institute

In order to succeed in today’s global, competitive market, manufacturing industries
need continuous improvements in their multi-disciplinary design processes. These
improvements should result in expending fewer resources on the design process while
achieving better quality and more environmentally friendly products. The current approach
for improving design processes is mostly based on intuitive observations followed by incre-
mental changes to the existing methodologies. However, today’s fast-paced world needs
rapid incorporation of new technologies and methods into design methodologies. Recent
advances in the application of Artificial Intelligence to design-Multi-agent Design Systems
in particular-provide an opportunity to accomplish this goal. The inter-disciplinary collab-
oration between Computer Science and Engineering Design provides the means to develop

systematic and holistic approaches for constructing superior design methodologies.

An innovative approach has been developed that is based on simulating the design

process using a multi-agent system that mimics the behavior of the design team. The multi-

agent system implements a knowledge-based model of design in which highly specialized
knowledge from expert sources is applied to synthesize a design. The multi-agent system
activates the pieces of design knowledge when they become applicable. The use of knowl-
edge by agents is recorded by tracing the steps that the agents have taken during a design
project. Many traces are generated by solving a large number of design projects that differ
in their requirements. A set of design methodologies is constructed by using inductive
learning techniques to generalize the traces generated. These methodologies then can be

used to guide design teams through future design projects.

Acknowledgments

| would like to express my deepest gratitude to my advisors Professor Mohammad Noori and Pro-
fessor David Brown. Professor Brown has provided the key technical insights, has critically read
through several drafts of this work and has made himself readily accessible. He has made many
direct contributions to this work and | have very much enjoyed and benefited from the intellectual
discussions that we had during this time. Professor Noori has provided a far-reaching vision of the
future of inter-disciplinary research and the financial support for this work. | would like to thank
him for his personal support, trust, and understanding during the difficult times in my doctoral edu-

cation journey. My thesis owes much to this unique combination of advisors.

I would like to thank my entire committee, Professor Michael A. Demetriou, Allen H. Hoff-
man, Professor John M. Sullivan, and particularly Dr. Susan E. Lander who provided invaluable

feedback and guidance during this work.

I cannot miss this chance to thank my friends whom their support and care helped me
temper the obstacles | faced during these years. Especially, | owe the deepest affection and gratitude
to Zahed and Debbie Sheikholeslami for their constant support during this undertaking. | would like
to thank them for their unconditional friendship and inspiration. My friend Siamak Najafi provided
me with the technical and moral support. | would like to thank him for all the overtime hours that

he put on making the systems ready and available for my work.

| would not have been able to have done this work without the support of the Mechanical
Engineering Department at WPI. | am indebted to the faculty, staff, and graduate students of both
Mechanical and Computer Science departments for their support and help throughout my four years
at WPI. Especially, | would like to thank Barbara Edilberti, the secretary of the graduate program

at the Mechanical Engineering Department, for her constant support during these years.

| would also like to acknowledge the inputs that the members of AIDG (Al in Design
Research Group) at the Computer Science Department and CLPSI (Center for Loss Prevention and
Structural Integrity) at the Mechanical Engineering Department provided. CLPSI has generously

provided the financial support for the last year of this work.

Finally, | would like to dedicate this dissertation to my parents, my sisters Sima and Suda-
beh, my brother in law Ata, and my niece and nephew Mina and Amir Reza. Their profound and
unconditional love and belief in me lit the path for me throughout my life. This dissertation is the

fruit of my labor and their love.

Table of Contents

Vi

CHAPTER 1 INtroduCtionottt e 1
1.1 Backgroundo 1
1.2 A Methodology DiSCOVEred.ot e 2
1.3 MOtVALION . .o e 6
1.4 Problem ... e 8
1.5 Goal and ObjJectiVeS.o 9
1.6 APProach . ..o e e 10
1.7 SIgnificancCe 12
1.8 Outcome and Potential Applications e 15. ..
1.9 Outline of the DIiSSertation.t e 17
CHAPTER 2 Designofa2-DOFRobot. i 19
2.1 INtrodUCHiONo ——— 19
2.2 ROBOt DESIgN . . .ot e e e e 21
2.3 Designofa2-DOF RoboOt e 23
2.3.1 Design Parameterso e e 24
2.4 KINBMALICS . . . oottt et e ——— 28
2.4.1 Kinematic Design Algorithms e 29...
2.4.2 Calculating Accessible Region Area. i 2.....
2.5 Structural MEChaNiCS o e 32
2.5.1 Structural DeSIgNo oo e 33
2511 Stress ANalySiS. . . .ot i 33
2.5.1.2 Deflection ANalysisottt e e 35
2.6 Dynamicsand Controls e 36
2.6.1 Position Control DeSIgN.ot e 37
CHAPTER 3 Multi-disciplinary Design 40
3.1 INtrodUCHION . . . oo —— 40
3.2 Surveyof Related WOrK e a1
3.3 Characteristics of Multi-disciplinary Design. i 43. ..
3.3.1 Different Points of VIEW e e 43
3.3.2 Departmentalization of Disciplines Over Time. e
3.3.3 BUIlt-iN GOAIS. . .. o 44
3.3.4 Focused Expertise of the Disciplines. i 45. . ..
3.3.5 Need for Broad Range of EXpertise. 45.
3.3.6 Disciplinary DesigninBigChunks. 46. ...
3.3.7 Complexity of Interactions s 46.
3.3.8 Large Number of lterations 46. .
3.3.9 Counter-Intuitive Behavior e s 47.
3.4 Integration in Multi-disciplinary Design AT
CHAPTER 4 Knowledge-Based DesSign.t 49

4.1 INtrodUCHIONot . 50

4.2 DESION PrOCESS. . . .t ittt e e 51
4.2.1 Models of Design ProCesst e 51..
4.2.1.1 Knowledge-based Design i 51.....
4.2.1.2 Systems Science Approach 52
4.2.1.3 Problem Solving Approach e 53.....
4.2.1.4 Algorithmic Approach 53..
4.2.1.5 Axiomatic Approach e 53..
422 Classes Of DeSIgN.ot e e 54
4.3 Design Methodologyo oot e 57
4.3.1 Better Design Methodology.ot 60. . .
4.4 Design Methods.o e 60
4.4.1 Granularity of Design Methods. 62 ...
4.4.2 Design Approach e 63
4.5 Knowledge-based Design Systems el 64.
4.6 Strategies for a Knowledge-based Design System 66
4.6.1 Small Design Knowledge 66. . .
4.6.2 Opportunistic Problem Solving 68 ..
4.6.3 Cooperative Problem-Solving 70. ..
4.6.4 LeastCommitment. e A
4.6.5 InduCtive Learning.ttt e e 72
4.6.6 Means-Ends-Analysis e 73.
4.6.7 CONCUITENCY . . o o ettt ettt e e e e et e e e e aaaae s 73
4.7 Design DepPeNdeNCIES. . . . o oo e e e e 75
4.7.1 Sequencing Design Taskst 76 ..
4.7.2 Dependencies and Decomposition. 1. .. 7
4.7.2.1 Decomposition of Module-Activity Matrix. i 78
4.7.3 Building the Dependency Graph e 80. ...
4.8 Conflict ReSOIUtiON e 81
CHAPTER 5 Multi-Agent Systems (MAS). e 83
5.1 INtrodUCHiON . . . oo oo e ——— 83
5.2 Characteristics of Multi-agent Systems. i 84...
5.3 Developing MAS e - 85
5.3.1 Message Sequence Chart (MSC) i e 5...... 8
5.3.2 Model Development CyCle 88 ..
5.4 Multi-agent Design Systems (MADS).ttt e aa0....
5.4.1 Interoperability. 91
5.4.2 Information FIOW. e e 92
5.4.3 Adaptability 93
5. 4.4 CONCUITENCY . . . ittt et e e e e e e e e e e e e e 94
5.4.4.1 CONSISIENCY . . oottt et it e e 94
5.4.4.2 InformationUpdate i 96 .
5.4.4.3 Event Notifications e e 96
5444 Update Intervals. e 96
5.4.4.5 Merging Multiple Partial Designs e 97

5,45 Strategic Control 97

5.4.5.1 INteractions.t e 99
5.5 A Proposed Framework for MADS. i e 9.....
5.5.1 AgentDependenciesttt 101.
5.5.2 Information ROULING.o e 102
CHAPTER 6 Discovering Methodologies., 104
6.1 INtrodUCHION oo e e —— 104

6.1.1 Design Problem 104

6.1.2 Design ProjecCtot e e e 104

6.1.3 Design Path e 105

B.1.4 TrACES. . .ttt e 108

B.1.5 ClUSTEIS . . e e 108

6.1.6 Requirements versus Constraints. 108.

6.2 Mapping Problem Space to Design Space.t 109
6.3 Machine Learningttt e e e e 115
6.3.1 Supervised Learning versus Unsupervised Learning. 117
6.3.2 Agglomerative Formation of Concept Hierarchies 119
6.4 Representation of Methodologies i 121..
CHAPTER 7 Robot Designer (RD).ot e 123
7.1 INtrodUCHiON . . . oo e e ——— 123
7.2 Design Methods for Robot Designo e s 123. ..

7.2.1 Kinematic Design Methods i 124. ..
7.2.1.1 Design Method K-1 124 .
7.2.1.2 Design Method K-2 e 126 .
7.2.1.3 Design Method K-3 127 .
7.2.1.4 Design Method K-4 128 .

7.2.2 Structural Design Methods e e 129. .
7.2.2.1 Design Method S-1 129. .
7.2.2.2 Design Method S-2 130..
7.22.3 DesignMethod S-3 e 131..
7.2.2.4 Design Method S-4 131. .
7.2.25 Design Method S-5 132..

7.2.3 Control Design Methods e e 133..
7.2.3.1 Design Method C-1 133..

7.3 Design Process Flowchart 133
7.3.1 Dependency Graph vs. Cycle Tree, and Design Cycle vs. Design State. 135
7.3.2 PosingDesign Goals 138

T4 CONSHraiNtS . . . oo e 139
7.4.1 Types of CoNStraintst e e e 139

7.5 BacKtraCKing 141
7.5.1 The Effect of Smaller Design Methods 143
7.5.2 Factors Contributing to the Complexity of Backtracking 146

CHAPTER 8 Implementation. e 149

8.1 INtrodUCHION ot 149

8.2 AQENSIN RD 150
8.2.1 Structure of an Agent. e e 150
8.2.2 Agent Object e 151. ..
8.2.3 Coordinator AQENtt 154
8.2.4 DesignersCoordinator AGENt. . 157
8.2.5 DeSIgNer AQeNtS. . . .\ 160

8.3 Implementation of MESSages.t 163.
8.3.1 Message ObjeCt. e e 165

8.4 Implementation of Backtracking e 165 .
8.4.1 An Algorithm for Backtracking. 171. ..

CHAPTER 9 EXPerimentsttt e 173

9.1 Range of Requirements and Constraints, 73..... 1
9.1.1 Sensitivity Analysis 174
9.1.2 Sensitivity Analysison Control Gains. 6...17
9.1.3 Finding Critical Constraints by Sensitivity Analysis. 190
9.1.4 Categorizing Projects.t 193
9.1.5 Effect of Design Approacheson Constraints., 194

9.2 TracesProduced by RD. 197

9.3 Distribution of Traces 200

9.4 Generating TraCesottt e e e . 201

CHAPTER 10 ReSURS.o e e 211

10.1 Summary of the Observations e 211..

10.2 Dependency Graph e e 212
10.2.1 DISCUSSION . . .\ttt ettt e e e e e e e e 215

10.3 Clustering the TracCeso e e 216
10.3.1 GoodnessofaCluster of Traces 217.. ...
10.3.2 ClUSter Tree . . o e e e 221
10.3.3 Naming Convention forthe CluSters. e 222

10.4 Evaluation of CIUSters e e 222

10.5 Formulating Methodologies. i e 228

10.6 Clustering the Problems. e 229
10.6.1 Trace O . ..ottt e 230
10.6.2 TraCe L. ... e 232
10.6.3 TraCE 2. . oo e 234
10.6.4 TraCe 40 . . .o oo e 236
10.6.5 Trace 770 . . ottt e 237

10.7 First Set of CIUSterso e e 238
10.7. 1 ClUStEr 1-0 . . oottt e e w 240
10.7.2 ClUStEr 1-8 . . .o e e e w 249
10.7.3 ClUSEEr 1-16 . . .ttt e e e 252
10.7.4 ClUStEr 1-2 . .o e a 254
10.7.5 ClUSter 1-5 . ..o e e e wa 258
10.7.6 Cluster 1-4 e 260

10.7.7 ClUSter 1-6ot 263

10.8 Goodness of Methodologies e 266. .
10.9 Evaluation of Methodologies. e 268
CHAPTER 11 CoONCIUSIONS.o e 270
11.1 Reviewofthe Problem e 270
11.2 Revisitingthe Goal 272
11.3 Summaryofthe Results. 273
11.4 Evaluation of the ResUlts. e 274
11.5 Outcome ofthe Research. e e, 277
11.6 Evaluation of the Qutcome e 279.
11.6.1 Returnin InVestmMent e 280
11.6.2 Type of DeSIgN. . ..o e e 282
11.6.3 Scalable e 282
11.6.4 Automated Extraction of Methodologies. 283
11.6.5 Quality of the Methodologies i i 283 ..
11.6.6 Qualityofthe Design. 283
11.7 Contributions of the Research i 284.
11.7.1 Theoretical Contributions 284 .
11.7.2 Experimental Contributions. e 286 . .
11.7.3 Implementation Contributions.t 287. . ..
11.7.4 Contributionsto Robot Design e 287. ...
11.8 Final CoNCIUSION e e 288
11.9 FUtUre WOKK. . . .o e 288
11.10 Extendingto OtherDomains.t e e e e 291..
Bibliography 293
Appendix A. Extention of the Kinematics Equations. 304
A.1 Modification of EQUAtIONS e 304
A.1.1 Calculation of Accessible Region Areattt 307
Appendix B. Clusters of Traces i e 314
Appendix C. Clusters of Problems. 357
C.l Trace 0. . oot 357
C.2 TrACE L. . . e 360
C.3 TraCE 2. . oo 364
C.h TraCe 49. . . . e 366
C.5 TraCe 770. . .o oot e e 368
C.6 Trace 153 7. . .o e 368
C.7 Trace 1545, . . e 370
C.8 TraCe 1546. oo e 372
Appendix D. RD: User's Guide. 373
D.1 DataFiles Format e e 373

D.2 ProjectData File Reading.t 375
D.2.1 CUMEN POt . . o oo e e 375
D.2.2 default.pref e e, 375

D.3 Log Files . ..o 376

D.4 A Sample Project: Project 61ttt e e 377.
D.A1 InpUtFIlES . . oo 377

D.4.1.1 CurrentProjeCtttt 377
D.4.1.2 default.pref e 377
D.4.1.3 default.requirements 378.
D.4.1.4 default.constraints. e 378
D.4.2 OUtpUt FIles. e 379
D.4.2.1 CONSOIE. . ..o e 379
D.4.2.2 raCe. . . o 384
D.4.2.3 DesignersApproach. e 387...
D.4.2.4 DesignCoNStraintSottt 388..
D.4.2.5 DesignParameterst e 393..
D.4.2.6 RDSPECIiCo e 399

Xi

List of Figures

CHAPTER 1 INtrOdUCTION ..ottt s e e e e e e e e e e e e e e eeeeaneannnes 1
Figure 1-1. An Example of the Design of a 2-DOF Planar Robot.............cccccviviiviiie e, 3
Figure 1-2. A Methodology DISCOVEIEA.uuiiiiiiieieieiiiiciie e r e e e e e e s reaeeees 5

CHAPTER 2 Design of @ 2-DOF RODOL.........uuuuiiiiiiiiiiiiiiiiiieeeee e 19
Figure 2-1. Design Parameters of a 2-DOF Planar RODOL.coiiiiiiiiiiie e, 28
Figure 2-2. Kinematics Design EQUALIONS.ccooiiiiiiiiiiiie et 30
Figure 2-3. Two Solutions for KinematiCS DeSIgN..........uviiiiiiiiiiieiiiieie e 31
Figure 2-4. Calculating the Accessible Region of A 2-DOF Robot.ccccccevveeiiiiiiiiieeeeee, 32
Figure 2-5. A PD Controller for the RODOL.uuviiiiieii e 38

CHAPTER 3 Multi-disciplinary DESIGNccoeviiiiiiiiiiiiiiiiiiiiiiieeeee ettt 40

CHAPTER 4 Knowledge-Based DeSIgN............uciiiiiiiiieeeeiieeeeeeeeeiiinn e e e e e e e e e 49
Figure 4-1. Classification of DESIGNS.uiiiiiiiiiie i 56........
Figure 4-2. Knowledge-based Approach to Generating Design Methodologies.ccceuvvneeee. 65
Figure 4-3. Integration by Breaking up the Knowledge into Smaller Segments.cccccveeeeee... 68
Figure 4-4. The Opportunistic Strategy in Activating Design Methods.ccccoiiiiniiiiiienen. 70
Figure 4-5. The Type of Relationship between Design Methods.............ccccuiiiiiiiiiiiiiiiiiiieeee, 76
Figure 4-6. Sequencing of Design Tasks. After [EPPINGer 90].coocuiiieiiiiiieeiiiieee e 77
Figure 4-7. Categories of Organized matrices. After [Kusiak 93].cccooiiiiiiiiiiiiiiiieeeee 78
Figure 4-8. Decomposition of Module-Activity Matrix for a Vehicle. After [Kusiak 93].............. 79
Figure 4-9. Module-activity Incidence Matrix. After [Kusiak 93].coocviiiiiieiiiee i, 79
Figure 4-10. Rearranged Module-activity Incidence Matrix. After [Kusiak 93]..........cccooeeeeeneenn. 80

CHAPTER 5 Multi-Agent SYStemS (MAS)......ccooi ittt 83
Figure 5-1. Basic Elements of MSC [aNQUAJEuuiiiiiiiiiiee it 88
Figure 5-2. The DeSigN CYCIE.eiiiiiiiiii e, 95.....
Figure 5-3. The Architecture of the Multi-agent Design SysStemcccccvvieiieeieee i 100

CHAPTER 6 Discovering MethodolOgies..........ccoouuiiiiiiiiiiiiiiiiiiiii e 104
Figure 6-1. Different Design Paths.cccuuiiiiiiiiii e 107.......
Figure 6-2. Mapping from Requirements t0 DESIGNS.uuuuiiiiiiiiaiiiiiiieiie e 110
Figure 6-3. Different Constraints Produces Different Designs and Traces.........ccccccccveveeeviniicnnns 111
Figure 6-4. Same Trace Gets Used in More than One Project.........cccccveeiiiiiicciiiiiieeeeeee e 112
Figure 6-5. Different Scenarios in Mapping Requirements to0 Designs.occcveveviiiieeeeiniieneen 114

CHAPTER 7 RobOt DeSigner (RD)......ccuuuuiuuiiiiiieae ettt 123
Figure 7-1. Kinematic Design Method 1cooiiiiiiiiiiiiiiiie et 125
Figure 7-2. Different Locations for the Base of the RODOL. ..., 126
Figure 7-3. Kinematic Design Method 2oooiiiiiiiiiiiiiie et a e 127
Figure 7-4. Kinematic Design Method 3cooiiiiiiiiiii e 128
Figure 7-5. Kinematic Design MEthOd 4cooi oot e e e e e e e 128
Figure 7-6. Structural Design Method 1ouuiiiiiiiioiii e e e 129

Xii

Figure 7-7. Structural Design Method 2uvuiiiiiiiiiiiie e 130
Figure 7-8. Structural Design Method 3eiiiiiiiiiiii e 131
Figure 7-9. Structural Design Method 4 ..o 132
Figure 7-10. Structural Design Method 5cooiiiiiiiiiiii e 132
Figure 7-11. Control Design Method L..........coooiiiiiiiiiiie e e 133
Figure 7-12. Flowchart of the DeSigN PrOCESS.ccuuiiiiiiiieieee i r e e e e e e 134
Figure 7-13. Dependency Graph ... 136.........
Figure 7-14. Design Methods Produce Values for Design Parametersocccuvviiieeeiieeeeninnnns 142
Figure 7-15. Possible Changes in Design Parameters for Fixing Constraint Violation................. 143
Figure 7-16. The Effect of Smaller Design Methods in Reducing Prospective Changes............. 144
Figure 7-17. The Effect of Changes in Producing Possible New Constraint Violations 145
Figure 7-18. The Effect of Smaller Design Methods in Reducingcccccvvveeeeiee e, 146
Figure 7-19. Factors Contributing to the Complexity of Backtrackingcccccceeeiiiiiiiiininnnn. 147
CHAPTER 8 Implementation...........cccuuiiiiiiiiiiiiiiiieeeee e 149
Figure 8-1. Interface of @n AQENT.cooi i 154....
Figure 8-2. Flowchart of Backtracking ProCESS.ccoiiiiiiiiiiiiiiiee e 170
CHAPTER 9 EXPEINMENTS ... ittt e e e e e e e e e eeeeeaeenanaas 173
Figure 9-1. Sensitivity Analysis on Kpl due to Changes in Cross Section Dimension................ 178
Figure 9-2. Sensitivity Analysis on Kd1 due to Changes in Cross Section Dimension................ 179
Figure 9-3. Sensitivity Analysis on Kp2 due to Changes in Cross Section Dimension................ 180
Figure 9-4. Sensitivity Analysis on Kd2 due to Changes in Cross Section Dimension................ 181
Figure 9-5. Sensitivity Analysis on Cross Section Dimension due to Thickness.cccoccuee.e. 182
Figure 9-6. Sensitivity Analysis on a Hollow Square Cross Section Dimension.ccc..ee.... 183
Figure 9-7. Sensitivity Analysis on Cross Section Dimension due to Safety Factor. 184
Figure 9-8. Sensitivity Analysis on Deflection of the Tip Due to Dimension of Cross Section...185
Figure 9-9. Sensitivity Analysis on Deflection of the Tip due to Cross Section Shape................ 186
Figure 9-10. Sensitivity Analysis on Deflection of the Tip due to Material.ccccoocvvveennnnn 187
Figure 9-11. Different Workspace Used as ReqUIrEmMENtS.ccooviiiiiiiiiiiiie e 189
Figure 9-12. Categorizing Projects Based on Requirements and Constraints.ccccoeeeuvnnis 193
Figure 9-13. Frequency of SUCCESSTUl TrAaCES.uuiiiiiiiiee i 196
Figure 9-14. Frequency of Successful and Unsuccessful Projects............cccceeiiiiiiiiiiieeeneneeennn, 203
Figure 9-15. Distribution of Successful and Unsuccessful Projects.ccccuvveeeeeiiiiiiiiiiiiiineee. 204
Figure 9-16. FrequENCY Of TIACES.uiiiiiiiiiieee ittt e st et e e e e s ee e 206.......
Figure 9-17. Traces VEIrSUS PrOJECES.oiiiiiiiiieiiiiiiiee ettt 207........
Figure 9-18. Frequency of SUCCESSTUlI TraCES.uuuiiiiieiee e 208
Figure 9-19. Correlation between Requirement Space and Trace SPaCe........cccccoevvevcvvvvirieeeeeeeenn, 209
CHAPTER 10 RESUIS.....uuiiiiii e e e e e e eens 211
Figure 10-1. Dependency Graph for Design of a 2 DOF RoODOL...........ccevviiiiiiiiiiiiieen 214
Figure 10-2. Coverage of ClUSters Generated.cuueviiiiiiiieeiiiiieee e 224
Figure 10-3. Uniformity of Clusters Generated.cooouiiiiiiiiiiie e 225
Figure 10-4. Goodness of Clusters GENErated.ccccvvriiiiiiiiee e e e e e e e e 226
Figure 10-5. Clusters with Highest GOOdNESS MEASUIE.uuvviiiiieeeiiiiiiiiiierere e 228
Figure 10-6. Constraint Violation in Project 13........ccooiiiiiiiiii e 234
Figure 10-7. Distribution of Constraints and Requirements for Projects of Cluster 1-0 242
Figure 10-8. Constraints and Requirements for Projects that did not follow Cluster 1-0............. 243

Xiii

Figure 10-9.

Comparing the trace of constraints and requirements with the trace of design

approaches for Projects that followed Cluster 1-0............oooiiiiiiiiiiiiiieiiiiniee 244
Figure 10-10. Methodology 1-0. ..o a e 245......
Figure 10-11. Failure Recovery by Reducing RDCS.........coocuiiiiiiiiiiieiee e 249
Figure 10-12. Comparing the trace of constraints and requirements with the trace of design
approaches for Projects that followed Cluster 1-8............cooociiiiiiiieeee e 250
Figure 10-13. Methodology 1-8.ccci oottt e e e e e e e e e e s e 252......
Figure 10-14. Comparing the trace of constraints and requirements with the trace of design
approaches for Projects that followed Cluster 1-16............ccccccvvieeereeeeeeeeccciinene, 253
Figure 10-15. Methodology 1-16.ccccoiiiiiiieeieicieeeeeeeeeeeee e e e e e e e e e 254.......
Figure 10-16. Comparing the trace of constraints and requirements with the trace of design
approaches for Projects that followed Cluster 1-2............oooiiiiiiiiiiiiiiininieee 256
Figure 10-17. Methodology 1-2.cocoiiiiiiiiiiiiiie et 257.....
Figure 10-18. Comparing the trace of constraints and requirements with the trace of design
approaches for Projects that followed Cluster 1-5...........coooviiiiiiiiiiiiee e 259
Figure 10-19. Methodology 1-5. ..o r e e e e e e e e 260......
Figure 10-20. Comparing the trace of constraints and requirements with the trace of design
approaches for Projects that followed Cluster 1-4............ccooccciivieeeeeeee e 262
Figure 10-21. Methodology L-4. ... e e e e e e e e e e e e e e 263......
Figure 10-22. Methodology 1-6. ...ccooiiiiiiieiiee e 265......
Figure 10-23. Comparing the trace of constraints and requirements with the trace of design
approaches for Projects that followed CIUSter 1-6...........coooviuviiiiieiieeeeenieiiieeee 266
CHAPTER 11 CONCIUSIONS....cciiiiiiieiiieiieieeieiit ittt e e e e e e e e e e e e s e e e s s s seenees 270
Figure 11-1. Multi-disciplinary Design Processes in Intersection of Three Hard Areas............... 271
Figure 11-2. Return in Investment in Generating Methodologies.ccccceeeeeiiiiiciiiiiieieeeceeee, 282
Figure A-1. Adjustment 0BLi ANGIE. ..o e e e e e eanaees 306
Figure A-2. Calculating the Accessible Region of A 2-DOF RODOL...........cccoeiiiiiiiiiiiiiiiiiieeeeen. 307
Figure A-3. Different Covered Areas for the Same g1,max - gL, MiN.........ccoceeeiniiireeiiiiieeeennnn 308
Figure A-4. Calculation of SWEEP ANGIE.ooiiiiiiiii e 309
Figure A-5. Different Cases for Calculating SWeep ANQGIE.......uuvvviieeeeiiiiiiiiiieece e 310
Figure A-6. Different Cases for Calculating Gap ANgIe........ccoooiiiiiiiiiiiiieee e 311

Xiv

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4
Table 4-1.

CHAPTER 5
CHAPTER 6
CHAPTER 7

CHAPTER 8

Table 8-1.
Table 8-2.

CHAPTER 9

Table 9-1.
Table 9-2.
Table 9-3.
Table 9-4.
Table 9-5.

CHAPTER 10

Table 10-1.
Table 10-2.
Table 10-3.
Table 10-4.
Table 10-5.
Table 10-6.
Table 10-7.
Table 10-8.
Table 10-9.

Table 10-10.
Table 10-11.
Table 10-12.
Table 10-13.
Table 10-14.
Table 10-15.
Table 10-16.
Table 10-17.
Table 10-18.

List of Tables

T (oo 18 o 1o o IR SPPPPPRTRPR 1
Design of @ 2-DOF RODOL.......uuuuiiiiiaie e 19
Multi-diSCIiplinary DESIQNuuuuuuiiiiiiiiiiiiiieee e 40
Knowledge-Based DeSIgN............ciiiiiiiiieeeeeeceeeeeeeeee e 49
ClasSES Of DESIGN. ...uvuvreiiiieieeeiiiiicie e e e e e e e s e e e e e e e e s s s asnteaeeereeeee s mmmmmnns 55...
Multi-Agent Systems (MAS).......cooiiiiiiiiiiii e 83
Discovering MethodolOgIes...........oooooiiiiiiiiiiiiiiee e 104
RObOt DeSIgNEr (RD)......ovviiiiiieiieieee e 123
IMPIEMENTALION ... s 149
Attributes oDesSIgNer ODJECT. ..o 162
Attributes of thBlessage 0DJECT.........ooi i 165
e q 0=] 41T £ PSPPSR 173
Different Values for the ReqUIrEMENTS.oouiiiiiiiiiiiie e 188
The Coordinates of the Points in Each Workspace (in meter).cccccceveeeveviicievvnnnnnn, 189
Values for ‘Variables’ of the CONSLraintS.cooiiiiiiieiiiie e 191
Design Approaches of the Lowest Control Gainccuvuvieiiiiiieieniiiiiiieeceeee e 194
Design Approaches for Highest Control Gainueeiiiiiiaiiiiiiiiiiieeeeee e 196
RESUIES ..t 211
PrOJECE L6L. ..t enne s 215
AN EXamPle TraCe ClIUSIEIccoi i e e e e e e s reer e e e e e e e e e e e e nnenes 217
Generalized Trace for Trace Cluster of Table 10-2........ccocciiieiiiiiiee e 217
GOOANESS Of CIUSTEIS. .oeiiiiiiiiiiit e 220........
Clusters with highest gOOANESS.couiiiiiii e 227
The Goodness of Traces with Highest FreqUENCY..........ccueveiiiiiiieiiiiieee e 230
1= T U 231
Generalized Problems that Followed Trace Occcoovvviiieiiiiiiieeieeee e 231
TIRACE L.ttt et et e e e e e e e eeeeeeeeaan 232
Generalized Problems that Followed Trace 1ccccooiiiiiiiiiiiiiiieiee e 233
THBCE 2. et e e ettt ettt ettt bbb a e e e e e e aaaaaaaees 234
Generalized Problems that Followed Trace 2oooeeiiiiiiiiiiiiiiieeeeee e 235
LI oS S 236
Generalized Problems that Followed Trace 49ccoccvveeiiiiieee e 236
TPACE 770, .ottt e e e e e e e e s bbb eeeeeaan 237
Generalized Problems that Followed Trace 770 ..o 238
Go0dNness Of First LeVEl CIUSTEISccoiiiiiiiiieeieee e 239
Cluster 1-0. Total 9 traces covering 270 ProjECES.......uvveuiiirieeeiiiiiee e e 240

XV

Table 10-19.
Table 10-20.
Table 10-21.
Table 10-22.
Table 10-23.
Table 10-24.
Table 10-25.
Table 10-26.

CHAPTER 11

Table B-1.
Table C-1.
Table C-2.
Table C-3.
Table C-4.
Table C-5.
Table C-6.
Table C-7.
Table C-8.
Table C-9.
Table C-10.

Comparing the Requirements and Constraints for Projects 44, 45, 46. 241

Traces taken Dy Projects 44, 45, 4B. ...t 241
Cluster 1-8. Total 4 traces covering 81 ProjECES.........uvveiiiiiieeeiiiiiee e 249
Cluster 1-16. Total 3 traces covering 38 ProjECtS........cuouiivieieiiiiiiee e 253
Cluster 1-2. Total 8 traces covering 38 ProjECtS.cccuuurvririreeeeiiriiiiniirerreeeeeeeeeennns 255
Cluster 1-5. Total 4 traces covering 26 ProjECES.cccuurrrerieeeeeeiiriiiciriierrrreeeeeeesennnns 258
Cluster 1-4. Total 4 traces COVering 24 ProJECES.uuurreiriiieeeaiieiiiiiieeieeee e e e e e 261
Cluster 1-4. Total 4 traces CoOVering 22 ProJECLES.uuuureeriieeaeeiiaiiiiiieeeeeeeaaaeaeeaeaans 264
CONCIUSIONS. ... e e 270
(O 1) (= £SO 315
All Projects that followed trace 0. Total 52 Projects.ccccvvvveveeieeeee e 357
Patterns in the projects that followed “Trace 0”..........ccccciveeieieeeie i 359
All Projects that followed trace 1. Total 72 Projects.ooccvvveeeieeiieeeeeiieiiiieeee e 360
Patterns in the projects that followed “Trace 1”.........cccouuiiiiiiiiiiiiieeee e 362
All Projects that followed trace 2. Total 64 Projects.cceevrveieieiriiieeeeiiieeee e 364
All the projects that followed Trace 49. Total 33 Projects.cccvevvvievieiniiieeeniiienn. 366
All the projects that followed Trace 770. Total 20.ccceeeveeieeeiiiiireee e 368
All projects that followed Trace 1537. Total 28..........cevvveeeeiiiiiiiiiiiieeeeee e 368
All projects that followed Trace 1545. Total 54.ooiiiiiiiiiiiiiiiiee e 370
All projects that followed Trace 1546. Total 24. ... 372

XVi

Introduction

1.1 Background

The context of this research is teenulation of complex processisorder to synthesize,
analyze, or modify their emergent behavior. Specifically, this research addresses issues
within the broad context of multi-disciplinary design. Multi-disciplinary design entails par-
ticipation of different disciplines in the design process. Examples of multi-disciplinary

design are design of aircraft, automobiles, robots, and buildings.

The general scope of this project is the multi-disciplinary design of engineered sys-
tems. This work extends the concept of analysis-by-simulation to the area of engineering
design research. Analyzing the behavior of physical systems in engineering applications by
computer simulation using mathematical models has been a powerful tool in engineering,

reducing costs and time in comparison to physical prototyping and experimentation.

In this work the same concept is applied to the design process instead of the design
product. A computational model in the form of a knowledge-based multi-agent system is
built that simulates the design process. By running the simulation under different condi-
tions, and examining the performance, detailed understanding of the design process is
gained. As for simulations of physical systems, the computational model of the design pro-

cess is a simplified one in which the design activities that are usually carried out by humans

are performed by software agents in a slightly simplified manner. We have developed these

ideas using the multi-disciplinary domain of robot arm design.

This work is a new approach to multi-disciplinary design basethtegration of
different disciplines. Integration, however, makes an already complex design process even
more complicated. To overcome this complexity, computer programs are developed based
on multi-agent systems technique. The program simulates examples of multi-disciplinary
design processes while applying integration principles on the problem. Based on the traces

produced by the program, some candidate design methodologies are extracted.

This research is an inter-disciplinary exploration between engineering design and
computer science. The positive side of an inter-disciplinary exploration is taking advantage
of the power of the different disciplines. However, the inter-disciplinary aspect makes the

research more difficult to start and also to present to discipline-based people.

This introductory chapter is an overview of the thesis. In the next section we give
an example of the design methodology that has been discovered by the approach proposed
in this dissertation. This will help to better understand the more abstract and formal discus-
sions that follow in the rest of this chapter. We then give the motivation for pursuing this
research, followed by a formal problem statement. Next we formulate the goal and objec-
tives, give the significance of this research, review the approach and implementation, and

finally describe the outcomes of and potential applications for this work.

1.2 A Methodology Discovered

Figure 1-1 shows an example of a design problem that a design team might encounter in

the field of robotics. The design problem is defined by a set of specifications that the robot

2

is required to have (items 1 to 4 in Figure 1-1) and a list of constraints on the rest of spec-

ifications of the robot.

1 - Covers the following points: 2

small-M

2 - can carry a load of 1.0 kg;
3 - has a settling time of 1.0 sec;
4 - has an overshoot of 10%;

X (m)

5 - deflection of the tip is less than 0.001 of the sum of its link lengths;
6 - gains of its controllers are less than 100.
7-..

Figure 1-1.An Example of the Design of a 2-DOF Planar Robot.

The question that the design team is facing is: What methodology should we use for
designing a robot with specifications shown in Figure 1-1? The design methodology pro-
vides an answer to the question bfow should we conduct the design proceSsPe of

the questions that originate from the general question are as follows:

What design methods to use?

In what order should the design methods be used?

When should the members of the team stop to exchange the partial designs?

How should the members of the team evaluate the partial designs?

* How should the members of the team cooperate?

* How should the members of the team do things concurrently?

+ etc.

Figure 1-2 shows a methodology discovered based on the approach proposed in this disser-
tation. This methodology can not only answer the above questions, it also facilitates the
integration of different points-of-view in the design. Integration of different points-of-view

speeds up the design process and reduces the resources required to conduct the design.

In the rest of this chapter we provide an overview of this dissertation in a more
formal way by answering the ‘why’, ‘what’, and ‘how’ questions regarding the approach

proposed.

choose the location of the base of the robot; “left or below
midway of the workspace length”

choose the material; “steel stainless AISI 302 annealed”

select the shape of the cross section of the link: “hollow
round”

choose the structural safety factor: «3~

» dothe design and proceed to the next step

choose the link 2 to link 1 length ratio: “0.5~

» dothe design and proceed to the next step

pick the configuration of the arm: “left-handed”
select the ratio of the cross section dimension of the link

to minimum required by stress analysis: "4”—if it fails select
Li3’1

» dothe design and proceed to the next step

find the accessible region: use Equation 2-4
find the deflection of the tip: use Equation 2-14

choose the type of controller: “pD”

» dothe design and finish the process.

Figure 1-2. A Methodology Discovered.

1.3 Motivation

The motivation for this work ishe need for better ways of doing desigrioday’s manu-
facturing companies. For many companies this need is the matter of being able to compete
and thus, to survive, in today’s fast-paced world. Methods and tools are needed that sys-
tematically generate better design methodologies with the same speed as new technologies
are emerging. Improving design processes based merely on ad-hoc approaches and intu-
ition are no longer adequate. New methods and techniques from the area of Atrtificial Intel-
ligence in Design are at the stage of maturity where they can provide better alternatives for

improving the design methodologies.
The following is a summary of the motivations for conducting this research:

* Need for Continuous Improvement.In order to succeed in today’s global, competi-
tive market, companies need continuous improvements in their design processes. These
improvements should result in expending fewer resources on the design process while

achieving better quality and more environmentally friendly products.

* Need for Rapid Incorporation of New Technologies.New technologies (e.g., new
materials, manufacturing processes, etc.) are emerging into design products increas-
ingly quickly. These new technologies can not only improve the quality of the products,
they also can provide better ways of conducting the design process. In this situation we
need to incorporate the new technologies and methods into design methodologies as

quickly as they appear.

» Need for Integration. Integration of multi-disciplinary design is a means to enhance
the quality of the design, reduce the cost and the time to market and incorporate envi-
ronmental considerations into the design of the product. Integration reduces the number
of failures and backtracking by facilitating information sharing and thus saves
resources. On the other hand, integration provides collaboration between different par-

ticipants that, as a result, enhances the quality of the design.

* Need for Design Assistant ToolsThere is a need for design assistant tools that can
help designers understand the big picture. It is becoming harder to improve the system
performance of engineering devices based merely on advances in individual disci-
plines. In other words, improvements in individual disciplines alone are not sufficient to
affect the improvements in products and processes needed in the future. To achieve
higher quality, system-oriented, holistic, multi-disciplinary approaches to the design of
engineered systems are needed that consume less resources [NSF 96]. Therefore,
design research must produce a scientific foundation for the development of classes of

new design methodologies and tools that will address the need for system integration.

* Need for Concurrency in Design.“It is well known that concurrent decision making
Is an important and very desirable component of modern design methodology”
[Badhrinath 96]. A concurrent strategy, in contrast to a sequential strategy, carries out
some of the problem-solving activities in parallel to each other. As a result, the design
process speeds up, because the participants in the design do not have to wait in a line if

they can make a contribution.

* Recent Advancements in Artificial Intelligence in Design.Recent advances in the
application of Artificial Intelligence to design—Multi-agent Design Systems in particu-
lar—provide an opportunity to build superior design methodologies. Theories and tech-
nigues from Artificial Intelligence that have become available recently enable
engineering design researchers to take advantage of the computational power of com-

puters in solving their problems.

1.4 Problem

The problem is the following:

“There are no systematic approaches to building design
methodologies for integrating different disciplines in multi-
disciplinary design so that they collaborate in both contrib-
uting to the common goals of the design and sharing

resources

The following factors contribute to the difficulty of the problem:

» The current approaches for improving design processes are mostly based on intuitive
observations followed by incremental changes to the existing methodologies. The cur-
rent practices of multi-disciplinary design are based on ad hoc strategies for handling
the complexities that multiple points-of-view bring to the design process. These tech-
niques solve the problem of complexity at the expense of giving up the potential advan-
tages of diversity. The common methodologies for multi-disciplinary design are based

on compromising between different disciplines rather than collaborating between them.

These methodologies do not use a systematic, holistic approach to the problem of
multi-disciplinary design and thus these approaches to multi-disciplinary design are not

as efficient and effective as they could be.

* “One aspect of design that is usually neglected is that design knowledge is constantly
evolving” [Reich 91]. “Designers not only must cope with a complex task, but they
must track the evolution of a domain. In this situation, designers determine whether
new knowledge is related to the body of existing knowledge, or whether the new
knowledge reflects a more fundamental change in technology. The latter may have a

large effect on their problem solving behavior” [Reich 91].

» The number of specialists is increasing, while the number of generalists, capable of
doing system integration, is decreasing. At the same time, the knowledge burden on the
designer keeps increasing as more materials and more options become available [NSF

96].

1.5 Goal and Objectives

The goal of this research is the following:

“To synthesize design methodologies for rapid product

development, thus reducing time-to-market”

To achieve the above goal we need to develop approaches and build tools that produce such
design methodologies. Since design methodologies are about how to carry out the design
process, the emphasis of our research is on improving the process of design rather than the

product. In the context of multi-disciplinary design, we are especially interested in design

methodologies for integration of different disciplines as that is the key factor in achieving

superior design methodologies.

The objectives are to develop design methodologies that provide common knowl-
edge representation schemes and common communication protocols, facilitate design
knowledge sharing among participants, provide a cooperative strategy among designers,

and provide comprehensive mechanisms for conflict discovery and resolution.

By accomplishing these objectives we systematically overcome the complexities
that different points-of-view bring into multi-disciplinary design. Beside that we will be
able to take advantage of diverse points-of-view to enhance the quality of design products.
Thus, what we are looking for is a twofold solution. First, we wish to overcome the diffi-
culties that participation of different disciplines causes in the design process. Second, we
wish to take advantage of the diversity of the participants to design superior products while

consuming less resources.

1.6 Approach

We propose a new approach to the problem of producing better design methodologies for
multi-disciplinary design based on the integration of different disciplines. The discipline-
sequential approach, while poor, is relatively simple. Integration tends to make the design
process more complicated. To overcome this complexity, a computer system has been
developed representing a knowledge-based model of design in order to automate the sim-

ulation of the design process.

The innovative approach is based on simulating the design process using a multi-

agent system that mimics the behavior of the design team. The multi-agent system imple-

10

ments a knowledge-based model of design in which highly specialized knowledge from
expert sources are applied to synthesize a design [Lander 97]. The multi-agent system acti-
vates the pieces of design knowledge when they become applicable. The use of knowledge

by agents is recorded by tracing the steps that the agents have taken during a design project.

Many traces are generated by solving a large number of design projects that differ
in their requirements. A set of design methodologies is constructed by using inductive
learning techniques to generalize the traces generated. These methodologies then can be

used to guide design teams through future design projects.

The multi-agent system simulates examples of multi-disciplinary design processes
while applying integration principles to the problem. These include common design knowl-
edge representation schemes and common communication mechanisms; design knowledge
sharing among participants; cooperative problem-solving strategies among participants;
simultaneous design process where possible; and comprehensive mechanisms for conflict

discovery and resolution.

The large segments of discipline-specific knowledge are broken into small pieces
and are represented in the system by agents. Agent activation is triggered in an opportunis-
tic manner and is unaffected by discipline boundaries. Agents might participate in the

design process sequentially or in parallel.

The traces of the agent activations (i.e., knowledge use) during the course of the
design process are recorded. The recorded traces consist of orderly patterns of different
design tasks that have led to the solution. Some candidate design methodologies are

extracted by generalizing the patterns using clustering and inductive learning techniques.

11

Some of these candidates will be reinforced by solving more examples and accepted as

design methodologies for that particular class of problems.

1.7 Significance

The following is a summary of the significant aspects of this research:

» Radical changes to the design practice for complex systemdsing methodologies
developed by the system allows effective and efficient practices to be used from the
start of a project instead of being learned from experience. These new methodologies

are radically different from the sequential, discipline-based ones.

» Reduces time-to-market and saves resource$o be able to compete, companies not
only need continuous improvements in the quality of their products, but they also need
to improve the performance of their design and manufacturing processes in order to
reduce the cost and the time-to-market. Integration facilitates information sharing
among multiple and often contradictory points-of-view. As a result, the number of fail-
ures and the amount of backtracking in the design process is reduced, thus saving
resources and shortening design time. Integration also provides collaboration between

different participants that, as a result, enhances the quality of the design.

* Incorporates new technologies systematically and quicklyAgent-based systems
allow the addition or deletion of agents. Thus, new knowledge can be added, and old
knowledge removed rapidly. Running the system with the new set of agents will result
in new traces and thus new and different methodologies. This provides a way to system-

atically incorporate the new design knowledge into the problem solving process. A sys-

12

tem that discovers design methodologies can constantly be fed with the new design
knowledge, hence producing design methodologies that are based on the latest technol-

ogies.

Design process can be biased toward more environmentally friendly product#\s
the alternative methods that are built into each agent are tried in a preferential order,
and as each method tends to contribute differently towards the final properties of the

design, it is possible to bias the design process towards particular properties.

Attacks the problem of integration in multi-disciplinary design. The number of spe-
cialists is increasing, while the number of generalists, capable of doing system integra-
tion, is decreasing. Also the knowledge burden on the designer keeps increasing due to
more materials and more options [NSF 96]. Thus, it is becoming harder to develop

methodologies for the integration of multiple disciplines in design.

Allows designers to break out of disciplinary confinesAn increasingly specialized
technological environment tends to force designers to concentrate on some disciplines

more than others. This research allows designers to see the whole design problem.

Applies computers to new areas of engineering desig@omputers have mostly been
used to support the manipulation and analysis of design product information. This work
focuses on the design process, an aspect that has not benefited from computers very

much.

13

* Incorporates new software methods.Simulation of design processes based on a
multi-agent paradigm is a new area of research that has a high potential for practical as
well as theoretical impact on the design of products. The use of multi-agent systems
technology is growing rapidly with the development of Java-based systems and agent

access across the world-wide web.

* Incorporates judgement and experienceAs Sobolewski [Sobolewski 96] has stated
“System integration, many consider, is an ill-structured problem (the term ill-structured
problem is used here to denote a problem that does not have an explicit, clearly defined
algorithmic solution). No specific rules have to be followed when doing integration;
integration depends totally upon the environment to be integrated. Experienced design-
ers deal with system integration using judgement and experience. Knowledge-based
programming technology offers a methodology to tackle these ill-structured integration

and design problems”.

* Inter-disciplinary Research. This work benefits from inter-disciplinary contribution

from the state-of-the-art in both Artificial Intelligence and Engineering Design.

* Most impact in engineering design researchAccording to NSF’s report on Research
Opportunities in Engineering Design [NSF 96], “research areas that will have greatest
impact on engineering design over the next 10 years are: Collaborative Design Tools
and Techniques, Perspective Models/Methods, System Integration Infrastructure/Tools,
and Design Information Support Systems”. This work covers all of these areas of

research and hence is expected to have a strong impact.

14

1.8 Outcome and Potential Applications

The potential outcome of this research will be superior design methodologies that facilitate
integration and collaboration between different disciplines, conduct design tasks concur-
rently, and apply to a wide range of design problems. Such methodologies consume fewer

resources at design time and provide better quality for the product.

The result of this research will be a generic approach and a set of tools that can be
used to synthesize new methodologies for multi-disciplinary design, as well as to analyze
and refine current methodologies. These design methodologies will be specialized to col-
laborate and share resources during the design process. As a result, the time-to-market and
the design budget are significantly reduced while the quality of the product is enhanced.
This increases profitability and enhances the impact of manufacturing industries on the

market.

This approach is specifically aimed at multi-disciplinary design situations where
large gains can be achieved by integrated methodologies. In addition, current methodolo-
gies can be analyzed for flaws and bottlenecks, and necessary refinements made. New
methodologies can be customized so that they are biased toward specific objectives such as
manufacturability or being environmentally friendly. By applying this approach the
response time for the incorporation of new technologies in design processes will be
reduced. Methodologies can be refined as soon as a change occurs in the market or in the

organization of the company.

Simulating complex processes using a multi-agent system that approximates the

process in order to discover and learn better ways of conducting those processes can be

15

advantageous in many areas such as: Collaborative Product Development, Process Control,
Supply Chain Management, Shop Floor Scheduling, and Enterprise Integration. In all of the
these areas, the process is the result of an emergent behavior originating from the interac-
tion between the components of the system. Due to the complexity of the behavior, intu-
ition, common sense, and experience are not enough to discover better ways of conducting

the process.

In addition, in the areas mentioned the behavior of the components change con-
stantly over time and components are added or removed. For instance, new design
approaches may be added to the designers as a result of technological advancements (e.g.
new materials). In the supply chain management example, new suppliers may come to the
market. New manufacturing methods or machine tools may become available and as a
result better scheduling may become possible. Therefore, there is a need for a way to con-
trol this dynamism and eventually take advantage of it. Simulating these processes using a
multi-agent system is the answer to such a need. One scenario is to let the system run con-
stantly in the background searching for better ways of conducting the design process,

scheduling the shop floor jobs, or managing the supply chain.

The design simulation approach, via a multi-agent system, can not only be used as
an analysis tool, but also for sensitivity studies in which quantitative and qualitative mea-
surements are formed to show the effect of inputs (requirements/constraints) on outputs
(the product attributes). This type of sensitivity analysis is very valuable in areas for which

analytical or computational models cannot be built for the physics of the problem.

16

1.9 Outline of the Dissertation

This section provides an overview of how the rest of the dissertation is organized.

* Chapter 2: While the approach that we propose and develop will be generic, we
describe and implement it in the context of robot arm design. This not only provides us
with better understanding of the issues, but it also lets us avoid too general or abstract
discussions that are difficult to understand. Robot design is a good example of multi-

disciplinary design.

* Chapter 3 is an in-depth study of the problem of multi-disciplinary design. We will
review the major issues of multi-disciplinary design including integration of different
disciplines and concurrency among them. We will then propose a set of strategies that
will be incorporated into the approach for synthesizing methodologies for integration in

multi-disciplinary design.

» Having described the problem and robot design as an example of the type of problems
we are dealing with, in Chapter 4 we describe the knowledge-based model of design.
The ingredients of knowledge-based design as well as the strategies that are proposed

to be incorporated in the model will be discussed in Chapter 4.

» Chapter 5 will describe the multi-agent system paradigm. The framework that will be
presented for the multi-agent design system is a generic architecture that is applicable
to all parametric design problems. However, to avoid too much abstract discussion we

present the framework in the context of robot design.

17

Chapter 6 describes how we are planning to use the multi-agent design system and the
results of the experiments conducted to generate design methodologies. This part of the

approach is mostly based on machine learning and clustering techniques.

Chapter 7 describes the building blocks of the multi-agent system for design of a robot
arm calledRobot Designe(RD). This chapter is a bridge between the chapters on gen-
eral approach and implementation of the system. RD will be used to conduct experi-

ments simulating the design process of a robot arm.

Chapter 8 describes the implementation issues and the contributions of this dissertation

that concern building an automated design system based on a multi-agent paradigm.

Chapter 9 is devoted to ‘Design of Experiments’, that is how we should set up the
experiments so that, while the key features of the problem are covered, the number of

experiments are limited to a manageable number.

Chapter 10 consists of an overview of the collected data from the experiments and then
presents the results of processing the data using the approach described in Chapter 6 in

order to synthesize the design methodologies.

Chapter 11 closes the loop by revisiting the goal to see if it has been reached. It summa-
rizes the results of this dissertation and makes some conclusions based on the results
presented in Chapter 10. Finally we discuss similar problems that can be tackled with
the approach developed in this dissertation in order to analyze or synthesize their emer-

gent behavior.

18

2 Design of a 2-DOF Robot

2.1 Introduction

A robot can be defined as a technological system, able to replace or assist human in carry-
ing out a variety of physical tasks [L'Hote 83, p. 9]. The official definition for a robot as

formulated by the Robotic Industries Association is as the following [Holzbock 86, p. x]:

“A robot is a programmable, multifunctional manipulator
designed to move material, parts, tools, or specialized
devices, through variable programmed motions for the per-

formance of a variety of tasks”.

The principal functions that a fixed (i.e., not mobile) robot can perform are the following

[L'Hote 83, page 11]:

Handling: loading and unloading, storing.

» Transformation: painting, coating, drilling, machining, filing, buffing, bending, stamp-

ing, etc.
» Assembly or Dismantling.
» Fixing: gluing, welding, soldering, riveting.

* Measuring: collecting quantitative information on the structure of the object.

In the following we define some of the terms used in robot design:

19

» Linkage: The linkage is compromised of links and joints that provide the movement for
the end effector of the robot. It also transfers the force required for performing the task.
By far the most common robotic joints are the simple hinge joint (or revolute) and the

linear sliding joint (or prismatic) [Andeen 88, page 3.5].

» End Effector: The mechanical device that is attached to the end of the linkage to actu-
ally do the task is called the end effector. Some examples of an end effector include:
grippers and suction pads for gripping, nozzles and torches for arc welding [L’Hote 83,

page 12].

» Degrees of Freedom (DOF): The number of degrees of freedom of a robot is equal to
the sum of the DOF of the joints. DOF of a joint is the number of independent variables
needed to describe the state of the joint. The states of revolute and prismatic joints are
expressed by an angle and a displacement respectively. If one desires to have six DOF
for a part, it follows that the manipulator holding the part must have at least six DOF.
For specialized tasks where arbitrary position and orientation are not required, fewer
than six degrees of freedom can be used. The advantage of fewer DOF is decreased cost

and complexity of the robot [Andeen 88, page 3.2].

» Workspace: The set of points in space reachable by the end effector is called the work-
space of the robot. If the workspace is the set of points on a plane the robot is called a
planar robot. A planar robot needs not more than 3 DOF in order to reach to any point
in the plane with arbitrary orientation. A planar robot with 2 DOF can reach to any

point in the plane but the orientation of the end effector cannot be arbitrary.

20

» Workload: The maximum load (weight) that the robot can carry is called the workload

of the robot.

» Agility: Agility is a qualitative property of a robot that is the “effective speed of execu-

tion of prescribed motions” [Rivin 88, page 2].

» Accuracy: This is the accuracy of the robot in positioning the end effector in various
DOF. Accuracy should not be mistaken with repeatability, as that is the ability of the

robot to repeat the same accuracy over and over again.

» Stiffness: No robot arm is completely rigid. A force or torque on the end effector will
always produce some deflection or rotation. More stiffness for the arm reduces the
deflection of the end effector.

Many of the above parameters anéerrelated Maximum workload, speed, stiffness, and

accuracy, might depend on the point of the workspace at which they are being measured

[Rivin 88, page 2].

2.2 Robot Design

The manipulator (i.e., robot arm) design process has traditionally been an evolutionary,
empirical process. “That is the various industrial manipulator manufacturers have modified
their products over time, based on their performance in the workspace” [Depkovich 89]. As
a consequence, little knowledge about the potential interactions between disciplines has

been accumulated.

Moreover, design methodology for robots is influenced by this fact that there are

very large segments of knowledge bounded by different disciplines [Tsai 89]. Therefore, it

21

is difficult to cut these segments of knowledge into pieces so that they can be used in par-
allel with knowledge from other disciplines. In addition, because the knowledge in differ-

ent disciplines has been developed independently, it tends to have built-in and not global
goals. As a consequence of all of these factors, there is no design methodology that inte-

grates robot design, and it is very difficult to build one.

“Early manipulators were designed by a single individual or small design team
(fewer than five engineers). The design procedures were not rigorous or well organized;
designers relied on intuition, experience in other fields, and trial and error. As experience
with manipulators has increased, design choices have become better defined; in many cases
a superior choice has become a standard. Emphasis is increasingly being placed on sophis-
ticated improvements requiring largeamylti-disciplinaryteams and more structured proce-
dures. A characteristic of the sophisticated design process is increased use of engineering
prediction through mathematical modeling, prior to hardware experimentation. The
approach to robot design is becoming more like that used in the design of a aircraft, auto-

mobiles, computers, and other complex electromechanical systems” [Andeen 88, page 3.1].

Robot design has some characteristics that make it a good candidate domain for

implementing the ideas proposed in this thesis:

» Robot design is an example of multi-disciplinary design with participation of Mechani-

cal, Mathematics, Controls, Electrical, and Computer disciplines.

» Size of the problem can be controlled by varying the number of degrees of freedom
while the complexity of interaction between disciplines (i.e., being multi-disciplinary)

can still be preserved.

22

It will be easier to prove thecalabilityof the proposed approach because the major dif-
ference between the robot design problem that we will consider in this thesis and more
complex robots lies in the complexity of the design methods and interfaces rather than

in introducing more disciplines.

» The relationships between the requirements and constraints in robot design is compli-

cated even for a small design problem such as the one that we are to consider.

* Not all design knowledge for robot design is in the form of equations. As a result, we
can verify the feasibility of the approach for design methods other than algorithmic

methods (see Algorithmic Approach on page 53).

* There is no systematic approach for generating methodologies for the design of robots.
Therefore, the area of robot design can gain the most benefit from any advancement in

generating better design methodologies.

* Robotics is an area that continues to benefit the most from state-of-the-art technology.
It is very crucial that the new technologies be incorporated into the mainstream of the
design process as fast as possible. The approach that we are proposing provides a way
to do that. Consequently, robot design is a good candidate for implementing the pro-

posed approach.

2.3 Design of a 2-DOF Robot

The type of robot that we consider for implementing the proposed approach is a planar
robot with revolute joints and two degrees of freedom (2-DOF). Reducing the number of

degrees of freedom to two reduces the computational effort needed in one design project.

23

As it was explained in the previous section the complexity of interactions between multiple
disciplines is preserved in a 2-DOF robot. As a result, the design methodologies that inte-
grate disciplines for a 2-DOF robot can provide useful guidelines to integrate disciplines in

robots with higher DOF.

For a planar manipulator, two DOF are necessary for the arbitrary positioning of an
object [Rivin 88, page 35]. Because the type of the joints is revolute, there might be more

than one combination of joint angles for the arm to reach to a given position.

The disciplines that we consider for the design of a 2-DOF robot are: Kinematics,

Structural Mechanics, Dynamics, and Controls.

2.3.1 Design Parameters

The following is a list of design parameters for a planar 2-DOF robot as shown in Figure 2-
1. The names in the parentheses will be used later in the development of the knowledge-

based computer program that automates the design of the robot.

» Operational PlaneThis is the orientation of the plane in which workspace of the robot
lies in. The orientation of the operational plane affects the structural as well as control
design of the robot. In a vertical plane the tension and bending effects on the links vary
as the end effector moves within the workspace. In a horizontal plane, on the other
hand, tension (or compression) effects are replaced by torsional effects that vary
depending on the position of the end effector. The bending effects will stay the same in
a horizontal operational plane. Also, in a vertical plane the control system has to com-

pensate for the effect of the acceleration due to graviperétional_plane).

24

WorkspaceThe desired workspace may be defined by a set of points that the end effec-
tor of the robot has to reach. A good design covers all the desired points while keeping
the area of the accessible region small, Figure g+drkispace

areaaccessible_region_area).

Location of the Basél'he location of the base of the robot relative to the points in the
workspace affects the length of the links of the robot and the area of the accessible

region. pase_location).

Link LengthsLink lengths influence the design in all three disciplines: kinematics,
structural design, and controls. They have direct effect on the size and shape of the
workspace, the stress level and deflection of the links, as well as the performance of the

control system.link1_length , Ink2_length).

Joint AnglesA robot can reach to a point in the workspace by rotating its joints. Rota-
tion of the joints moves the end effector to the desired point. The minimum and maxi-
mum values of the joint angles determine the shape and size of the workspace.
(thetal _array ,theta2_array ,thetal min ,thetal max ,theta2 min

theta2_max).

Workload Workload is the maximum load that the robot should be able to carry. This
value changes for different points in the workspace. That is, when the robot is fully
stretched it can carry smaller loads due to the larger deflections and the requirement for
more actuating power. We assume that the workload is expressed for this worst case.

(workload).

25

Link Cross Section Shape and Dimensidftsese two design parameters determine the
shape and the size of the cross section of the links. Some shapes might be preferable
from manufacturability point-of-view while others might provide more stiffness.
(link_cross_sectional_shape , link1 _cross_section_dimension :
link2_cross_section_dimension ,

linkl_cross_section_thickness ,

link2_cross_section_thickness).

Material Properties The type of material that is used for manufacturing the links
affects the structural design as well as the control design. As in all other mechanical
devices the most cost effective material with a low density, plus high strength and stiff-
ness properties is desirablmdterial name , material_mass_density ,

material_yield_stress , material_elasticity_modulus).

Deflection Deflection of the links directly affects the accuracy of the robot in position-
ing the end effector. We design the robot for the worst deflection, when the arm is fully

stretched.t{p_deflection).

Structural Safety FactoiThe structural safety factor reflects various uncertainties in the
design of the structure. It accounts for the difference between the published and actual
data for the material’s properties as well as any overloading of the structure beyond the

nominal values.dtructural_safety factor)

Control System’s Performancéhe speed and accuracy of the control system in posi-
tioning the end effector are expressed in terms of settling time and the overshoot. The

settling time is the time required for the robot to reach to a destination point and stay

26

within an acceptable range of that point, i.e., acceptable oscillation. The settling time is
related to the largest time constant of the control system [Ogata 97, page 151]. The
maximum overshoot is the maximum peak in the response of the robot beyond the des-
tination point. The maximum overshoot directly indicates the relative stability of the

control system [Ogata 97, page 15%gt(ling_time , maximum_overshoot)

Controller Gains The gains of the controller show the effort required by the control
system to meet the desired speed and accuracy performance. Large control gains mean
larger actuators and more accurate sensors that increase the cost of the system.
(proportional_gainl , derivative_gainl , proportional_gain2

derivative_gain2).

27

° workload

N
accessible region o .

'Tcross section dimension,
thickness, and shape

ol joint angle limits /- deflection of the tip
/ - | - overshoot
DN \ - settling time

control gains location of the base

Figure 2-1.Design Parameters of a 2-DOF Planar Robot.

2.4 Kinematics

The kinematics of a robot arm deals with positions, velocities, and acceleration of the
manipulator links [Rivin 88, page 34]. “Different kinematic designs means different selec-
tion of kinds of joints and lengths of links that compromise the manipulator. The choice of
kinematic design is probably the most important choice in the design procedure, and the set

of choices is very large. Yet there are only a few guiding principles” [Andeen 88, page 3.2].

28

In this section we formulate the design procedures that are needed for synthesizing
a 2-DOF planar robot with revolute joints. The kinematic parameters that we consider for

kinematic synthesize of the robot are:

* the location of the base of the robot, that is, the location of the point to which the first

link of the robot is hinged,
 the lengths of the links of the robot, and

* the joint angles.

2.4.1 Kinematic Design Algorithms

We assume that the set of desired points in the workspace that the robot should reach are
given. Using the algorithms in [Tsai 81] we can find the location of the base of the robot,

the length of the links, and the joint angles for each desired point in the workspace.

The algorithms for calculating the joint angles and the accessible region of a 2-DOF
planar robots, as described in [Tsai 81], are only applicable to situations where the first joint
angle is between zero amd The algorithms work for problems in which the workspace
points are in the first and second quadrants relative to the base of robot and with reference
to a vertical line. However, for points in the third and fourth quadrants the algorithms pro-
duce wrong answers for the joint angles. The reason is thatrtheosinefunction always
produces a value between zero anand that leaves out the angles in the third and fourth

guadrants.

The following equations are used in [Tsai 81] to find the joint angles for a pgint (x

y;) within the workspace. The base of the robot is gt {§) and the length of the links are

29

[, and |, respectively. As a convention we assume that the positive direction for measuring

angles is clockwise.

li = /\/(Xi_xb)z_(yi_yb)z (2-1)

2 2 2
i~ Oy +17-150
6, = aco% Y60 acogi 12 (2-2)
! i O 0 24l 0

2 2 2
O, = (157 +15)0
92, = aCOSBI—(l—Z—)D (2_3)
! 0 2hl, O

The above equations can be derived assuming that the ppiw) (% located in the

first quadrant with respect to the base of the robgt. %y, as is shown in Figure 2-2:

(X Y1) 2 2 Yi¥p
i = J(Xi=Xp) = (¥i~Yp) cosay = I|_
1
2 2 2
I+ 17 =1
3= 1P+12-2llcosn, cosup = L2
1

6, = a;—0a,

2 2 2
i~ ., +17-150
= acos%y i Yo acosH———20
L o o 2hli o

D
iy
|

2 _ 2 2
I7 =17 +15=2l;l,cos04

0Z-%+13)0

costy = —|
s 0 2l O
2 2 2
lji_(|]_+|2)D
cosB,, = cos(m—03) = —Cosnz = ST
2 2 2
Oy =11+ 15)0
0, = acos+ Uy +12)

! o 2hl, §

Figure 2-2.Kinematics Design Equations.

30

Equations (2-1) to (2-3) define one set of answer to the joint angles. However, there
is a second set of answers for joint angles that is obtained by mirroring the configuration of
the arm with respect t.[That is, the robot can reach the same point with two different con-
figurations. Therefore, as it is shown in the following figure, there are two solutions to the

problem of findinge,, in all four quadrants, the first onedis-a, and the second one is

oy +0a,.
First Solution: positivé,;, positived,; Second Solution: positivé,;, negativeds;
“Left-hand Solution” “Right-hand Solution”
6y, = a;-a, By = ap oy
ezi = n-ag ezi = ~(Tm-o0y)

(i ¥i)

Figure 2-3.Two Solutions for Kinematics Design.

As we will see in Chapter 7, having two possible solutions for kinematics provides
us with an opportunity to define two different design approaches. If the first design
approach that correspond to “left-hand solution” fails to satisfy design constraints, the

second design approach will be tried that may resolve the constraint violation.

Also, please note that it is possible to combine these two solutions for a set of points
in the workspace so that some of the points are reached by joint angles from the first solu-

tion and the rest from the second solution. This mixture of solutions may result in a differ-

31

ent accessible region area than an only “left-hand solution” or an only “right-hand

solution”.

2.4.2 Calculating Accessible Region Area

To make the above equations applicable to the third and fourth quadrants as well we had to
modify them. The modification of the equations is discussed in Appendix A. In the follow-

ing we present the equations that are applicable to the general case.

The accessible region of a 2-DOF planar robot can be calculated based on link
lengths, the angle swept by the first linB;(angles), and the maximum and minimum of

cod,; angles as shown in Figure 2-4:

A = 111581 sweef(COBy) o —(COSBy) o]

Figure 2-4.Calculating the Accessible Region of A 2-DOF Robot.

2.5 Structural Mechanics

Structural design of a robot deals with the stiffness and the deflection of the structural com-
ponents (e.g., the links), as well as the natural frequency and damping characteristics of the
robot’s structure. In this thesis we only consider the static aspects of structural design of a

robot, stress analysis and deflection of the links. In addition, we assume the following:

» The operational plane that the arm moves is horizontal,

32

* Masses of the links are concentrated at the end of the links,
» Links are tubular with square or circular cross sections,

* Only the bending of the arm is considered in structural design of the robot.

2.5.1 Structural Design

We design the links based on the stress analysis and then check for the deflection to be

within the allowed range.

2.5.1.1 Stress Analysis

The bending stress of the link can be calculated from Equation (2-4):

(2-9)

- | I\)IZQ_

Oy =

wheregy, is the bending stress, M is the bending moment, d is the dimension of the cross
section of the link, and | is the moment of inertia of the cross section that can be calculated

from Equation (2-5):

| = c,d’[1-(1- 207 (2-5)

'r[.
€1 = gz :forcircularlinks, c; = 112 - for square links

r =

Ol

After substitution of (2-5) into (2-4)we will have:

33

d
M3

o0~ c,d'[1—(1-2n"

(2-6)

The maximum bending moments for each link can be calculated from Equations (2-
7).

M, = (my+m,)gl,

M, = (m1+m2+ml)gll+(m2+ml)gl2 2-7)

where m, my,, andm, are the mass of link 1, mass of link 2, and the workload, respectively.

The masses of the first and second links can be calculated from:

(2-8)

clr(1-n]d°pl

m : for circular links, ¢, = 4 :for square links

m

)

wherep is the mass density of the material of the link. Substitution of Equations (2-7) and

(2-8) in Equation (2-6) gives:

d23 =A +Bd22
d,® = C+Dd;” (2-9)
where:
A = m,gl,
4
{2¢c,0,[1-(1-2n"]}
2
B = plycr(1-r)g (2-10)

{20,051 (120"}

34

and,

(my+m) (5 +15)9

C= 2
{2¢0,[1-(1-217]}
plzc r(l-r)g
D = 12 a (2-11)
{2ci04[1-(1-21"]}
and,
Oy = %3_/ (2-12)

whereo, is the allowable stresgr, is the yield strength of the material, and n is the

structural safety factor. We can find a closed form solution to Equations (2-11) as follows:

if: d® = o +Bd’
1/3
2 0 3 2 3 0
_y.B B - geB o B 2-13
d_y+90(+3 and, vy 7+4+27+;E (2-13)

Please note that the dimension of the first link cannot be determined without know-
ing about the dimension of the second link. The first link carries the mass of the second link
too and the mass of the second link depends on the dimension of the cross section of the

link, Equation (2-8).

2.5.1.2 Deflection Analysis
In this section we calculate the deflection of the tip of the robot arm assuming all other

structural parameters are known. The deflection of the tip is composed of the deflection of

35

the second link plus deflection of the first link due to the bending of the links plus the rigid

body rotation of the second link due to the deflection of the first link, Equation (2-14):

5“9 - 6bending 1t 5bending 2t 6rigid, 1,2 (2-14)
|3
Spending 2= (m, + m,)gly (2-15)
ending 3E2|2
3 5]
Speng _ (ml+m2+m,)g|1+(m2+ml)g|2|1 (2-16)
endaing 1 3E1|1 2E1|1

In Equations (2-15) and (2-16) E is the modulus of elasticity of the material and | is

the moment of inertia of the cross section of the link as calculated in Equation (2-5).

(2-17)

2
(my+m,+m)gly (my+m,)glyl,

O, i = + x|

rigid, 1, 2 2E1|1 Elll 2

2.6 Dynamics and Controls

The dynamic equations of a 2-DOF planar robot can be derived based on the procedure in

[Craig 86, page 173]. Ignoring the nonlinear terms we will have Equations (2-18):

1, = myl5(B1 +82) + myl,1,(cos8,) (261 +) + (M, + m,)I6,

m,|15(B1 + 82) + m,l,1,(cosd,)8; (2-18)

1

wheret, andr, are the torques applied to the first and second joints by the act@ators.

and 6, are the first and second joint angles. The transfer functions of the system can be

36

derived using the Laplace transform and assuming zero initial conditions as shown in Equa-

tions (2-19):
0 _ 1
Ty lggS
6
2 _ 1 (2-19)
Ty lggS

wherel,, is the equivalent moment of inertia of the arm as seen by the actuator of the first
joint andl eq, is the moment of inertia of the second link seen by the actuator of the second

joint that can be calculated using Equations (2-20):

2 2
leg, = Mal5+2myl4l5(cosB,) +(my +my)ly

leg, = Mol (2-20)

2.6.1 Position Control Design

The type of controller that we consider for the robot is a position control scheme that is

shown in Equation (2-21):

T =G(0)+ KpE- K40 (2-21)

This controller does not force the manipulator to follow a trajectory, but moves the
manipulator to a goal point along a path specified by the manipulator’'s dynamics, and then
regulates the position there [Craig 86, page 15]. This is a controller of type PD (propor-

tional plus derivative) that is shown in the block diagram of Figure 2-5.

37

edesired T 1 9 eactual
—> Kp — >

nlipF

Figure 2-5.A PD Controller for the Robot.

The closed-loop transfer function can be found by simplifying the block diagram of

Figure 2-5.
Kp
=
G(s) = —20 (2-22)
K K
¥+ I+ P
leq leg

Assuming thatw,, is the desired natural frequency gnd is the desired damping

ratio for the closed loop system, the controller gains can be found from Equations (2-23):

Kp = Wplegq

2QWpleq (2-23)

Kg
The closed loop system of Equation (2-22) is always stable because all the coeffi-
cients of the denominator are positive quantities. Therefore, the only constraint on the

values of the gains is imposed by the size and power of the actuator and the resolution of

the tachometer that measures the angular velocﬁy of

In this chapter we described the design knowledge that is used in kinematic design,

structural design, and control design of a 2-DOF robot. Robot design is a good example of

38

multi-disciplinary design. The design of 2-DOF robot has a small number of design param-
eters (compare to a 6-DOF industrial robot). However, it preserves the complexity of mul-

tiple disciplines in the design.

The next chapter is an in-depth study of the problem of multi-disciplinary design.
We will review the major issues of multi-disciplinary design including integration of dif-
ferent disciplines and concurrency among them. We will then propose a set of strategies
that will be incorporated into the approach for synthesizing methodologies for integration

in multi-disciplinary design.

39

3 Multi-disciplinary Design

3.1 Introduction

Multi-disciplinary designs are very complex processes that consume a lot of time, money,
expertise, information and other resources. Complexity originates from the diversity of dis-
ciplines that each possess a different point-of-view regarding the design problem. As a
result, different disciplines adopt different and often contradictory goals and constraints,

while they have to share resources such as budget, time, expertise, and information.

Although diversity is the source of complexity, it can be turned into a source of
advantages. Having representation from different functional areas in multi-disciplinary
teams is beneficial to the design [Dowlatshahi 97]. Diversity in disciplines brings multiple
sources of knowledge, problem-solving techniques and expertise to the design process and
also modularizes the design knowledge. As we will discuss in the next chapter, modularity
in the design knowledge produces some problems by creating boundaries around segments
of knowledge. However, at the same time, modularity helps to manage the vast amount of

required knowledge by partitioning it into different fields of expertise.

In order to take advantage of diversity in multi-disciplinary design, different disci-
plines should collaborate with each other in adopting common goals, sharing resources,
exchanging information, and resolving conflicts. “Engagement of different cooperative

agents in the design problem solving can solve the design problem faster than either a single

40

agent or the same group of agents working in isolation from each other. As a matter of fact,
that cooperation leads to improvements in the performance of a group of individuals under-
lies the founding of the firm, the existence of scientific and professional communities, and
the establishing of committees charged with solving particular problems” [Clearwater 92].
Such a collaboration strategy between different disciplines is called integration of multi-

disciplinary design.

3.2 Survey of Related Work

“Engineering design should always be thought of as a multi-disciplinary activity. Indeed,
it must include consideration of all disciplines: it @nnidisciplinary [Hazelrigg 96].
Recently, there has been increasing recognition that multi-disciplinary design is important.
A large amount of very good research has been focused on Multi-disciplinary Design Opti-
mization (MDO) [Sobieszczanski-Sobieski 96]. MDO tries to produce an effective product
by recognizing and using appropriate combinations of parameters to be controlled and opti-

mized by the designer.

MDO is based on mathematical modeling of the design problem in terms of objec-
tive functions and then their minimization. The problem is that a mathematical model for
the design product is not available until the very end of the process, when the conceptual
and embodiment design are complete. Additionally, for many cases a mathematical model
cannot comprehensively include all design concerns and ignores those characteristics that
cannot be mathematically modeled. In our approach, MDO techniques are employed when-

ever they are applicable.

41

The numerical methods for disciplinary and multi-disciplinary optimization would
be considered as ‘design methods’ in this work. The contrast between our work and MDO
is that we are concerned about moving towards an optimal design process while MDO is
concerned about optimization of the product. Also, MDO needs access to a mathematical
model of the system, while development of complete mathematical models for the type of

problems we are working on is not possible.

While a key part of the MDO process is the use of appropriate decompositions,
there has been less attention paid to the sequence of design activity that caused the process
to arrive at the point where optimization can be done (see the discussion of decomposition
in [Sobieszczanski-Sobieski 96]). Problem decompositions are influenced by dependencies
between design decisions [Gebala 91] [Liu 94] [Kusiak 93] [Rogers 96]. Most existing
research into decomposition assumes that problem decompositions are not affected by prior

design decisions.

However, in multi-disciplinary design problems the values of design parameters
may determine what design method will be employed, as methods may have applicability
conditions. As different design methods may introduce different dependencies, depen-
dency chains, and potentially problem decompositions, can be dynamically determined.

This means that the sequencing of design tasks can also be dynamically determined.

Some approaches to the support of multi-disciplinary design problems provide
some user interaction to help determine what task sequence will be used [Kroo 88] [Kroo
90] [Hale 96] [Wujek 96]. However, while Multi-disciplinary Design problems often
require the user’s investigation of design trade-offs, for each problem and related set of

requirements, there are a number of common design task sequences (design flows) that are

42

used. Such sequences form the basis of a design methodology for that problem or class of

problems.

This work is also distinguished by the requirement that results of the discovery pro-
cess be well integrated, and, if possible, concurrent. For that to happen, fine-grained tasks
are needed, as opposed to the large grained tasks (often based on existing software) used

by research such as [Hale 96] and [Woyak 95].

This research acknowledges that not all design knowledge is based on equations—
some is qualitative, experiential, and heuristic. Our agent-based approach can accommo-
date such knowledge. Lander [Lander 97] provides a detailed review of this field, while
other work on multi-agent systems in Concurrent Engineering is reported in a special issue

of the CERA journal [Brown 96-Db].

3.3 Characteristics of Multi-disciplinary Design

The following characteristics of multi-disciplinary design contribute to the problem of pro-
ducing better design methodologies. They are the most important barriers to integration of

different disciplines:

3.3.1 Different Points of View

The notion of ‘points-of-view’ is essential in multi-disciplinary design. It is due to the dif-
ference in points-of-view of multiple disciplines that makes multi-disciplinary design inter-

esting and challenging.

43

3.3.2 Departmentalization of Disciplines Over Time

Another challenge is that different disciplines have developed their own terminology and
conceptualizing of the world separately from other disciplines because of the historical
facts. As a consequence, there are not many techniques for understanding and collaboration
among different disciplines. There could be different views among members of a team but
at the same time there could be well defined terminologies and conceptualizing that allows

the members to collaborate with each other in achieving a common goal.

Different disciplines conceptualize and represent their knowledge differently from
the others. Boundaries are built around disciplines with special internal languages and no
means for communicating with the outside world. As a consequence, it becomes difficult
for the participants to communicate their points-of-view, let alone collaborate with each
other or resolve their conflicts. For example, consider the disciplines involved in the design
of robot manipulators and the way they formulate the problem in terms of different con-

cepts:
» kinematicslength, angle, coordinate system, velocity, acceleration;
* mechanicsstrength, deflection, power transmission system;
« dynamicsforce, torque, vibration;

» controls stability, time constant, positioning accuracy.

3.3.3 Built-in Goals

Different disciplines tend to accumulate knowledge independently. As a result, they tend

to have built-in goals that are often in conflict with global goals of the design. Ignoring the

44

conflicts between local and global goals leaves the behavior of the system to the dynamics
of self-design as determined by the structure of the system itself [Forrester 69]. For exam-
ple, knowledge about the design of robots has been developed based on steady discipline-
by-discipline contributions over time [Craig 86] [Andeen 88] [Rivin 88]. “The manipulator
design process has traditionally been an evolutionary, empirical process. That is, the vari-
ous industrial manipulator manufacturers have modified their products over time, based on
their performance in the workspace” [Depkovich 89]. For instance, consider how the dis-

ciplines involved in robot manipulator design adopt different goals:
» kinematics covering the workspace,
* mechanicskeep the deflection of the tip low,
» dynamicskeep the vibration low,

» controls increase the speed and positioning accuracy.

3.3.4 Focused Expertise of the Disciplines

The points-of-view of different disciplines are sharply limited due to highly focused exper-
tise in their fields. As a result, integration techniques that are solely based on disciplinary
knowledge become fragile, because they fail to apply as soon as the conditions change

slightly.

3.3.5 Need for Broad Range of Expertise

The required knowledge for doing multi-disciplinary design is distributed among different
fields of science and engineering so that no single person is able to possess all the required

expertise. “Large-scale engineering projects typically involve up to 300 different specialty

45

design firms, suppliers, and contractors. Therefore, many different types of professionals
must interact and communicate with one another, which in many cases can result in con-
flicts” [Pena-Mora 95]. As a consequence, a broad range of expertise needs to be combined

in order to develop an integrated design methodology.

3.3.6 Disciplinary Design in Big Chunks

Disciplinary designs are processed in large segments that make integration very difficult
because they hide valuable information that is necessary for integration (such as decisions
that may lead to conflicts) from the rest of participants. Also, considering the iterative
nature of design, it is costly and time consuming to repeat disciplinary designs in big
chunks. This is because in every iteration the designers have to redo the big chunks of dis-

ciplinary design in their entirety.

3.3.7 Complexity of Interactions

The interactions between different disciplines are complex because they are multifaceted,
meaning that multiple disciplines might be interested in one parameter at the same time.
Also, the number of interactions is very large and they may change depending on the type

of the problem.

3.3.8 Large Number of Iterations

Departmentalization increases the number of conflicts between disciplines hence increas-
ing the number of iterations required for finding a solution. Large number of iterations con-

sumes more time and other resources in the design process.

46

3.3.9 Counter-Intuitive Behavior

“It has become clear that complex systems are counter-intuitive, that is they give indica-
tions that suggest corrective action which will often be ineffective or even adverse in its
results” [Forrester 69, p. 1]. Multi-disciplinary designs are a type of complex systems with
counter-intuitive behavior. “Intuition fails to hold true when the constraints become active;

it is then that the real interaction among design groups occurs” [Wujek 96, p. 370]. There-
fore, integration in multi-disciplinary design cannot be done based on intuitive approaches
and comprehensive studies are needed in order to develop solutions to the integration prob-

lem.

3.4 Integration in Multi-disciplinary Design

Integration is important in multi-disciplinary design because different disciplines have dif-

ferent requirements and constraints to satisfy. In the robot design problem, for instance,
kinematics is required to cover the desired workspace while minimizing the accessible
region. On the other hand the controls discipline is required to minimize the rise time and

the overshoot while keeping the control gains within a practical range.

On the surface these requirements seem independent of each other. However, the
sets of design parameters that are affected by the requirements or affect the constraints may
have common elements. Integration means bringing all of the disciplines that are affected
by shared design parameters together in order to negotiate and assign values to shared

parameters.

Integration makes it possible for different disciplines to participate simultaneously
in the process of assigning values to these shared parameters. As a result, any possible con-

a7

flict on the assigned value is discovered and resolved immediately. Besides, with simulta-
neous participation of disciplines there will not be any “lead discipline” that has earlier
participation in the design process. “Lead disciplines” tend to dominate the decision
making and therefore to favor their own requirements. This simultaneity in decision

making is called concurrency.

Integration in multi-disciplinary design becomes even more complicated when
there arenter-disciplinary constraintgn the design process that should be satisfied. Inter-
disciplinary constraints are a subset of design constraints that cannot be evaluated by a
single discipline independent from other disciplines. For instance, the total cost or weight
of a robot cannot be evaluated by a single discipline in contrast to the accessible region of
the robot arm and the time constant of the control system that can be evaluated indepen-

dently by kinematics and controls disciplines respectively.

Similarly, the set of design parameters can be categorized into inter-disciplinary
and disciplinary. For instance, the length of the links in the robot design example are inter-
disciplinary design parameters because they affect constraints in both kinematics and con-
trols disciplines. On the other hand, the modulus of elasticity of the material used for the

links is only of concern to structural design, hence it is a disciplinary parameter.

In this chapter we reviewed the major issues of multi-disciplinary design including
integration of different disciplines and concurrency among them. In the next chapter we
describe the knowledge-based model of design, its ingredients, as well as the strategies that

are proposed to be incorporated in the model.

48

4 Knowledge-Based Design

“Knowledge-based systems provide a means by which differ-
ent design methods and methodologies can be efficiently
studied, compared, and evaluated. Though knowledge-based
systems have not yet been used in this way except in ad-hoc
fashion, they will be. When the design research community
finally gets the time, freedom, support, courage, and vision
(there exist plenty of intellect) to attempt development of an
empirical science of engineering design, then the knowledge
required, and different methods and methodologies, will be

subject to study via knowledge-based systdision 95].

“Curiously, there is resistance to the knowledge revolution,
especially in engineering. This resistance comes from uni-
versities and research organizations that do not have good
mechanisms for evaluating new disciplines, such as informa-
tion technology. Often, engineering faculty who evaluate
new disciplines base their judgments on comparisons with
evaluating traditional, engineering science-based methodol-
ogies. When these analogies do not align, judgments tend to

be harsher than otherwise necessafgtiram 98]

49

4.1 Introduction

“Design is a process that constructs a description of an artifact, process or instrument, that
satisfies a (possibly informal) functional specification, meets certain performance criteria
and resource limitations, is realizable, and satisfies criteria such as simplicity, testability,
manufacturability and reusability. The design process itself may also be subject to certain

restrictions such as time, human power, and cost” [Sriram 98].

The process of designing an artifact can be usefully viewed as a search of a multi-
dimensional space of possible designs. The dimensions of such a space are the parameters
that describe the artifact (e.g., the properties of the individual parts and the structural rela-
tionship between the parts) [Mittal 92]. Therefore, each point in such multi-dimensional

space is a possible design and designing is to search for a point that satisfies the constraints.

Design is an ill-structured problem that demands a wide variety of knowledge
sources, such as heuristic knowledge, qualitative knowledge, and quantitative knowledge.
Engineering design involves a large number of components and the interaction of multiple
technologies. Design decisions (e.g., selecting the components included in the product) are
made in a multi-stage, iterative, and collaborative process, starting from customer require-
ments, through conceptual design, to detailed design. As a result, considerable communi-
cation and coordination is required between participants with varied domain specific
backgrounds. Hence engineering design is a knowledge-intensive collaborative process

[Sriram 98].

50

4.2 Design Process

“A design processs the series of activities by which the information about the designed
object is changed from one information state to another. That is, a design process solves,
or resolves, a design problem” [Dixon 95]. To improve the design process we need pre-

scriptions that advocate how design should be done in particular circumstances [Dixon 87].

Models of design process can be categorized into three categories: descriptive, pre-
scriptive, and computational. The descriptive models simply describe the sequence of
activities that typically occur in designing. Prescriptive models attempt to prescribe a better
or more appropriate pattern of activities [Cross 89, page 19]. A computational model

expresses a method by which a computer may perform the design process [Dixon 87].

4.2.1 Models of Design Process

4.2.1.1 Knowledge-based Design

“Engineering design can only be knowledge-based, or else it is guesswork.... And if an
intellectual task is knowledge-based, then the knowledge employed can be explicitly iden-
tified, organized, codified, studied, and experimented with using knowledge-based com-

puter systems as an experimental apparatus” [Dixon 95].

A knowledge-based design paradigm applies highly specialized knowledge from
expert sources to the synthesis or refinement of a design or a design process [Lander 97].
The development of knowledge-based systems for design, especially of mechanical sys-
tems, is increasing. The expectation is that these computer systems can improve the quality

of design and shorten the design time [Mittal 92].

51

A knowledge-based view of design is more appealing to human designers than
other methods such as optimization. Another advantage is that certain tasks are easier to be
modeled in a knowledge-based systems than using a mathematical model[Coyne 90, page

30].

4.2.1.2 Systems Science Approach

In the systems approach the need for a close study of the problem environment is empha-
sized. Such a study takes place before specifying design requirements. Kannapan [92]
describes four different theories that are used to model a system in Systems Science. The

following are the models for design that would result from those theories:

Black Box Theory: This models the design as the mapping of the requirements to the

design descriptions with respect to the environment.

» State Theory: This models the design process by a vector of characteristic attributes
representing the internal state of the process. The design process will be transition of

current state to the next one.

» Component Integration Theory: This models the design by decomposing it into compo-
nents whose input-output mappings are known. The behavior of the system is derived

from the interaction between these components.

» Decision Theory: In this approach all activities of modeling, design, and analysis are
modeled as decision making activities. Each decision is made in a systematic way, tak-

ing into account dependencies between actions [Kannapan 92].

52

4.2.1.3 Problem Solving Approach
The problem solving approach seeks to reduce a design problem to sub-problems recur-
sively until sub-problems solutions are directly known. Subproblem interdependencies are

formulated as constraints to be satisfied [Kannapan 92].

Due to the inter-dependencies between subproblems, a search process is needed to
determine in what order the subproblems should be solved. “The search is formulated in
terms of problem states: Given an initial state, the attributes of a goal state, and a set of state
change operators, problem solving involves determination of a sequence of operators that
transform the initial state to a goal state. The path of search may be controlled and con-
strained in several ways (e.g., breadth first, depth first, heuristic, dependency-directed

backtracking)” [Kannapan 92].

4.2.1.4 Algorithmic Approach

“The algorithmic approach views design as a finite deterministic process. Cases where the
entire design process is algorithmic are rare. However, parts of most design processes are
algorithmic, especially where the emphasis is on numerical analysis and optimization.
Optimization techniques apply where design problems can be formulated in the standard

mathematical form of objective functions and constraint equations” [Kannapan 92].

4.2.1.5 Axiomatic Approach

“The key concepts of axiomatic design are: the existence of domains, the characteristic vec-
tors within the domains that can be decomposed into hierarchies through zigzagging

between the domains, and the design axioms. The design world of the axiomatic approach

is made up of domains. There are four domains: the customer domain, the functional

53

domain, the physical domain, and the process domain. Axioms are general principles or
self-evident truths that cannot be derived or proven to be true except that there are no

counter-examples or exceptions” [Suh 95].

Suh identifies two axioms by examining the ubiquitous, common elements present

in good product, process, or system designs [Suh 95]:

* Axiom 1: The Independence Axiom: The independencé-oictional Requirements
(FR) must be always maintained, where FRs are defined as the minimum number of

independent requirements that characterize the design goals.

» Axiom 2: The Information Axiom: Among those designs that satisfy the Independence
Axiom, the design that has the highest probability of success is the best design. The

design with minimum information content has the highest probability of success.

4.2.2 Classes of Design

Many different classifications have been proposed for design including: Preliminary, Con-
ceptual, Functional, Innovative, Creative, Routine, Embodiment, Parametric, Detailed,

Redesign, Non-routine, and Configuration [Brown 96-c].

Brown and Chandrasekaran have proposed the following three classes for design

[Brown 89, page 32]:

» Class 1 Design (Creative Design): In this class of design neither the knowledge sources
nor the problem-solving strategies are known in advance. The average designer in
industry will rarely, if ever, do class 1 design. This type of design often leads to a major

invention or completely new products.

54

» Class 2 Design (Innovative Design): What makes this type of design class 2 and not
class 1 is that the knowledge sources can be identified in advance, but the problem-
solving strategies cannot. This type of design will require different types of problem-

solvers in cooperation and will certainly include some planning.

» Class 3 Design (Routine Design): The choices at each point in the design process may
be simple, but that does not imply that the design process itself is simple, or that the
components so designed must be simple. “We feel that a significant portion of design
activity falls into this class” [Brown 96-c].

The main point, which is often overlooked, is summarized in Table 4-1, [Brown 96-c]:

Table 4-1.Classes of Design.

Class Knowledge Source Problem-Solving Strategies
Creative | Not Known Not Known

Innovative| Known Not Known

Routine Known Known

Design processes can be classified along a different axis that describes what sort of
decisions are being made. “One end of the axis represents conceptual design and the other
end represents parametric design. This axis shows the abstractness of the decisions being
made, and reflects the notion that more constraints are added to the solution as the design
activity progresses. For many design problems, the Conceptual-Parametric axis represents
the flow of time during the design activity, with earlier decisions falling toward the left and

later decisions falling toward the right” [Brown 96-c].

Consider the space that would result from the two orthogonal axes described above

for classes of design, Figure 4-1.

55

i

(=]
c
=

Conceptual-Routine Routine Parametric-Routine

=AIREERRREREREREnI

tnnnnl Conceptualinannnnnnnnnnnnafinnnnnnnnnnnennn Parametriclll“'lll-

Conceptual-Nonrouting Non-Routine Parametric-Nonrouting

Figure 4-1.Classification of Designs.

A description of each four resultant categories can be found in [Brown 96-c]. The
type that we are interested in is the Parametric-Nonroutine class. This is the class of the
robot design problem that we have considered in Chapter 2 for the implementation of the

proposed approach.

“At the Parametric-Nonroutine point the designer is deciding values for parameters
(parametric), and does not have any well-formed approach to making them”. The designer
does not know about how to go about deciding the values of parameters. “This would result
in non-routine behavior, such as analyzing the dependencies between the parameters in

order to determine the appropriate methods or equations” [Brown 96-c].

The robot design problem presented in Chapter 2 is parametric because the designer is
deciding values for parameters. The problem is non-routine because substantially different
design knowledge might be used in different design problems. The following characteris-

tics make the aforementioned design problem non-routine [Brown 89, p. 33]:

56

* The problem is decomposed into subproblems. Design of a new robot does not involve

new discoveries about decomposition: the structure of the robot is well known.

* Robotics is a field that constantly undergoes major technological changes, and routine

methods of design for some of the robot’s components may no longer be applicable.

» The failure analysis is quite complex (see “Factors Contributing to the Complexity of
Backtracking” on page 146). To recover from failure, the designer might engage in a

complex dependency-directed backtracking process.

4.3 Design Methodology

The definition of “methodology” in Webster’s Dictionary is:

A body of methods, rules, and postulates employed by a dis-
cipline: a particular procedure or set of procedures; the
analysis of the principles or procedures of inquiry in a par-

ticular field.

A design methodology is a scheme for organizing reasoning steps and domain
knowledge to construct a solution [Dasgupta 1989]. It provides both a conceptual frame-
work for organizing design knowledge and a strategy for applying that knowledge [Sobo-

lewski 96].

“A designmethodologys a prescription for a process intended to solve a specified
design problem type. A designethods a procedure for implementing a step in a method-

ology” [Dixon 95].

57

Design methodologis different from theDesignitself. Design is primarily con-
cerned with the question ofvhatto design’ to satisfy some specified need. Design meth-
odology, however, is primarily concerned with the question haiw to design’. Good
methodologies allow us to better model, teach and aid/automate the finding of solutions to
‘whatto design’. “Design methodology is thus a vehicle for the evolution of design activity
from an art or skill to a science. Insofar as design activity (as in industrial product design)
is the natural testing ground for design methodology, we propose that theginmeering
design researchr research in engineering desidpe reserved for research in design meth-
odology where the object is not a product but the knowledge of how to design products”

[Kannapan 92].

The solution to the integration problem, whatever it will be, is to be represented in
the form of a group of design methodologies. A design methodology is a scheme for orga-
nizing reasoning steps and domain knowledge to construct a solution. It provides both a
conceptual framework for organizing design knowledge and a strategy for applying that
knowledge [Sobolewski 96] (also refer to Appendix A). Therefore, the original problem of
integration reduces tdevelopment of design methodologies for integration of multi-disci-
plinary design problemsA complete design methodology for integration provides knowl-

edge for:

* how to evaluate partial designs from all participants’ points-of-view,

* what to do next, considering proposals from all participants,

* how to resolve conflicts by negotiating with all participants,

58

* common representation schemes for design knowledge and common communication

mechanisms for interactions,

* how to facilitate design knowledge sharing among participants,

* a cooperative strategy among participants (via control),

* how to conduct the design process in a simultaneous manner,

comprehensive mechanisms for conflict discovery and resolution.

In this project the problem of robot manipulator design is considered as an example of a
multi-disciplinary design process. Hence, the problem to be investigated reduces further to
development of design methodologies for integration of different disciplines in robot

manipulator design.

Design methodology is the answer to the question of “how to design” [Kannapan
92]. A design methodology provides methods for decomposing design problem into sub-
problems, ordering the design tasks, generating partial designs, composing more complete
designs from partial designs, evaluating partial designs, and discovering and resolving con-

flicts.

A design methodology is a problem-solving model at an abstract level. “A problem-
solving model is a scheme for organizing reasoning steps and domain knowledge to con-
struct a solution to a problem. A problem-solving model provides both a conceptual frame-
work for organizing knowledge and a strategy for applying that knowledge” [Sobolewski

96].

59

Design methodology provides the design process knowledge that is the knowledge
about how to carry out the design process to advance the design situation towards a solution

[MacCallum 89].

4.3.1 Better Design Methodology

A better design methodology has at least the following properties:
» takes less time, causes fewer failures;

» produces better designs (better quality, simpler designs);

» works for a wide range of design requirements;

* integrates different disciplines;

» conducts design in a concurrent fashion;

* consumes less resources: time, money, expertise;

* requires less information (see Axiom 2 in page 54).

4.4 Design Methods

A methodis defined in the Webster dictionary as the following:
» a procedure or process for attaining an object;

* asystematic procedure, technique, or mode of inquiry employed by or proper to a par-

ticular discipline or art;
» asystematic plan followed in presenting material for instruction;

* away, technique, or process of or for doing something;

60

» a body of skills or techniques;

» adiscipline that deals with the principles and techniques of scientific inquiry;

» orderly arrangement, development, or classification: plan;

* the habitual practice of orderliness and regularity.

“Design methods are any procedures, techniques, aids or ‘tools’ for designing. They repre-
sent a number of distinct kinds of activities that the designer might use and combine into

an overall design process” [Cross 89, page 33]. All design methods have two principal fea-

tures in common: One is that design methods formalize certain procedures of design, the

other is that design methods externalize design thinking [Cross 89, page 36].

“Design goals have different design methods associated with them, which specify
alternative ways to make decisions about the design parameters of the goal. These methods
capture the knowledge about the possible values of properties of components, as well as
knowledge about the behavior of components. The role of the design methods is then to

generate partial designs” [Mittal 92].

Cross [Cross 89, pp. 34-36] has categorized design methods to the following types:
methods for exploring design situations, methods for searching for ideas, methods for

exploring problem structure, and methods of evaluation.

We propose the following classification of design methods:
 algorithmic versus non-algorithmic
» theory-base versus experience based

* iterative versus explicit

61

» analysis versus synthesis

A design method might be a combination of different types of methods such as a generator
method plus an evaluation method. In addition, a design method might include different
methods of the same type, such as different generator methods based on different technol-

ogies, etc.

4.4.1 Granularity of Design Methods.

Smaller design methods have many benefits over large ones. There are some criteria for a
small design method. The first is that a small design method is the one that makes fewer
decisions. A decision is assigning a value to a design parameter. Additionally, a small
design method uses less external information (e.g., fewer number of design parameters as

input), and produces fewer numbers of design parameters as output.

If there are other methods that use the outputs of a large design method, they should
wait until the whole sequence of calculations for that method is finished. This prevents the
other methods from having immediate access to those outputs. If any of the outputs violate
a design constraint, it will not be revealed until the whole chain of parameters are produced

from that method.

For instance, in kinematic design of a 2-DOF robot, after assigning values to “base
location” and “link lengths” parameters, there is a well defined method that finds the joint
angles and then calculates the accessible area by robot. We break this method into two
smaller methods: The first method finds the joint angles. The second methods uses the

angles generated by the first method to calculate the accessible area.

In this domain there are two advantages of having smaller methods:

62

1. A constraint violation on the joint angles is discovered immediately after the first
method has finished. That s, the calculation of the accessible region has not delayed the
discovery of the constraint violation. At this point a re-design process starts and contin-
ues until a set of values is found for the angles that satisfy the constraints. In contrast to
the large design method the calculation of accessible region is not included in the pro-

cess of re-design hence, time is saved.

2. Other design methods that use the joint angles as their input parameters can start right
after the first method has finished. That is, they do not have to wait until the calculation
for the accessible region is finished too. This enhances concurrency between the design

methods hence, speeding up the design process.

4.4.2 Design Approach

Within each design method we may define multiple design approaches. “There might be
several kinds of artifacts, based on different technologies, that can exhibit the same functi-
nality” [Mittal 92]. So, for an example, one approach to designing a controller system for
a robot might be to use a PD (proportional plus derivative) controller, while another
approach would be to use a SVF (state vector feedback) design for the controller. Both

approaches can be used to design a controller for the robot.

A Design Method is a unit of procedural (operational) knowledge about how to pro-
duce values for some design parameters. A design method contains the knowledge about
what approaches can be used to produce values for design parameters. These approaches

might be ordered based on their priority over the others. A design approach might contain

63

equations, look-up tables, heuristic rules, optimization algorithms, etc. that actually pro-

duce the values.

4.5 Knowledge-based Design Systems

“Knowledge-based systems are a special class of computer programs that purport to per-
form, or to assist humans in performing, specified intellectual tasks. In order to distinguish
a knowledge-based system from other kinds of computer programs for design, it is helpful
to think of knowledge in a computer program as being eigxglicitly or implicitly repre-

sented.” [Dixon 95].

Knowledge-based systems are very difficult to develop and need more investment
than regular computer programs. But once developed, they are more general—that is, they

can solve a wider range of problems [Dixon 95].

In this dissertation a knowledge-based model of design is adopted in order to imple-

ment the proposed strategies for design process integration.

The knowledge-based model of design will be used to build a system that simulates
the design process. The system activates design methods when they become applicable,
uses small design methods, facilitates information sharing, implements control techniques
for promoting collaboration, and gives more priority to design tasks that lead to fewer pos-
sible conflicts. We will explain these strategies in Section “Strategies for a Knowledge-

based Design System” on page 66.

The system conducts the design process autonomously. By recording the steps that
the system has taken during the design process, some partial methodologies are constructed

using an inductive learning technique. These partially developed methodologies are then

64

reinforced by solving more design problems. Later these methodologies will be categorized

based on different sets of design requirements.

Figure 4-2 shows how the proposed approach works for our test domain, the design
of a robot arm. There are three different disciplines (i.e., kinematics, structure, and con-
trols) involved in the design process. Design methods in each discipline are broken up into

small methods such that each one of them has its own inputs, outputs, and constraints.

" Knowledge.““p. M Use||||||||||||||||||||||||||||||l-||||| Methodologies"uu“]n-

i i K Ca{ K —’
Kinematics Design
Design Methodology for Projects of Type 1

Methods
Design Project 2—=| S4 .- '

- —»
Structural Design " — o
Methods -
Design Project . :: Design Methodology for Projects of Type 2

\— _f
E Use of Design Methods Generalizing: Inductive Learning
Control Design
Methods

Figure 4-2.Knowledge-based Approach to Generating Design Methodologies.

A design project in Figure 4-2 is a design problem that differs from other problems
in its requirements and constraints. As a result, design methods that become applicable
during the design process might be different for different projects. However, there will be

some similar patterns in activating design methods in different projects.

The similar patterns in activating design methods are extracted and related to the

group of projects that later on will be categorized. To reinforce and further develop the sim-

65

ilar patterns into general methodologies, the system solves many examples by perturbing
the design requirements within the given range. We can close the loop by feeding the meth-
odologies generated back to the system so that the system will follow them in new but sim-
ilar design problems. In this process some of the candidate methodologies developed will
be strengthened while some will be weakened and dropped from further development. At
the end there will be a finite number of design methodologies for different types of design

problems.

To implement the approach proposed a knowledge-based design tool based on a
multi-agent architecture was developed that simulates the design process. “Design can be
modeled as a cooperative multi-agent problem solving task where different agents possess
different knowledge and evaluation criteria” [Sycara 90]. The multi-agent paradigm intu-
itively captures the concept of deep, modular expertise that is at the heart of knowledge-

based design [Lander 97].

4.6 Strategies for a Knowledge-based Design System

The following sections describe the main problem-solving strategies that are to be followed

in order to produce design methodologies using a knowledge-based approach.

4.6.1 Small Design Knowledge

In order to integrate different disciplines, one main strategy is to cut the big segments of
design knowledge accumulated in different disciplines into pieces. In this work the design
knowledge is represented in the form of design methods. A design method is a body of

orderly procedures for accomplishing various design tasks (e.g., design synthesis, design

66

selection, and design evaluation). Therefore cutting the design knowledge into pieces, in

our approach, corresponds to breaking design methods into smaller methods. Smaller
design methods means smaller number of decisions made in each method, shorter time is
spent in a method, and less amount of information is produced as a result of executing that

method. Smaller design methods are simpler and consume less resources.

There are some important advantages gained from smaller design methods includ-

ing the following:

smaller methods are more reusable, as a result methods can be applied in situations that

were not explicitly anticipated at the development time [Lander 94, p. 4];
* repetition of design methods becomes faster;

» conflicts are discovered sooner because the produced information becomes available

faster;

* resolving conflicts becomes easier because it is easier to track down the sources of con-

flict;

» shuffling the methods around, in order to change the order of their execution becomes

easier;

» smaller design methods allow for going back and forth between different disciplines
such that the border between different disciplines vanishes in favor of integration;

Breaking up big design methods into small methods is a type of more generic activity in

problem-solving called decomposition. “One way to reduce the complexity of a large scale

design project is to apply decomposition” [Kusiak 93]. Figure 4-3 shows how smaller

67

design methods might remove the disciplinary boundaries and hence help in integration of

different disciplines.

Discipline 1 Discipline 2 Discipline 3 Discipline 1 Discipline 2 Discipline 3
t, E E E ;{é t .
o R D Ly ty D
wliiii| [BA "
o 1! b FERE to I E———
of w|iiii| e P o el
gl v Lo P E|l v Sy
SIS ZeSENiEnE Elv S
1 + ts \
N EREYE t —
t [/ ts B —
t2 :/1 : t2 @
R P ad
ty *——] &
dy dp d3dy ds dg d7 dg dg dyo dy; 0, dy dy d3dy ds dg d7 dg dg dyo 0y i,
Decisions Decisions
(a) Design Knowledge in Large Segments (b) Cutting Knowledge into Pieces

o Decision Points —— Design Methods

Figure 4-3.Integration by Breaking up the Knowledge into Smaller Segments.

Decomposition of the design knowledge is a knowledge intensive process—that is,
it needs an extensive amount of domain knowledge. Breaking the design knowledge into
smaller pieces might also require extensive knowledge engineering in order to get the
smaller pieces of design knowledge in the right format. We have provided a few guidelines
for how to break the design knowledge into smaller pieces in the last chapter. The guide-

lines are based on the factors that cause the design process to speed up.

4.6.2 Opportunistic Problem Solving

An opportunistic problem solving strategy is chosen to facilitate integration and contribu-

tion of different disciplines in the design process. “The key idea is that decisions are made

68

as required and if possible. It moves the attention opportunistically between subproblems

and avoids over-specifying local decisions” [Huang 93, page 102].

The opportunistic strategy for allowing different disciplines to contribute to the
design is in contrast to executing a sequence of design tasks that is foxexdi. “The spe-
cialization of design expertise suggests a future where teams form ad hoc collaborations
dynamically and flexibly, according to the magiportunisticconnections” [Wellman 95].

The opportunistic approach is necessary to achieve integration because of the complexity
of the interactions among the disciplines. Also, an opportunistic approach is necessary if
we are to take advantage of the diversity of different disciplines, because every participant
should get a fair chance to contribute to the goals of the design process so that all points-

of-view are explored and tried out.

Figure 4-4 shows the concept of an opportunistic strategy in design. In the begin-
ning there are some design requirements that provide the required inputs so that some of
the design methods can be executed and provide more information. Some other design
methods get the opportunity to run after the first round of methods provide input for them.
This process continues until the specification required for realizing the product is complete.
Of course the process will not be as straightforward as was explained because, with the
same available information, there may be many applicable design methods that could run
or there may be none. Some of the information produced by the design methods may violate
some of the constraints. Producing the same information by more than one design method
causes conflict. There may be situations in which the design methods get stuck in a loop by
providing no new information. These are the issues that will be addressed in the next two

sections.

69

-

- - ~ ~
o——— Design Method —> .7 \
a ’ '
—50-_ // I
N |
B Design Method | !
-S> b —> LTI 4 \\
\

—>»0e > \

Pad \
—>e ™~ Design Method @ —» \\ !
e c —» - ’

—>0 —> N -

!

!

e/

~ -7

Pl
Design Specifications

Design Requirements

!

Figure 4-4.The Opportunistic Strategy in Activating Design Methods.

4.6.3 Cooperative Problem-Solving

Cooperative problem solving is in contrast to competitive situations. “In competitive con-
flict situations each party has solely their own benefit in mind and has no interest in achiev-
ing a globally optimal situation if such a solution provides them no added personal benefit.
In cooperative situations, the parties are united by the superordinate goal of achieving a glo-
bally optimal solution, which often requires sacrificing personal benefit in the interest of

increased global benefit” [Klein 91].

A cooperative strategy provides mechanisms by which different participants adopt
the same goals. Implementation of the cooperative strategy in a multi-disciplinary design
process results in favoring the common goals of the design over local goals. As a result of
such a strategy different disciplines spend their diverse resources in the same direction. The
cooperative strategy can be extended further such that different disciplines become consid-
erate of the other disciplines’ constraints when they propose their solutions. In this work
the cooperative problem-solving strategy is implemented in the control mechanism of the

design process as it is described in Section 6.

70

4.6.4 Least Commitment

Least commitment means deferring the decisions that constrain future choices for as long
as possible [Jackson 90, p. 252]. That is, decisions should not be made arbitrarily or pre-
maturely but postponed until there is enough information available [Huang 93, page 101].

The least commitment strategy, as opposed to early commitment strategy, is suitable for

multi-disciplinary situations in which there is strong coupling between subproblems.

A least commitment strategy reduces the number of conflicts, because it avoids
committing to decisions that are made based on incomplete information. In the absence of
a least commitment strategy, decisions may be made as soon as they can be, even if incom-
plete, arbitrary, or less trusted information is used. As a consequence, there is more chance
for conflicts to occur in the future, because such information may turn out to be invalid

[Huang 93, page 102].

The least commitment strategy is implemented in the design process by giving pri-
ority to the design methods that use the least information (i.e., use fewer inputs) to produce
the most new information (i.e., not producing information that already exists). The chance
of using incomplete, arbitrary, or less reliable information is lower for the design methods

that use the least information.

On the other hand, producing the most new information increases the chance for the
next round of design methods to run based on least commitment strategy. As a result, the
dependency of each design method and thus, the dependency of the produced information
on the current available information is minimized. There are some benefits in adopting such

a strategy, including the following:

71

* When the existing information is updated, some of the design methods that rely on that
information as input have to be executed again. The methods that use the least informa-
tion have more chance to be unaffected by these updates. This results in a faster design

cycle.

» Because of postponing decisions, the least commitment strategy slows down the deci-
sion making process. However, giving priority to the design methods that produce the
most new information speeds up the design process, because it increases the chance for

the other design methods to run by providing them with their inputs.

» The design methods that produce the least amount of repetitive information reduce the
number of updates. Making fewer updates reduce the design cycle. Sometimes the
same piece of information (e.g., value of a design parameter) is produced by more than
one different design method in the same or different design cycles. If the repetitive
information produced in this way is not consistent, a conflict occurs. Consequently pro-
ducing the least amount of repetitive information may reduce the number of conflicts

too.

4.6.5 Inductive Learning

“Learning is the improvement of performance in some environment through the acquisition
of knowledge resulting from experience in that environment” [Langley 96, p.5]. Learning

is thus vital to construction of superior design methodologies. To develop categories of
design methodologies that are specialized in collaboration and sharing of resources, an
inductive learning strategy is adopted. Inductive learning is learning by examples and the

form of inductive learning that is employed in this work is caltbekcriptive generaliza-

72

tion. “In descriptive generalization, one is given a set of instances which belong to a par-
ticular class, and the task is to derive the most parsimonious description which applies to
each member of that class” [Jackson 90, p. 433]. The idea is to record the traces of the
design process during producing design solutions. Descriptive generalization can begin by
collecting enough examples of design traces and produce classes of design methodologies.
In the course of improving the produced design methodologies, solving more examples can

reinforce the learned methodologies.

4.6.6 Means-Ends-Analysis

Means-ends-analysis is one of the general mechanisms used to direct a search process
[Kannapan 92]. In means-ends-analysis each operation should reduce the difference
between the current state and the goal state [Jackson 90, p. 68]. In the context of design,
means-ends-analysis drives the design process in a direction that is the shortest distance

toward the goal.

Means-ends-analysis can be implemented by choosing design methods that, com-
pared to other methods, push the current state closer to the final state. The final state of the
design is the state that has complete description of the design product while all the con-

straints are satisfied.

4.6.7 Concurrency

“It is well known that concurrent decision making is an important and very desirable com-
ponent of modern design methodology” [Badhrinath 96]. A concurrent strategy, in contrast
to a sequential strategy, carries out some of the problem-solving activities in parallel to
each other. Concurrent design is the main theme of the well-established concurrent engi-

73

neering field. Concurrency in design gives freedom to all participants to contribute to the
current state of the design in parallel. In a concurrent design process, design knowledge is
accumulated from all design participants during the design process [Brown 93]. As aresult,
the design process speeds up, because the participants in the design do not have to wait in

a line if they can make a contribution.

The most common strategy to overcome the complexities of multi-disciplinary
design is sequential design, in which different disciplines take part in the design process
sequentially. In sequential design, information sharing between different disciplines is lim-
ited to the interfaces between disciplines [Levitt 91]. As a result, conflicts between disci-
plines are not discovered until they are very expensive to resolve, because their resolution

may need to destroy the partial designs generated by the previous discipline.

“In sequential design, a tentative design synthesis is developed by one designer,
often acknowledged as the lead discipline designer, which address some of the key perfor-
mance specifications and constraints for the artifact” [Levitt 91]. Having a lead discipline
that makes and explores some of the key decisions reduces the number of conflicts. The
other disciplines conform to the decisions made by the lead discipline. However, that may
prevent them from producing their best solutions. In a lead-discipline approach a single
point-of-view dominates the decision making process and therefore constraints from that
discipline are favored. This produces a lower quality design product and increases the

number of iterations required to reach an answer.

74

4.7 Design Dependencies

Dependencies provide the knowledge for the ordering of the design tasks: one part of a
design methodology. They also provide a source of decomposition knowledge. However,
in our approach we don’'t need decomposition knowledge as we are cutting the design

knowledge into small pieces and we activate them as they become relevant.

In addition to design dependencies that are extractable from design methods, there
are other types of dependencies based on analytical or statistical studies. For example, there
is a dependency between the end point deflection and first natural frequency of a robot arm
[Christain 89]. This type of dependency is mostly based on first principles and can provide

valuable information for developing a design methodology.

“Lack of knowledge of dependencies, due to lack of a global model, is an underly-
ing cause of conflict” [Brown 96]. Therefore, dependencies help to develop design meth-

odologies that produce fewer conflicts.

The dependency knowledge that we are extracting is based on the current available
design knowledge in the form of design methods, rather than on first principles. The types

of dependencies that two design methods might have are as follows:

» Completely Independentwo design methods are completely independent if they nei-

ther share input nor output, Figure 4-5 (a).

» Loosely Independenfwo design methods are loosely independent if they only share

one or more of their inputs, Figure 4-5 (b).

» Reading Dependencywo design methods have reading dependency if at least one of
them uses the other one’s output as an input, Figure 4-5 (c).

75

» Conflict Two design methods have ‘conflict’ type of dependency if both produce the

same output, Figure 4-5 (d).

pl=—" [k

/

[J
Dl)
[]
° / ° o 77 °
° ° ° °
(a) Completely Independent (b) Loosely Independent (c) Reading Dependency (d) Conflict
Design Method — Assign Value <— Use Value e Design Parameter

Figure 4-5.The Type of Relationship between Design Methods

4.7.1 Sequencing Design Tasks

Eppinger proposes the following categorization of sequencing between design tasks

[Eppinger 90]:

» Dependent Tasks: If task B simply requires the output of task A (or vice-versa), then

the two tasks are dependent and are typically done in series.

* Independent Tasks: Tasks A and B are entirely independent if they can be performed

simultaneously with no interaction between the designers.

* Interdependent (Coupled) Tasks: If task A needs information from task B, and also task

B requires knowledge of task As results, then the two tasks are interdependent.

76

B

(@) (b) (©)

Figure 4-6.Sequencing of Design Tasks. After [Eppinger 90].

4.7.2 Dependencies and Decomposition

The knowledge-based system will be able to discover the dependencies between different
design methods on the fly. It also will be able to rearrange the design methods so that the
maximum concurrency happens between them. In this section the mechanisms used to
dynamically discover the dependencies are described that are based on the work by Kusiak
et al[93]. The results of implementing such mechanisms in discovering dependencies are

presented in “Dependency Graph” on page 212.

Kusiak has proposed three types of decompositions and for each decomposition

type a type of incidence matrix is introduced [Kusiak 93]:
» decomposition of module (component) - activity matrix
» decomposition of procedure (formula) - parameter (variable) matrix

» decomposition of activity (variable) - activity (variable) matrix

The organized matrices can be categorized as follows:

* uncoupled matrix: an incidence matrix is uncoupled if its rows and columns can be

ordered in such a way that the matrix separates into mutually exclusive submatrices,

77

» an incidence matrix is decoupled if it can be rearranged in a triangular form,

» an incidence matrix is coupled if it is not decomposable.

* % | * 1 * % Ix
* % | * | * % |* %
-—+-- -—+-- -—+--
* % * |* * % |**
I* * L * %
| | |
(a) uncoupled matrix (b) decoupled matrix (c) coupled matrix

Figure 4-7.Categories of Organized matrices. After [Kusiak 93].

Since the design activities associated with the upper left corner submatrix in
Figure 4-7 (a) are independent of the activities corresponding to the lower right corner sub-
matrix, they can be performed simultaneously. The activities in the decoupled matrix,
Figure 4-7 (b), are dependent so that they can be performed partially in parallel and in part
sequentially. The degree to which some tasks can be performed in parallel depends on spar-
sity of the matrix. In a coupled matrix, the activities are strongly interdependent which may
occur in concurrent engineering. They may reflect an iterative nature of design or a nego-

tiating process.

4.7.2.1 Decomposition of Module-Activity Matrix
A product or system can be decomposed into subsystems and these in turn into modules or
components. Design of each module involves a set of design activities. Similar or identical

activities may be performed in the design of different modules.

78

Vehicle

Engine ;f:smis_ Axles Carriage| |Brake | |Steering |Wheels
[1
Chassis Body Interior
Suspensiop| Shock .
Frame Absorberd |Underbody Skin Seats | | Controls
I 7 2 v 3 4 5 . 5 =
1 1 1 1 1 : :
Activities Activities | | Activities Activities || Activities Activities Activities
1,2,4,6 57,9 2 3,58 1/3,7,8,9 1,2,4 1,9

Figure 4-8.Decomposition of Module-Activity Matrix for a Vehicle. After [Kusiak 93].

The interactions between modules and activities can be represented as the module-

activity incidence matrix:

Activities
1 2 3 45 6 7 8 9
1 * * * *
2 * * *
3 *
Modules 4 * * *
5 * * * *
6 * *
7| * *

Figure 4-9.Module-activity Incidence Matrix. After [Kusiak 93].

Using the clustering algorithm presented in [Kusiak and Cheng 90] the above inci-
dence matrix can be rearrange as follows:

79

Activities
1 2 4 6 3 8 5 7 9

1 * * * *
3 *
6| * = *
Modules 7 | « *
4 * * *
2 * *
5 * * *

Figure 4-10.Rearranged Module-activity Incidence Matrix. After [Kusiak 93].

Clustering of activities involved in the design process allows one to determine a

potential group of activities that might be scheduled in parallel.

4.7.3 Building the Dependency Graph

We would like to build the dependency graph dynamically as the design process proceeds.
It is dynamic in the sense that, if based on the current state of the design some design meth-
ods become applicable, the system picks those methods. The dependency graph would not
include the design methods that did not participate in the process. Additionally, in general,
the place of each design method may not be fixed in the dependency graph—i.e., the order
in which design methods become applicable may change based on the state of the design

(that itself depends on what design requirements were provided).

If we could ignore the dynamic aspect of the problem, the dependency graph could
be built at the beginning of the design process and all the design methods could be indexed
up front so that their order and depth in the dependency graph is fixed. For that implemen-
tation, there would be no need to check what design method is applicable in each cycle of

design and the process of backtracking becomes considerably simpler.

80

To compromise, we adopt an approach in which the dependency graph is built
incrementally as new design methods become applicable. We assume, however, that when
the dependency graph is built it won’t be changed, therefore we can index the designers

with their suppliers and consumers as well as their depth in the dependency graph.

The best time to update the dependency graph during each cycle of design is after
all applicable designers are determined. This happens in design as opposed to re-design
actions. As a result, the dependency graph will have all applicable design methods to this
point, should backtracking become necessary. The dependency graph is complete at the end

of a successful design process.

4.8 Conflict Resolution

Two types of conflicts can be identified in desigdomain Level versus Control Levadn-
flicts. “Domain level conflicts concern conflicting recommendations about the actual form
of the design, while the control level conflicts concern conflicting recommendations about

the direction the design process should take in trying to create a design” [Klein 91].

According to Klein [91] the relevant literature on conflict resolution can be grouped

into three categories:

» Development-Time Conflict Resolutidgystems of this type require that potential con-
flicts be “compiled” out of them by virtue of exhaustive investigation when they are

developed.

81

* Knowledge-Poor Run-Time Conflict Resolutidm:ithis approach conflicts are allowed
to be asserted by the design agents as the system runs, and then resolved by some kind

of conflict resolution component, e.g., backtracking.

» General Conflict ResolutioWork in this class come closest to providing conflict reso-
lution expertise with first-class status. Such systems provide categories of conflicts and
have associate solutions or conflict resolution methods.

The conflict resolution approach that we have taken in this thesis is a combination of the

first two methods in the above list. We prevent conflicts by collecting all the knowledge

that is relevant to a design parameter in one agent. Following the strategy of “Small Design

Knowledge” on page 66 we break the big segments of knowledge into small pieces so that

all the pieces that decide about one particular parameter can be collected together. As a

result, there will be more than one way to decide about the value of a particular design

parameter.

In this chapter we described the knowledge-based model of design and its ingredi-
ents. In the next chapter we will describe the multi-agent system paradigm. The framework
that will be presented for the multi-agent design system is a generic architecture that is
applicable to all parametric design problems. However, to avoid too many abstract discus-

sions we present the framework in the context of robot design.

82

5 Multi-Agent Systems
(MAS)

5.1 Introduction

Software agents and multi-agent systems are relatively new technologies and as a result are
not well defined. “In fact one of the most hotly debated issues in the agent research com-
munity is the definition ohgency [Lander 97]. This chapter reviews some of the literature
related to agents and multi-agent systems, and specifically multi-agent systems for design.
At the end of the chapter we propose a framework for a multi-agent design system. The fol-
lowing paragraphs summarize some of the definitions given for agents and multi-agent sys-

tems in the literature.

An agentis a self-contained problem solving system capable of autonomous, reac-
tive, pro-active, social behavior. Itis a powerful abstraction tool for managing the complex-
ity of software systems [Wooldridge 95] [Franklin 96] [Wooldridge 97].nulti-agent
systenis “a system composed of multiple interacting agents, where each agent is a coarse-

grained computational system in its own right” [Wooldridge 98].

Agents are distinct, distributed, often autonomous computational processes that are
made aware of their environment, continually monitoring the state of their world, choosing
an appropriate action and reacting to changed conditions of this world. These processes can

be seen in many important computer applications such as planning, cooperating robotics,

83

process control, manufacturing, distributed sensing, aviocmaborative designand

health care and diagnostics [Torsun 95, page 401].

In this dissertation we adopt the notion of an agent as an abstraction tool for con-
ceptualizing, designing, and implementing the knowledge-based design approach that was

proposed in the Chapter 4.

5.2 Characteristics of Multi-agent Systems

Multi-agent systems (MAS) have some characteristics that make them an attractive solu-
tion to many complex problems including multi-disciplinary design. Torsun [Torsun 95,

page 402] summarizes these characteristics as follows:

* MAS are distributed systems and distribution is a useful approach to controlling com-
plexity. Large and complex systems (e.g., design systems) can be decomposed into
multiple cooperating agents such that control can be decentralised and rendered easier

to deal with.

* Interactions and cooperation are a natural approach for many large evolutionary sys-
tems. These systems are subject to continuous change and extension. MAS facilitate

the design and implementation of such systems.

* MAS increase reliability and robustness. MAS normally have some degree of redun-
dency in that more than one agent can solve the same task or the same knowledge is
known by several agents. As a result, the system becomes more robust against the

breakdown of some agents.

84

* “MAS provide insight and understanding about information processing phenomena
occuring in the real world. Research into computational methods that take the social
interaction between the agents themselves and with their environment may shed light
on how activities and actions are achieved in the face of enormous comp|é&xitgun
95, page 402]. This advantage is the central point of using MAS for implementing the
knowledge-based system that is to shed light on the complexity of the design processes

by simulating the real world process.

* Due to the parallelism, the MAS approach is potentially more efficient. Several agents
might be working simultanaously and asynchronously on their tasks. This allows one to
investigate the effect of concurrency on the complexity of the process. Also, imple-

menting the tasks that are inherently concurrent becomes much easier in MAS.

5.3 Developing MAS

In this section we review some of the techniques and methods for developing intelligent

agents and multi-agent systems that we used for this dissertation.

5.3.1 Message Sequence Chart (MSC)

“Message Sequence Charts (MSCs) are a widespread means for the visualization of
selected system runs (traces) within communication systems. A main advantage of an MSC
is its clear graphical layout which immediately gives an intuitive understanding of the

described system behavior” [Rudolph 96]. MSC language constructs are as follows

[Rudolph 96]:

85

instance In the graphical representation, instances are shown by vertical lines or, alter-
natively, by columns. Along each vertical instance axis a total ordering of the described
communication events is assumed. In Figure %bordinator , Designer ,

DesignDatabase , andDesignState are instances.

messagelhe message flow is represented by arrows which may be horizontal or with a
downward slope with respect to the direction of the arrow to indicate the flow of time.
In addition, the horizontal arrow lines may be bent to admit message overtaking or
crossing. In Figure 5-1ask(design) andsorry(cause) are examples of mes-

sage element.

environmentThe system environment is graphically represented by the frame symbol
which forms the boundary of an MSC diagram. In Figure 5-1 the environment sends the

message adisk(start) to theCoordinator instance.

action Actions describe an internal activity of an instance. An action is graphically rep-
resented by a rectangle containing arbitrary text. In Figure 5-1 instBesegner

performs the action d@onstraintChecking

timer set The setting of a timer is represented by an hour-glass connected with the

instance axis by a (bent) line symbol.

timer reset The reset symbol is represented by a cross (X), connected with the instance

axis by a (bent) line symbol.

time-out Time-out is described by an arrow which is connected to the hour-glass sym-

bol.

86

* instance creationThe create symbol is a dashed arrow which may be associated with
textual parameters. A create arrow originates from a parent instance and points at the
instance head of the child instance. In Figure 5-1Gberdinator instance creates a

Designer instance.

* instance stopAn instance can terminate by executing a process stop event. Execution
of a process stop is allowed only as last event in the description of an instance. The ter-
mination of an instance is graphically represented by a stop symbol in form of a cross at
the end of the instance axis. In Figure 5-1 the instddesigner has stopped after

sending the messagesirry(cause)

» condition Conditions can be used to emphasize important states within an MSC or for
the composition and decomposition of MSCs. Conditions are represented by hexagons
covering the instances involved. In Figure 5-1 the conditi@it shows the state of

instancesCoordinator andDesignState

87

Coordinator Design Design
ask(start)) Database State
L > Designer | | | |
-]
ask(design
(design) ask(state)
ask(state)
T
retrieve
T state
tell(state)
tell(state)
constraint
checking < wait >
sorry(cause)
I I I

Figure 5-1.Basic Elements of MSC language

5.3.2 Model Development Cycle
The following is a model development cycle for multi-agent systems suggested by Iglesias
et al[96]:

» Describe the prototypical scenarios between agents. These scenarios can be a further
development of the scenarios determined in the conceptualisation phase for the use
cases. The scenarios are described using message sequence charts (MSCs) [Rudolph

96]. An alternative representation is event trace diagrams. During this first stage, we

88

will consider that every conversation consists of only one single interaction and the
possible answer. The objective at this stage of development is to establish the set of

conversations (channels) between agents.

Represent the events (interchanged messages) between agents in event flow diagrams
(also called service charts). These diagrams collect the relationships between the agents

via services.

Model the time of each interaction. An expertise model (EM) can help us to define the
interchanged knowledge structures. EM models the problem solving knowledge used

by an agent to perform a task.
Model each interaction specifying speech-acts as inputs/outputs of message events.

Each state can be further refined. If the state represent a knowledge task, the inference
templates of the CommonKADS library [Breuker 94] are very useful. While decom-
posing a state, it can be decomposed in different agents, and the complete process

should be repeated.

Analyse each interaction and determine its synchronisation: synchronous, asynchro-

nous or future.

Determine the receivers of each service request: individual or group and if a coordina-
tion protocol like contract-net is desired [Smith 80]. This can be represented in SDL

using the names of the agents or group names in the explicit addressing facility.

Determine if a cooperation protocol is needed for each conversation. The reasons for
using a cooperation protocol can be among others [Durfee 89]:

o Increasing task completion through parallelism.

89

o Increasing the set or scope of achievable tasks by sharing resources
(information expertise, physical devices, etc.).

o Increasing the likelihood of completing tasks by undertaking duplicate tasks.

o Decreasing the interference between tasks by avoiding harmful interactions.

o Resolving conflicts via negotiation protocols. Usually these conflicts need to
be assisted by a human agent. The coordination model (CoM) is used for
modelling the negotiation language category (protocol, primitives, semanticas
and object structure) and, partly, the negotiation process category (procedure
and behaviour) according to the classification of negotiation categories by

[MUller 96].

5.4 Multi-agent Design Systems (MADS)

“Design applications that incorporate software agents are multi-agent design systems
(MADS)” [Lander 97]. MADS technology offers an appealing framework for situations
where multiple disciplines are participating in the design process by combining diverse
sources and types of information and reasoning [Lander 97]. “The constant evolution of
standards, technologies, and a dynamic marketplace demands a high degree of adaptability
in both design expertise and in the process of applying that expertise. The need for diverse,
highly sophisticated, and rapidly changing skills and knowledge makes the multiagent par-

adigm patrticularly appropriate for knowledge-based design” [Lander 97].

There are many issues that should be considered when developing a MADS system.

In the following we review some of the issues raised by Lander [97], and describe the way

90

that we will be handling those issues. This will be the foundation for proposing a frame-

work for our multi-agent design system.

5.4.1 Interoperability

The first issue to consider when developing a MADS is interoperability. Interoperability
means that the agents should be able to talk to each other. The factors that affect interoper-

ability are:

» Agent Heterogeneity.One source of heterogeneity is the multi-disciplinary nature of
the design problem. The designer agents are heterogeneous in that they each have a dif-
ferent point-of-view of the design problem. The other source of heterogeneity is the dif-
ference in the various tasks that should be done in the system including design,

coordination, conflict resolution, methodology discovery, and so on.

» Implementation. The difference in implementation of different agents might reduce
the interoperability of the system. As we have built the whole design system from
scratch, there is no heterogeneity due to differences in implementation, language, or

operating systems.

» Representation.Finding one representation language and model for all the designer
agents, may not be trivial. Agents will be designed in order to understand and process
the other agents messages. Also, some agents rely on other agent’s services. For exam-
ple, the agent that does coordination relies on the agent that provides the dependency

knowledge.

91

* Interaction. Having a common protocol for interacting enhances the interoperability
between the agents. In our system one communication protocol and language is used
for all the agents, therefore in interacting with each other the agents do not need to
translate the messages. However, there is a need for translating the physical concepts
for designer agents in different disciplines. The approach is to find a common denomi-
nator for all disciplines and then translate all other quantities using the common ones.
For example in the robot arm design (see Chapter 2), the controller designer uses the
concept of moment of inertia. This is not used by the kinematic or structural designers,

but it is related to length and mass which is understandable by both designers.

5.4.2 Information Flow

Information flow among agents is particularly important in design systems. Agents should
be able to access the right information at the right time to prevent conflicts in the early
stages. Some factors that affect the information flow among agents are described in the fol-

lowing:

» Task DependenciesTask dependencies are mostly due to the fact that some agents are
users of the services that the other agents provide. The agents ought to work closely
together because of the task dependencies so that integration of different disciplines can
be accomplished. As we discussed before, information sharing is one of the key factors
for achieving integration, therefore the agents are designed to share information easily

by sending and receiving messages.

92

» Automation. Automation refers to how much human intervention is expected in facili-
tating the information flow among agents. In our system information flows automati-

cally from one agent to another with no human intervention.

» Sharing Information. Each agent in a MADS has public information that it should
share with other agents, Sharing information is critical for realizing integration among
different disciplines in the design. In our system there will be a shared repository for
shared data and designs. Some database agents are responsible for gathering, storing,

and providing different types of shared knowledge.

* Routing Information. Routing is the issue of what information should be sent to
which agent and, perhaps, when. In our system the knowledge for routing information
is partly based on the architecture and is partly embedded in the agents themselves.
There are some agents whose job is mainly or exclusively routing the information, such
as database agents. Agents have the knowledge on where to send the information that

they produce.

5.4.3 Adaptability

Adaptability is another issue in MADS. A MADS is adaptable if new knowledge can be
added and old knowledge removed without affecting the integrity of the whole system. The
multi-agent system that we have developed is adaptable as we can add and delete designer
agents. New technologies can be incorporated into the designer agents in the form of new
design approaches. The internal structure of each agent can change as long as the services

that are needed by other agents are provided.

93

5.4.4 Concurrency

Whenever possible, agent activities should be concurrent. Concurrency is one of the major
enhancements to the design process. “However, concurrent activity introduces a number of
issues in how to maintain enough consistency in data and scheduling across the agent set
to enable effective performance. For example, questions to ask include how important is it

for all agents to have up-to-date information?” [Lander 97].

The following sections describe the factors that affect concurrency in MADS.

5.4.4.1 Consistency

Consistency of shared data among different components is a very well known issue in sys-
tems with concurrent processes. Synchronizing the tasks that might run at the same time is
a solution to make sure the data is consistent among the components. To solve the problem
of consistency in the system we run the design process in cyclesnsistency The
approach is to run the design process in cyclesuofanalysis-updatas is shown in

Figure 5-2. In the ‘run’ part of the cycle the ‘designing’ takes place, in the ‘analysis’ part

it checks the constraints, and in the ‘update’ part it combines the results with partial

designs.

94

A Partial
Design

Re-Design

U pd ate: combine

Partial
Designs

Run: Design

ANew

The Design o State

Re-Design
Results

Ana|yze * Check Constraints

Figure 5-2.The Design Cycle.

The design cycles have to be small compare to the whole design process in order to
cope with the opportunistic strategy (see “Opportunistic Problem Solving” on page 68).
One of the factors that helps to obtain small cycles is to have small design methods (see

“Small Design Knowledge” on page 66).

The ‘run’ part of each cycle may include designing with multiple agents at the same
time. Also, in each designer agent several design tasks might take place simultaneously.
Similarly, the ‘analysis’ and ‘update’ parts of each cycle may be done concurrently as long

as synchronization of different updates is taken into account.

Implementing cycles of consistency converts the continuous design process to a
discrete process; smaller cycles makes the process closer to an actual design process. All

agents will have a consistent view of the design state after each update is complete.

95

Figure 5-2 shows that when the results of constraint checking are not successful, a
‘re-design’ happens in which the system backtracks to the previous decisions and changes
them. The system fails to find a successful design if all the possibilities are tried but still

some of the constraints are still not satisfied.

5.4.4.2 Information Update

Each agent sends an appropriate message upon producing any piece of new information
that the others might want to know. This message can be in the form of a notification to
another agent that will decide how to use the new information (e.qg., the results of designer
agents) or it can be in the form of asking for an insertion in the shared data repository (usu-

ally done by coordinator type of agents).

5.4.4.3 Event Notifications

Most of the notification events are propagated by specific agents that have the knowledge
of how to handle important notification events, i.e., which agents should be notified of what
event. These agents are the coordinator type of agents. However, it is the responsibility of
all the other agents to notify these agents of the important events. Most event notifications
are concerned with updating values for design parameters. Two groups of agents are inter-
ested in these updates: first, those that can run because they now have enough information
to run; Second, those whose previous designs depended on updated parameters, and who

therefore should re-design.

5.4.4.4 Update Intervals
Different design activities were grouped in Figure 5-2 into three categories: run, analysis,

and update. None of these activities get interrupted because of any possible new changes

96

in the environment. As long as the cycles of run-analysis-update are small there is no prob-

lem in postponing propagation of changes to the end of each cycle.

5.4.4.5 Merging Multiple Partial Designs

A partial design is a subset of the design parameters with values proposed for them by
designers. If there is no overlap between the proposed and previously constructed partial
designs the new partial design will be the union of the two sets. In the case of overlap

between different partial designs (i.e., if both have assigned values to the same design

parameter) the following algorithm is employed:

o If the assigned values are exactly the same (for discrete parameters) one of
them is accepted and the partial designs are merged.

o If the difference between assigned values is within an accepted range then
based on the type of the design parameter an average, the minimum, or the
maximum value is used in the merge.

o If the difference is big, then a conflict resolution agent is notified to resolve the

conflict and return one value back so that the partial designs can be merged.

5.4.5 Strategic Control

Strategic control yet is another issue in MADS that deals watvthe knowledge should

be used. The global strategy for the control of the design process in our system is based on
synthesis of new designs, analysis, exploration of the design space, and evaluation of alter-
native designs. The global strategy for the control of the design process will not include

retrieving existing designs, constraint propagation, or analogical reasoning.

97

Information about the control strategies for the internal behavior of the agents are
solely stored in their local databases. Global control strategies are in part realized in the
architecture of the system and the rest is implemented in the form of special agents whose
service is to apply the strategies. The internal states of agents are stored in their own data-

bases, while the global design state is stored in a special agentzzglgdState

A major part of the responsibility for strategic control lies in the coordinator agents.
The strategic control will embed the strategies (already listed in “Strategies for a Knowl-
edge-based Design System” on page 66) in the system to effectively realize the global strat-

egy. They are:

» Small design methods: This is realized by building small designer agents in terms of the

execution time and the number of decisions that they make.

» Opportunistic strategy: All the designer agents that are able to contribute to the current

state of design are notified and allowed to do so.

» Cooperation: The designer agents are asked to contribute to design in the direction of
common goals of the design. The flow of information is facilitated and accomplished
through message passing between agents, and in fact there are special agents whose
service is solely providing information. Conflicts are resolved in the favor of the com-

mon goals of the design.

* Least commitment: The priority is given to those designer agents that use the least

information to produce the most information.

98

* Inductive Learning: The inductive learning technique that we will use requires that all
the data to be present at the outset. As a result, the learning part (i.e., learning design

methodologies) will be done off-line.

* Means-Ends-Analysis: The coordinator agents prepare agendas based on what action
should take place in order to close the gap between the current design state and the final

state.

» Concurrency: Multiple designer agents get the chance to run concurrently.

5.4.5.1 Interactions

Some part of the interactions are planned and some are reactive. Implementation of the
opportunistic strategy causes reactive interactions. Implementation of cyclesanaly-
sis-updateembeds some planned interactions. The system runs without the intervention of
a user, hence there will be no user-controlled interactions. Interactions are peer-to-peer as

opposed to client/server.

5.5 A Proposed Framework for MADS

Figure 5-3 shows the proposed framework for the MADS based on the discussion in the

previous section.

99

Tracer Design Design Design
Requirement State Product

Methodolog&lscoverer \ & / / i
Design
SRR SELEEEEE

.-pRTA

;. e - * ICommunication
O ' ' . Facilitator
ot "
LL

.

ONT SLl
e
Coordinator S
‘ /
Exception - S .
Evaluator Agenda Dependency, Designers .
/ // Provider// Provider Coordinator, Designerc_1

Figure 5-3.The Architecture of the Multi-agent Design System

There are three different layers in the systéata, Control, andFlow. The data
layer contains the design requirements and design constraints defined by the user at the
beginning of each design project. The data layer also contains the state of the design process
at any moment and the description of the product as it evolves during the process. Database
agents update data and answer the queries of the other agents. A coordinator agent manages
the consistency of the data between different database agents and synchronizes the updates
and queries. Figure 5-3 shows how different agents are responsible for gathering, storing,
and providing different types of shared knowledge. These agentBesignState
DesignRequirements , DesignProduct , Tracer , DesignConstraints , and
finally DatabaseCoordinator , responsible for gathering data and distributing it

among the aforementioned agents to store it.

100

The control layer contains the design knowledge as well as the knowledge for how
to use the design knowledge. In Figure 5-3 eBelsigner_m_n agent is responsible for
carrying a specific design methaodn disciplinem (k for kinematicss for structural, and

c for control design of a robot arm).

The rest of the agents in the control layer are responsible for coordination and car-
rying out generic design tasks such as evaluation of the partial designs. They discover and
provide the dependency between designers, and provide an agenda for various design tasks

such as backtracking.

The flow layer of the system contains a mechanism for communication among
agents based on sending and receiving messages. This mechanism consists of a registry and
a message passing protocol. Each message has its own thread for processing, that not only
provides concurrency between agents, but also it allows each agent to handle multiple mes-

sages simultaneously.

5.5.1 Agent Dependencies

In this section we describe the dependencies between the different agents in the system as
is shown in Figure 5-3. In the following we refer to task dependencies between agents that

means how one agent needs service from other agents to be able to do its job.

» The most dependent agent@eordinator that uses most of services and the least

dependent agents are database agents that only provide service to others.

» The AgendaProvider depends oependencyProvider , that is the planning
task depends on the dependency providing task in order to plan the sequence of design

actions that should be taken Ggordinator

101

» The DependencyProvider depends on th®esigners to get the domain data
dependency information based on what designers supply the input to each designer.
This information will be then combined bRependencyProvider to build the

complete design dependency graph (see Figure 10-1 on page 214).

 TheCoordinator agent depends oigendaProvider to execute the backtrack-

ing when a constraint is violated.

» All of the designer agents depend on most of the database agents siid#s#g-
State to check if they can run at the current state, &ebsignRequirements to

get the requirements.

* TheEvaluator agent needs the information provided BgsignConstraints

to evaluate the partial design.

5.5.2 Information Routing

DesignDatabase andCoordinator are the agents that are heavily involved in infor-
mation routing. All agents know where they should ask for what service or where to send
their outputs. Designer agents, for instance, know that they should send their partial designs
to theCoordinator for evaluation, composition or further processing. One reason the
Coordinator andDesignDatabase agents have been given more centralized role in
the architecture (Figure 5-3) is to facilitate information routing by possessing some of the
routing knowledge. The benéefit is to let the other agents concentrate on their main job and

also make the changes easier.

In this chapter we reviewed the area of multi-agent systems in general and multi-

agent systems for design in particular. We also proposed a framework for a multi-agent

102

design system based on aspects of MADS. In the next chapter we will show how is it pos-
sible to discover design methodologies from the trace of a multi-agent design system. We
then review the techniques and methods of machine learning that can be used to automate

the discovery of methodologies.

103

6 Discovering
Methodologies

6.1 Introduction

In this chapter we discuss how the multi-agent design system (MADS) will be used to dis-

cover methodologies. First we describe how the system generates different designs for dif-
ferent problems. We then discuss how the system might take different steps and use
different knowledge. Finally, the methods and techniques that are to be used to analyze the

results generated are explained.

First we explain some of the terms that will be used throughout this and the follow-

ing chapters.

6.1.1 Design Problem

A design problenis defined with a set of requirements and constraints. The set of require-
ments and constraints is often calldesign specification®ahl 88, p. 51]. The solution to
the design problem is theesign productA design product is described by the setlekign

descriptiongCoyne 90, p. 71].

6.1.2 Design Project

A design project contains the specifications of the requirements and constraints (i.e., design

specifications), the description of the design process, and finally the description of the

104

product (i.e., design descriptions). The reason we introduce the concept of design project
is to encapsulate all the information about the design problem, design process, and design

product in one term.

Therefore, a design project contains a design problem and more. Later in this chap-
ter and in the following chapters the phrase “the system solved a design project” means that
a design problem was given as a set of requirements and constraints, a design process took

place, and a design product was generated as the result of the process.

In this dissertation the most important factors that distinguish different projects
from each other are requirements, constraints, and the steps that were taken during the

design process.

6.1.3 Design Path

Each design method might possess more than one way of doing design (see “Design
Approach” on page 63). That is, each designer agent may have different approaches for
generating its output design parameters. For generating a design, a combination of different
design approaches from different designers are used. If the generated design does not sat-
isfy the constraints, another combination of design approaches is tried. It is like the design
process takes different paths through agents to generate different candidate solutions for the
same set of requirements. The candidate solutions that satisfy the set of constraints are the

acceptable designs.

Figure 6-1 shows how selecting different design approaches produces different
design paths. A path can be represented by the sequence of approach indices that were used,

e.g.,1,1,1,2 . An alternative would be to index the sequence of indices, e.g., call that

105

pathPath 2 . When a constraint is violated, designer agents systematically check all other

possible design paths by varying their design approaches.

The knowledge about how designer agents are dependent on each other is used to
select those paths that have a chance of resolving the constraint violation. They are exe-
cuted while the rest will be pruned. This reduces the time and effort needed to find the path
that generates a successful design (i.e., the design that satisfies all the constraints). This
technique is known as dependency-directed backtracking. We will discuss the use of
dependency knowledge for dependency-directed backtracking in “Dependency Graph for

Design of a 2 DOF Robot” on page 214.

106

Designer 1 Designer 2 Designer 4

N
o> 1
2 — - >0
> 3
\/ .
Designer 3
/?
2
3) """""""""" >0
v
Path11,1,1,1
Designer 1 Designer 2 Designer 4
PN
o> 1
2 —> |
°- 3
\/
Designer 3
/?
2
3) """""""""" >0
\/
Path21,1,1,2
Designer 1 Designer 2 Designer 4
o> !
2) e - - - "
o - 3

v
Designer 3
:)
2
3 | Wttt >0

~__
Path31,1,2,1

Figure 6-1.Different Design Paths.

In a design project the system may take different paths until a path generates a suc-

cessful design. On the other hand, any change in requirements and constraints might force

107

the system to take a different path than the other projects in order to achieve a successful

design. That is why paths for different projects might be different.

6.1.4 Traces

A trace is the record of whatever actions the systems takes. Different types of traces are
generated by the system (“Traces Produced by RD” on page 197). The type of the trace that
we use for generating methodologies is tfaee of the design paths opposed to say, the

trace of design solutions. The ‘trace of the design path’ is the trace of the design approaches
that the system has used, while the ‘trace of the design solutions’ is comprised of the values
generated for the design parameters. Throughout this and the following chapters we often
refer to this type of trace as “the trace of the system” or “the trace”. The traces of the system
are represented by the same method that design paths are represented, e.g., the sequence of

design approach indices or the index of the sequences.

6.1.5 Clusters

A cluster is a group of entities that are similar, i.e., have common features. Forming clusters
of entities and describing the common features is a way to generalize the set of entities and
create a new entity that represents all the members of the group. In this dissertation we are

interested in clusters of traces and clusters of problems.

6.1.6 Requirements versus Constraints

Requirements and constraints both specify which solution in the design space is an accept-
able design. In this dissertation, however, we have made a distinction between design

requirements and design constraints. The set of requirements specify what are the proper-

108

ties of an acceptable design, therefore, the set of requirements are given as a set of param-
eter-value pairs. The set of constraints, on the other hand, describe what should not be

violated. A constraint specifies a relation between a set of design parameters [Mittal 92].

Therefore, we might find points within the design space that satisfy the require-
ments but are not acceptable because they are outside the solution space (i.e., violating con-
straints). The method that we have used in the knowledge-based system is to use the
requirements to generate the solution points in the design space. We then check to see if
those points are inside the acceptable solution space by checking them against design con-

straints.

For example, some requirements were defined for a 2-DOF robot: a workspace that
is stretched 5 meters, carry 1 kg workload, have 1 second settling time, and 10% maximum
allowable overshoot. The required settling time and overshoot is quite tight for such a long
workspace. So very high control gains were expected. The system started creating designs
with gains as high as 300, while the maximum allowable gains were set at 100. The gener-
ated designs were clearly satisfying the requirements but because they were not within the

acceptable solution space they were all rejected.

6.2 Mapping Problem Space to Design Space

The multi-agent design system maps the space of requirements (i.e., problem space) to the
space of traces and then to the space of designs (i.e., design products), (Figure 6-2). A
“space” is the reference set that contains all the members. Throughout this dissertation we
often refer to this mapping as “design process follows a trace”, i.e., to generate a design the

design process follows the path shown by the trace of the system.

109

Requirement Trace Design Product
Space Space Space

Figure 6-2.Mapping from Requirements to Designs.

It is the set of constraints that guides the mapping from requirement space to trace
space and then to the design product space. For a new design project the system takes the
first available trace that is formed by combining the default approaches of each designer.
The system progresses through the design process checking for constraint violation at the
end of each design cycle. If there is a constraint violation the system backs up and chooses
a different path. As a result, for the same set of requirements, a different set of constraints

may force the system to take a different path and produce a different design (Figure 6-3).

110

loose constraint

tight constraint

Requirement Trace Design Product
Space Space Space

Figure 6-3.Different Constraints Produces Different Designs and Traces.

Also, it is possible that the same trace gets used in more than one project to produce
a successful design (i.e., a design that satisfies all the constraints), (Figure 6-4). In fact, this
is what we are hoping to happen so that we can group the design projects that used the same
trace together. If a set of design projects can be grouped together based on some common
characteristics we can formulate some guidelines on how to conduct the design process for
similar projects. The set of these guidelines will eventually lead to the formation of meth-
odologies. If similar projects take similar paths we can generalize both the set of projects
and the set of traces, so that the methodologies generated can be applicable to a wider range

of problems.

111

Project A

Project B

Requirement Trace Design Product
Space Space Space

Figure 6-4.Same Trace Gets Used in More than One Project.

The best case that could happen in mapping the requirement space to the design
space is that all the problems could be mapped to the solutions using only one trace. This,
however, is unlikely to happen except perhaps in very simplified and single discipline
design problems. The methodology that is generated in such an ideal case will include all
the different situations included within the requirement space. It also will be very simple
and precise in what design approaches should be followed in those situations. We will be

looking for mappings from clusters of projects to clusters of traces for successful designs.

In reality we expect to see many traces are used to map the requirement space to
design space. The following scenarios may happen in mapping the requirement space to the

design space, Figure 6-5:

» Case 1:Each cluster of requirements is mapped to the design space by exactly one

cluster of traces.

» Case 2:A cluster of projects plus some exceptions not included in that cluster are

mapped to the design space by exactly one cluster of traces.

112

» Case 3:A cluster of projects is mapped to the design space by one trace cluster plus
some exception traces that do not fit in the cluster.

Other cases might happen that basically are a mixture of the above cases. However, with

respect to generating the methodologies the most desirable cases are cases 1 to 3. The

reason is that the above cases have the least exceptions, therefore the generalization

becomes much cleaner and will cover more situations. In the next section we describe the

techniques and methods that can be used for this generalization process.

113

Requirement Trace Design Product
Space Space Space

Requirement Trace Design Product
Space Space Space

Requirement Trace Design Product
Space Space Space

Case 3: Partial Match Includes Exceptions

Figure 6-5.Different Scenarios in Mapping Requirements to Designs.

114

6.3 Machine Learning

The methods and techniques of Machine Learning can be used to automate the process of
extracting the design methodologies. These methods will provide the means to form the
clusters of projects and clusters of traces and then finding some relationship between these
two type of clusters. In this section we review some of the techniques and methods from
the area of Machine Learning that can be used to extract the methodologies from traces of

the system.

The use of Machine Learning methods in support of design has been well docu-
mented [Duffy 97]. Depending on what is included in the traces, and its representation, we
can take advantage of work that has been done on clustering and on induced finite-state
transition networks, inductive learning for state-space search, or flexible macro-operators

[Langley 96, pp. 258, 304, 348].

The source of information available for automatic learning can be a collection of
case histories. “The reason that the study of case histories is easier than manual expert elic-
itation is that experts can provide solved problems more readily than they can articulate

their knowledge explicitly” [Rich 91].

The idea of extracting design methodologies from traces is very close to the subject
of concept formatioim Machine Learning. “Concept formation is the task of automatically
inferring the general definition of some concept, given examples labeled as members or
nonmembers of the concept” [Mitchell 97, p. 2$upervised concept learnirmpdunsu-
pervised concept learningre the two primary classes of machine learning techniques that

comprise thenductiveapproach [Quinlan 93, p. 2]. Reich and Fenves in [Reich 91] have

115

proposed to use the available information from experience or simulation (e.g., a set of
design projects) to generate concept hierarchies or production rules. These hierarchies or
rules are then used to predict the design product description for a new set of design require-

ments [Reich 91].

The difference between what Reich and Fenves have proposed and what we are
intending to do is that we would like to predict tHesign procesdescription from the new
requirements rather than tpeoductitself. This is because our objective is to improve the
process of design—that is we would like to learn from the results of the system about the

quality of the process rather than the quality of the product.

Consequently, mapping from the space of design requirements to the space of the
traces of the system is more important than mapping from the space of traces to the space
of design products (see Figure 6-2). The only aspect of the design product that we consider
in the process of methodology generation is whether it satisfies the constraints (i.e., a suc-
cessful design) or not. This conclusion helps us to decide what information should be

included in the traces in order to be able to extract design methodologies from them.

There is an issue of how to relate classes of similar design requirements to classes
of similar traces—that is, there is no guarantee that after classifying requirements and
traces there will be a one-to-one map from design requirement classes to trace classes. One
method to solve this issue is to merge the requirements and design approaches into one
trace and do the classification in such a combined trace. The result would be classes of
design methodologies that have the corresponding requirements embedded in them. In fact
this is the way that classification has been described in Machine Learning literature (e.g.,

[Rich 91]). That is, the training set is described by a list of attribute-value pairs that include

116

both design specifications (in our case requirements) and design description attributes (in

our case design approaches).

Merging the set of requirements into the set of design approaches and producing a
combined trace for clustering them can be used to automate the process of clustering all
together. However, in this dissertation we will generate separate sets of requirement clus-
ters and trace clusters. The reason is that we would like to explicitly reveal the relationship
between these two sets. Clustering of the combined trace will hide this relationship (see

“Requirements versus Constraints” on page 108).

6.3.1 Supervised Learning versus Unsupervised Learning

“Supervised concept learning creates knowledge structures that support the task of classi-
fying new objects into predefined classes. In the case of design, examples are represented
by a list of specification property value pairs and are classified into a set of classes that can
represent a single design descriptor” [Rich 91]. Arciszewski, Mustafa, and Ziarko in
[Arciszewlski 87] use a supervised method to differentiate between feasible and infeasible
designs. The goal of acquired rule set is to predict whether or not a given combination of
design description values is feasible. McLaughlin and Gero in [McLaughlin 87] present a
similar approach. Instead of differentiating between feasible and infeasible designs, their
task is to characterize designs that are optimal. These two approaches essentially extract

evaluation knowledge rather than synthesis knowledge [Rich 91].

There are two approaches based on supervised learning that can perform synthesis.
First, specification properties can be used to generate a classification over the set of designs

(e.g., with ‘optimal’ and ‘inferior’ as labels). Concept descriptions in terms of the design

117

properties can then be used to characterize subsets of the training data that were distin-
guished by their specification properties. This process captures a many-to-one mapping

between designs and classes of specifications. In this process, new specifications are clas-
sified (e.g., via a decision tree) into a subset of designs (e.g., leaves of a decision tree). The
pattern associated with this subset is forwarded as the synthesized design. Unfortunately, it
appears that this strategy may vyield patterns that are too general for practical purposes

[Rich 91].

Supervised concept learning techniques are inadequate as a means of capturing syn-
thesis knowledge. The reason is that synthesis involves a many-to-many mapping from
requirement space to design space. Supervised concept learning, however, requires sepa-
rate many-to-one mappings. Such separation causes information to be lost, since the

requirements in the set are not dependent [Rich 91].

“Learning paradigms that are concerned with many-to-many mappings are unsu-
pervised. The principle idea is that specifications and solutions (i.e., design descriptions)
are correlated; specific combinations of specification properties give rise to corresponding

combinations of design description properties that satisfy these specifications” [Rich 91].

In this dissertation we use unsupervised learning methods to find correlations
between the requirement space and trace space (as opposed to the design space). A cluster-
ing based on this correspondence allows the retrieval of an appropriate trace given a new
set of requirements that is similar to an existing one. The next section describes a clustering

algorithm for this purpose.

118

6.3.2 Agglomerative Formation of Concept Hierarchies

This section is a summary of an approach for concept formation called Agglomerative For-
mation of Concept Hierarchies (ACH) [Langley 96, pp. 212-217]. We will use a slightly
changed version of the ACH algorithm proposed by Langley in order to cluster the traces.
Other clustering techniques might also be appropriate [Fisher 91], but they have not been

investigated.

“ACH constructs concept hierarchies in agglomerativemanner, grouping
instances into successively larger clusters. Although one can run such methods on super-
vised training data, they are typically used on unsupervised learning tasks. Also, they are
nearly always nonincremental in nature, requiring that instances be present at the outset”

[Langley 96, page 212].

The ACH algorithm receives a set of training cases (e.g., design traces) and a matrix
that specifies all pairwise distances between the instances. ACH finds the closest pair of
entries A and B, which may be observed instances or, later, clusters of instances. The algo-
rithm combines the two entries into a new cluster C, storing A and B as its children in the

hierarchy and generating an intentional description for C.

The methods for constructing an intentional description for C include: numerical
averaging, storing the instances themselves, or generating a logical, threshold, or probabi-
listic summary [Langley 96, page 213]. In this dissertation the description for C would be
the union of the two traces combined that is a logical summary of different traces (see

Table 10-3 on page 217).

119

Next the algorithm checks to see if any entries remain to be incorporated. If not,
ACH halts, returning the entire hierarchy it has generated along the way. If entries remain,
it removes all pairs containing A and B (since they are now covered by C) and calculates
all pairwise distance between C and the remaining entries. ACH then calls itself recursively
on the new set of pairs, combining the closest pair of entries, adding a new node to the hier-

archy, and so forth, until it has combined all entries into a single taxonomic structure.

The distance metric that is used to measure the similarity of two design traces is a
city block measure (i.e., Hamming distance, [Langley 96, page 214]) that contributes 1 for
each mismatched design approach and 0 for each matched approach. In calculating the dis-
tance between two cluster of traces the distance metric contributes O if the set of approaches

accumulated in one cluster is a subset of the other cluster’s approach set and 1 otherwise.

The ACH algorithm explained above constructs a binary concept hierarchy with
exactly two children for each nonterminal node. We have modified the algorithm to find
thek nearest entries on each recursion, thus generating a branchier tree. In each recursion
the algorithm finds the minimum distance between non-identical clusters anklrigigh-
bors that are within a circle that has a diameter equal to twice of the minimum distance.
Using this method the algorithm finds a central tendency for each cluster and the computed

distance between the clusters.

One alternative for the distance metric is to use Euclidean distance between traces
or clusters, assuming that a trace or a cluster is a point in an n-dimensional Euclidean space,
where n is the number of designers (hence, number of approaches in each trace). But com-
pare to Hamming distance, the Euclidean distance can not capture the similarity of the

traces with the same accuracy.

120

Euclidean distance, however, can be a measure of the goodness of the trace. If we
measure the distance of a trace from the origin, it shows how much it has been affected by
less desirable approaches. Less desirable design approaches are at the end of the list and
have a higher approach index—that is they are farther from origin (of the n-dimensional

space of traces) than traces with more desirable approaches.

6.4 Representation of Methodologies

Rules and decision trees are two representation methods that we propose for design meth-
odologies. In representing the design methodologies by rules, the “IF” part of the rule spec-
ifies the characteristics of the cluster of design projects to which that methodology applies.
The “THEN” block of the rule provides the guidelines on how the methodology has to be
followed. The “THEN?” part includes the description of the design approaches in the cluster
of traces that mapped the cluster of design projects to the successful designs. An advantage
of representing the design methodologies using rules is that the representation can be very
close to “English”. This has a better chance of being understood by human designers and

increases their likelihood of acceptance.

We could have a decision tree that classifies the points in the design requirement
space. “In general, decision trees represent a disjunction of conjunctions of constraints on
the attribute values of instances. Each path from the tree’s root to a leaf corresponds to a
conjunction of attribute tests, and the tree itself to a disjunction of these conjunctions”
[Mitchell 97, page 53]. At the leaves of the tree we assign the design methodology that
works for that particular group of design requirements. Extension of this idea would be to

have different candidate methodologies assigned to a leaf that each are biased toward a spe-

121

cific aspect of design process, such as: “fastest”, “least expensive”, “best product quality”,

“best manufacturable product”, etc.

If the clusters of traces are scattered all over the trace space or if there are many
exceptions in the clusters of projects or cluster of traces, decision trees are a better solution.
In Chapter 10 based on the distribution of the traces we will decide whether to use rules or

decision trees for representing the methodologies generated.

In the next chapter we collect all the building blocks needed for constructing a
multi-agent design system for the design of a 2-DOF robot. We will combine the results of
Chapter 2 (design of a 2-DOF robot) and Chapter 5 (multi-agent design systems) to build

a system calle®obot Designe(RD).

122

7 Robot Designer (RD)

7.1 Introduction

In this chapter we put together all the building blocks needed to develop a multi-agent
system that designs a robot. We call the sysRidnRobot Designer. This chapter is mostly
based on the discussion in Chapter 2 about how to design a 2-DOF robot and Chapter 5
regarding multi-agent design systems. In the first half part of this chapter we present the
results of breaking the design knowledge into small pieces. Each piece will eventually be
embedded in one designer agent—that is, for each design method there will be a corre-
sponding designer agent. As a result, in this chapter and the next chapters we might use the
terms design methods and designer agents interchangeably. In the second half we represent

the structure of each agent as well as algorithms and flowcharts for the system.

7.2 Design Methods for Robot Design

In “Design Methods” on page 60 we discussed what a design method is. In this section we
present the design methods for the design of a 2-DOF robot. These methods will be based
on the results of Chapter 2. For each design method we might have multiple approaches
(see “Design Path” on page 105). To implement the strategy of small design methods we
break the large design methods at decision points. Decision points in a design method are

when a value is assigned to a design parameter.

123

The names that we use for the design methods are comprised of two parts: one of
the letters of K, S, or C (standing for Kinematics, Structural Mechanics, and Controls dis-
ciplines) separated by a dash ‘-’ from the index of that method in that discipline. For
instance, K-1 means the first design method in kinematics. The ordering of the design

methods in a discipline has no meaning.

In the following discussion we start with kinematic design methods, followed by

structural, and then control design methods.

7.2.1 Kinematic Design Methods

The kinematic design decides where to put the base of the robot relative to the workspace,
the length of the links, the joint angles, and the area of the accessible region. As a result,

four kinematic design methods are introduced in this section.

7.2.1.1 Design Method K-1
Design method K-1 decides about the location of the base of the robot. A schematic dia-
gram of the inputs, outputs and the design approaches of design method K-1 is shown in

Figure 7-1. A description of each design approach follows the figure.

124

Kinematicl

_| base_at_left_below_midway_workspace_length

__| base_at_left_below_midway_workspace_width

workspace
{(xi, y)} -—| base_at_right_above_midway_workspace_length

base point
B> (Xp, Vo)

-—| base_at_right_above_midway_workspace_width

—| minimize_accessible_region

LT T [T

_| minimize_link_lengths_summation

Figure 7-1.Kinematic Design Method 1

The description of the design approaches for Design Method K-1 are as following:

. base_at_left_below_midway workspace_length . puts the base of the
robot at the left or below the midway of the length of the rectangle that circumscribes
the workspace points. If the rectangle is vertical the base would be to the left of it and if

it is horizontal the base would be below it (point 1 in Figure 7-2).

. base_at_left below_midway_ workspace_width : point 2 in Figure 7-2.

. base_at_right_above_midway_workspace_length . point 3 in Figure 7-2.
. base_at_right_above_midway workspace_ width : point 4 in Figure 7-2.

. minimize_accessible_region : this approach puts the base of the robot in a

point so that the accessible region (Figure 2-1 on page 28) by the robot is minimized
(point 5 in Figure 7-2). The minimization algorithm is “Downhill Simplex Method in

Multidimensions” based on [Press 89].

125

6. minimize_link_lengths_summation : this approach finds a location for the
base of the robot so that the sum of link 1 and link 2 lengths is minimized (point 6 in
Figure 7-2).
While the last two approaches may help in satisfying tight constraints on structural and con-
trol performance of the robot, they are more expensive in terms of computational efforts
and more time consuming. Besides, as it can be seen from Figure 7-2 (point 5 or 6), mini-
mizing the accessible region or link lengths usually needs to put the base of the robot in the

middle of the workspace, where large joint angles are needed in order to cover the whole

workspace.
i +
w/2 @
y. o _______
A i e . o :
W*IZ : . ° : @
A -+ | . @+ . 1 +
w/2 @ ' ° 1
X +. -
V\IV/Z @+ J
<—L/2—><—L/2— - L2 »= L2 >
e workspace points =} base of the robot

Figure 7-2.Different Locations for the Base of the Robot.

7.2.1.2 Design Method K-2

Design method K-2 decides about the ratio of the length of the second link to the length of
the first link.

126

workspace Kinematic 2
Xi, Vi .
{0, 3 link_lengths_ratio_0.5 - I"”k 3h
—P - eng
link_lengths_ratio_0.75 |—-
base point link_lengths_ratio_1.0 |_ |I(|3nn|;t2h
(Xp» Vo)

Figure 7-3.Kinematic Design Method 2

Different design approaches for Design Method 2 are different in the ratio of the
length of the link 2 to link 1. These approaches assign a length to the second link that is

half, three quarters or equal to link 1, respectively.

7.2.1.3 Design Method K-3
Design method K-3 decides about the configuration of the arm. There can be two different

configurations: left-handed and right-handed (see Figure 2-3 on page 31).

127

workspace
{(xi, y)} Kinematic 3

'y

base point
(Xp: Yb) _| thetal_is_alphal_minus_alpha2 |__

| (el)max,min
- (ez)max,min

+

link 1 thetal_is_alphal_plus_alpha2 |__

length

!

link 2
length

Figure 7-4.Kinematic Design Method 3

7.2.1.4 Design Method K-4

Design method K-4 calculates the area of accessible region by the robot.

link 1 Kinematic 4
length

¥

link 2

length . - accessible
—| equations of Figure 2-4 |__> region area

+

(el)max,min
(ez)max,min

:

Figure 7-5.Kinematic Design Method 4

128

7.2.2 Structural Design Methods

The structural design methods decide about the material for the structure, the safety factor,
the shape and dimensions of the cross section of the links and finally the deflection of the

tip of the arm. As a result, five structural design methods are introduced in this section.

7.2.2.1 Design Method S-1

Structure 1
link 1 cross
material —| dimension_min_ratio_4 l_ section
Mass — -] dimension
density -—| dimension_min_ratio_3 |_
link 2 cross
material —| dimension_min_ratio_2 |— section
tyleldth_> —| dimension_min_ratio_1 |__ dimension
stren .
g link 1 cross
structural section
safety — thickness
factor .
link 2 cross
link cross— gt | T r?‘eﬁtlon
section thickness
shape

Figure 7-6.Structural Design Method 1
The design approaches are based on what should be the ratio of the dimension of

the cross section of the link to the minimum dimension required by stress analysis. These

ratios vary from 4 to 1.

129

7.2.2.2 Design Method S-2

Structure 2

material
—+ name

material
mass
P> density

| steel_stainless_AISI_302_annealed |—-

| aluminum_alloy 5456_H116 l_

material

1 yield
strength

material

p- Elasticity
modulus

Figure 7-7.Structural Design Method 2

Design method S-2 decides what material should be used for the links. The avail-
able materials are steel and aluminum. This method is an example of a method that selects
items from a catalog. A catalog look-up method does not need an input in the form a design
parameter to use it in its calculations. It, however, may use domain knowledge about how
to search for the best choice. The designer that will encapsulate design method S-2 will
receive inputs in the form of a request for its service, i.e., a look-up in the catalog. In the
case of backtracking, the designer will be asked to provide another alternative for the mate-

rial.

130

7.2.2.3 Design Method S-3

Design method S-3 like the design method S-2 is a catalog type of design method in which
the safety factor for structural design is looked up in a table. The safety factor is reduced in
situations that the requirements are tough or the constraints are tight. Reducing the safety
factor decreases the dimensions of the link, hence reducing the weight and moment of iner-
tia of the links. However, reducing the safety factor increases the risk of structural failure

especially due to overloading the robot.

Structure 3

| safety factor_3

| safety_factor_2 structural

—» safety
factor

| safety factor_1.4

| safety factor_1.1

-

Figure 7-8. Structural Design Method 3

7.2.2.4 Design Method S-4

Design Method S-4 decides the shape of the cross section of the links. The choices are
hollow round or hollow square shapes. While for the same weight the square shape has a
higher stiffness [Rivin 88, p. 128], the circular shape is more suited for revolute joints and

is less expensive.

131

Structure 4
| hollow_round link cross
> section

| hollow_square shape

Figure 7-9. Structural Design Method 4

7.2.2.5 Design Method S-5
Design Method S-5 has one algorithmic design approach that uses Equation 2-14 on
page 36 to calculate the deflection of the tip of the robot. The deflection calculated is for

the worst case in which the arm is fully stretched and the maximum load is being carried.

Structure 5

link 1 cross use Equation 2-14 on page 36 '—> tip deflection
section _|

dimension

link 2 cross

section —p-{—
dimension

link 1 cross

section —pt—
thickness

link 2 cross
section

thickness t f T f
material material link 1 link 2 workload Tross section

mass elasticity length length shape
density modulus

Figure 7-10.Structural Design Method 5

132

7.2.3 Control Design Methods

There is one control design method C-1 that decides the gains of a PD controller for each

joint (see Figure 2-5 on page 38).

7.2.3.1 Design Method C-1

Control 1

link 1 cross _| use Equation 2-23 on page 38 -——» Proportional

section || gain 1
dimension o

derivative

link 2 cross] gain 1

section —-r— proportional
dimension —+¥ gain2
link 1 cross derivative

section —p1— —T® gainl
thickness
link 2 cross

section
thickness + * * *

sgttling maxi- link 1 link 2 workload cross section
time mum length length shape

overshoot

Figure 7-11.Control Design Method 1

7.3 Design Process Flowchart

The control of the flow of the design process is based on the design cycles that were dis-
cussed in “Concurrency” on page 94. A design cycle starts when the set of designers at a
specific depth in dependency graph are asked to design. At the end of each design cycle the
results of the design are checked against the constraints. If the results satisfy all the relevant
constraints the corresponding design cycle is interpreted as successful otherwise it is

133

labeled as unsuccessful. Figure 7-12 shows how the design process is moved through a

design cycle.

(' initialize)

\
create new

design state

design with

next approach

yes

failed

design
succeede

store successfyl
design state

retrieve next
backtracking
agenda

A

desig
completed

no

any backtracking
session active

A

- ocal backtracking
possible

no

store rejected
design state

new backtracking
session needed

no

build new back-
tracking sessior

<

yes

yes any backtracking

design
failed

agenda applicable

Figure 7-12.Flowchart of the Design Process.

Each design cycle happens at a certain depth in the dependency graph. In each depth
the designers are independent from each other meaning that they do not use the others out-

put. As a result designers in this depth are able to design concurrently. On the other hand

134

design cycles help to manage the backtracking process. Different backtracking agenda are
built for different design cycles. Backtracking sessions order the execution of design cycles
during the course of backtracking. In section “Backtracking” on page 141 we will talk

extensively about backtracking.

7.3.1 Dependency Graph vs. Cycle Tree, and Design Cycle vs. Design
State

Figure 7-13 shows an example of a dependency graph that is dynamically generated during
the design process. The design process starts with a set of design methods (implemented as
designer agents) that can use the design requirements and generate a set of values for their
output parameters (designers 1 to 3 in Figure 7-13). This set of designers form trefirst

of the dependency graph wilepth Oin the graph. Based on the input-output dependency
between the design methods a new set of designer agents step forward and generate values
for their output parameters. As a result of this process new rows are added to the graph in

new depths until the design is complete.

A constraint violation on any of the generated values for the design parameters
causes the process to backtrack to shallower depths of the graph to take a different path (see
“Design Path” on page 105). We will discuss the backtracking process in more detail in

“Backtracking” on page 141.

135

Design Requirements

!

Designer 3

—————————

Designer6) — — — — — — —\— — — _ __ __ _ Depth 2

[] [] [] ®_©
Design Product |

o : Depth Parameter —» : Information Flow : Designer Agent

Figure 7-13.Dependency Graph

The design methods in a row of the dependency graph are executed in parallel
because there is no dependency between them. All design agents that are in one row of the

dependency graph do their design simultaneously in one design cycle (see “Consistency”

136

on page 94). A new design state is initialized at the beginning of each design cycle and
evolves during that cycle. A design state (except at Depth 0) is initialized to the last suc-
cessful design state at one shallower depth and keeps a reference to the that design state as
its parent. Each design state keeps a list of its children states (except the leaves). At the end
of the cycle if all the relevant constraints are satisfied the corresponding design state is
tagged as successful, otherwise it will be stored as an unsuccessful design state. The design
process then backtracks to shallower depths in the dependency graph to try other alternative
design approaches. Therefore, the design process does not pass through a depth in the
dependency graph unless the design state at that depth is successful. During this back and
forth process between different depths, design states are generated one after another in a
sequence. However, based on their corresponding depth in the dependency graph the

design states form a tree type of structure too that is call€giyttie Tree

In RD, DesignState agent creates new design states, keeps track of design
states and forms the cycle tree. TBependencyProvider agent is responsible for
building the dependency graph and provides the depth of each designer agent in the tree to
other agents. It is worthy to note that in general the dependency graph might change due to
opportunistic participation of designer agents during the design process. That is, in differ-
ent design iterations different designer agents might become applicable, hence generating
a different dependency graph. However, if the dependency graph is not changed compared
to previous iterations the design process will not be opportunistic, but based on an agenda
generated by the backtracking mechanism. Following an agenda imposed by the system is

necessary to make the backtracking process exhaustive.

137

7.3.2 Posing Design Goals

Coordinator agents are responsible for posing abstract goals, decomposing them into sub-
goals, and requesting that other agents to achieve those sub-goals. Coordinator agents
decide what the other agents should accomplish in order to eliminate any need for negoti-
ation between different agents in the system. There are three coordinator agents in the
system shown in Figure 5-3 on page 1Q@ordinator , DesignersCoordinator ,

andDatabaseCoordinator

TheCoordinator agent has the most abstract goal in the design process, that is
to achieve a design that satisfies the design requirements and constraints. Figure 5-2 on
page 95 shows how tl@oordinator conducts the design process in a loop until it finds
either a satisfactory design or it fails to find a design that satisfies the requirements and con-

straints.

Inputs to a designer agent become available either by the user as design require-
ments or by other designers as their outputs. Designer agents use their first approach to gen-
erate a design unless there is a failure (i.e., constraint violation). When a failure occurs,
designers re-design based on a backtracking agenda that is dictatedgsigaer-
sCoordinator agent. TheDesignersCoordinator agent prepares and enforces
the re-designing agenda so that all possible combinations of design approaches are consid-
ered. In either case (with or without failure), design approaches are combined together in a
sequence that starts to form a path from the designers at the root of the dependency graph

to those in the leaves.

138

The number of possible paths is the product of the number of design approaches in
all designers. Different paths are explored using a depth-first search algorithm. The system
fails to produce a design if there is no path (i.e., no combination of design approaches) that

satisfies all the design constraints.

7.4 Constraints

Design constraints define the criteria for acceptance or rejection of the partial designs that
are generated by designer agents. A constraint between some variables can be implemented

as a function that can return true or false based on the inputs to the function [Serrano 92].

Different types of constraints that are applicable to numeric or symbolic values can
be defined in the system. A constraint is violated if its parameter’s value is not a member
of a set. The set of acceptable values might be pre-defined or dynamically change during
the design process based of the change in the values of the design parameters. Design con-
straints may have been extracted from the design domain in order to satisfy physical con-
straints or to impose boundaries on some features of the product (e.g., cost, weight, etc.)

that control the goodness of the design product.

7.4.1 Types of Constraints

There are two types of constraints at the top level:
* Symbolice.g., the selected material should be either "steel” or "aluminium”.

* Numeric e.g., 10< length < 20.

For numeric type of constraints we could have two subtypes:

» Discrete e.g., thickness can only be one of these values: {0.1, 0.2, 0.4, 0.6, 0.8}.

139

» Continuouse.g., 10< length < 20.

For the continuous-numeric type of constraints the following subtypes are proposed. The
symbols in the parenthesis are used in the system to denote a specific type of constraint in
various input or output files. Variable x is the argument of the constraint. Variables a and

b might not be fixed. The following paragraphs discuss these in more detail.
* Equality x =a, (=)

* Inequality x !=a, (=)

* Lessx<a, (<)

+ Greater x> a, (>)

* LessOrEqualx <= a, (<=)

» GreaterOrEqual x >= a, (>=)

+ BoundedExclusivea < x < b, (<<)

« BoundedinclusiveGreatea <= x < b, (<=<)

» BoundedinclusivelLesa < x <= Db, (<<=)

Boundedinclusivea <= x <= b, (<=<=)

The argument of a constraint (the variable whose current value is checked against the con-
straint) can be a design parameter, a function of design parameters (e.g., summation of link
lengths or the weight of the product), a variable that can be calculated from design param-
eters plus maybe some other parameters (such as the cost of the product, its manufactura-
bility, etc.) or a variable that specifies a specific characteristic of the design process (such

as the time that has been spent on design).

140

Variables a, and b define the set of acceptable values or the boundaries of that set.
These variables might be needed during run time. As an example of a constraint that needs
to change its acceptable values on the fly, consider the constraint on dimensions of the cross
section of the link of the robot. The diameter of the cross section of the link cannot be larger
than a certain fraction of the same link length. But the length of the link may change in
design iterations, that, as a result changes the upper bound of the constraint on the diameter.
We define the set of acceptable values for this constraint by the maximum acceptable ratio

of the diameter to the link length (e.g., 1/20).

7.5 Backtracking

Backtracking is a mechanism for recovering from failures by throwing away the recent
results, going back to a previous state, and taking another path. In cases where design deci-
sions lead to a constraint violations, "a problem solver needs the ability either to backtrack
to correct bad decisions or to maintain parallel solutions corresponding to the alternatives
at the stuck decision point. However, if alternative guesses exist at each point, and there are
many such decision points on each solution path, a commitment to examine every possible
combination of alternatives proves unwieldy" [Marcus 92]. The better approach is to
change only those design decisions that affect the violated constiémendency-

Directed Backtracking

We assume that each constraint applies only to one parameter (that is each con-
straint has only one argument) and each design parameter is produced by no more than one
designer. Figure 7-14 shows part of a design process in which some design methods pro-

duce values for some design parameters based on some other parameters. Assume that one

141

of the outputs of ‘Design Method 7’ violates a constraint. To satisfy this constraint the
value of the design parameter should be changed. There are two possibilities to change the
value of the parameter that caused constraint violation: 1) try another design approach in
the design method 7, 2) change the inputs to Design Method 7 by trying other approaches

in design methods that produced those inputs.

Design Method
7
Design Method
8

o Design Parameter

Design Method
4

Design Method
5

Design Method
6

Figure 7-14.Design Methods Produce Values for Design Parameters

Figure 7-15 shows how the need to change the value of a design parameter in order to sat-
isfy a violated constraint can propagate back to previous design parameters. This propaga-
tion obviously is a problem in the sense that it may cause other constraints, that were
satisfied previously, to be violated. As a result we prefer to fix the violated constraints in a

way that minimizes this propagation.

142

De5|gn Method

% DeS|gn Method
Design Method
3

Parameter Violated
Design Method Constraint
S
7
Design Method

— m
DeS|gn Method / v
./ \

Design Parameter not Effective in Constraint Fixing

e Effective Design Parameter in constraint Fixing

B A
o <—— @ Parameter A Is Influenced by Parameter B

Figure 7-15.Possible Changes in Design Parameters for Fixing Constraint Violation

7.5.1 The Effect of Smaller Design Methods

It is worth noting that the smaller the design methods, the lesser the effect of propagation.
One of the characteristics of small design methods is that their number of inputs and outputs
is small. Consequently the dependencies between design methods are as direct as possi-
ble—thatis, if the input to a design method does not really affect the output that is supposed
to be changed, that parameter will not be considered for prospective change. Therefore one

of the paths for propagating the changes is eliminated. This is shown in Figure 7-16.

143

Parameter Violated
Constraint

Design Method
7

Design Method
4

Design
Method5-

L4 !
Design Method
o 1

Design Method
2 m
Method5-2 S o
/ Design Method)
8
,@m) ,@m P R 1
3 6

Design Parameter not Effective in Constraint Fixing

o Effective Design Parameter in constraint Fixing

B A
® <—— e Parameter A Is Influenced by Parameter B

Figure 7-16.The Effect of Smaller Design Methods in Reducing Prospective Changes

The benefit of having small design methods becomes more obvious when we con-
sider the situation in which fixing a violated constraint requires backtracking over two or
more steps. For large design methods such changes propagate drastically down the stream
and affect the parameters that were not even effective in constraint fixing. This type of

propagation of changes may cause new constraint violations as is shown in Figure 7-17.

Figure 7-17 also shows that smaller design methods partition the set of design
parameters into a larger number of subsets. As a result, the number of subsets that might be
able to stay out of the changes increases. In Figure 7-17, the output of Design Method 5-2
might remain unaffected if the backtracking process does not change the inputs of that

design method.

144

Design Method

4 Parameter Violated

Constraint

Design Method
7

O Design
Method5-2 P
v R oo <Y” Design Method
& 8
O’ Design Method O O
®
e 6

e Effective Design Parameter in constraint Fixing

[
Design Method

o 1
Design Method
2
Q¥ Design Method O
3

I

Design
Method5-1

New Violated
Constraint

Design Parameter

O Affected Design Parameter due to constraint Fixing

B A
o <— e Parameter A Is Influenced by Parameter B in the First Round of Constraint Fixing
B A

® — ® Parameter B Influences Parameter A Due to First Round of Constraint Fixing

Figure 7-17.The Effect of Changes in Producing Possible New Constraint Violations

Now consider the case that Design Method 3 is broken into two smaller design
methods. Figure 7-18 shows that the result is a considerable reduction in propagation of
changes, hence reducing the danger of violating the parameters that were already satisfying
the constraints. This reduction is a result of the Design Method 3-2 becoming independent
of the changes that could happen in order to fix the violated constraint. In Figure 7-17
Design Method 3 would have to re-design if its input parameter was changed in order to
affect the violated constraint. In Figure 7-18, however, part of the Design Method 3 that

could stay away from changes, i.e., Design Method 3-2 will not be affected.

145

Parameter Violated
Constraint

Design Method
7

Design Method

Design Method
4

Design
Method5-

Design Method
1

Design Method
2

Design
R__Method3-

—_— Design \

Design Method

S

Design Parameter

e Effective Design Parameter in constraint Fixing

O Affected Design Parameter due to constraint Fixing

B A
® <— e Parameter A Is Influenced by Parameter B in the First Round of Constraint Fixing
B A

® —» ® Parameter B Influences Parameter A Due to First Round of Constraint Fixing

Figure 7-18.The Effect of Smaller Design Methods in Reducing

7.5.2 Factors Contributing to the Complexity of Backtracking

To be able to make progress in the design process (producing values for unassigned design
parameters) all the active constraints should be satisfied in each design cycle. If there is
more than one violated constraint in a specific design cycle all should be fixed before
moving forward. One factor that contributes a great deal in making backtracking a compli-
cated process is when possible changes for fixing two or more violated constraint happen
at different levels. Consider the scenario of Figure 7-19 in which two constraints are vio-
lated. The first violated constraint can be fixed by employing a different design approach
by Design Method 4. The second violated constraint can be fixed by Design Method 1. The
problem is that this change affects Design Method 4 too that as a result might neutralize the
attempt to fix the first constraint. Of course, there is no way to predict the effect of these

changes on the constraints until they are actually executed. However, this type of situation

146

can be detected before doing the re-design. It can be handled in a way that as a first attempt
Design Method 1 re-designs and if it fails to change the status of Violated Constraint 1,
Design Method 4 re-designs. If re-design by Design Method 1 fails to fix Violated Con-

straint 2, it cannot be accepted as a way to fix Constraint 1.

Design Method

Design o~ Design Method
Method5- 7

1
Design Method
(2 ﬂm
_/_2/ .
Method> T Design Method
Design 8)
Method3- Design Method ~_
m 6 Violated Constraint 2
I M - L
Method3-2

o Parameters to be changed for fixing constraint 1

—
Design Method

Violated Constraint 1L

o Parameters to be changed for fixing constraint 2

® Second order changes that may neutralize the attempt for fixing constraint 1

Figure 7-19.Factors Contributing to the Complexity of Backtracking

Backtracking can become a very complicated process if there is more than one input
to each violated constraint. Especially, when one of the inputs to a constraint depends on
the other inputs to the same constraint. Because attempting to change one of the inputs
automatically changes the dependent input too. As a result these changes may neutralize

each other so that the constraint stays unchanged (not satisfied) even though its inputs have

changed.

Another complicated situations happens if the multiple inputs to a constraint are not
produced in the same cycle of design. Assume that there are three violated constraints.
Examining their input parameters and the designers that produce those parameters, reveals

that for re-design in the first designer the system should backtrack one step, for the second

147

designer two steps, and for the third designer three steps. It is obvious that the system
should backtrack three steps to try to re-design. Then it should check to see if this re-design
will affect the two designers’ outputs that are input to the other two violated constraints.
We prefer to re-check the other two violated constraints without trying other approaches to
produce different values because the approaches are ordered based on their cost or optimal-
ity.

In this chapter we described the building blocks of the multi-agent system for
design of a robot arm called Robot DesigneD). RD will be used to conduct experiments
simulating the design process of a robot arm. This chapter was based on chapters 2 and 5
and will act as a bridge between the previous chapters on general approach and the follow-
ing chapters on implementation of the system. The next chapter describes the implementa-
tion issues and the contributions of this dissertation that concerns building an automated

design system based on a multi-agent paradigm.

148

Implementation

8.1 Introduction

In this chapter we describe the software development stadgepthe multi-agent design
system for 2-DOF robots that we described in the previous chapter. Multi-agent systems
are complex software systems that take a lot of effort and time to develop. The major reason
for the difficulties of building multi-agent systems in general is that the area is new. More
and more agent building shells and tools are becoming available as more experience is

gained in the area.

We use the techniques from object oriented programming (OOP) to design and then
implement the system. OOP is the natural choice for developing multi-agent systems due
to many similar characteristics of objects (from OOP point-of-view) and agents [Shoham
93]. The implementation is done in Java, an object-oriented programming language which
has some advantages over similar languages. Some of these advantages include a fast
development cycle, a rich APl (Application Programming Language), platform indepen-

dence, and that it is multi-threaded.

The objects irRD can be categorized into two types: agent and non-agent objects.
Agent objects are those that inherit from a superclass, naturally éedlext , that contains
the generic components of an agent. Non-agent objects are mostly special data structures

that model a concept whether design related or agent related. Some of the non-agent classes

149

are: Message, DesignParameter , BacktrackingSession , Event , Con-
straint , DesignCase and many more. These objects bundle related pieces of infor-

mation and may be passed between agents to transfer information.

The following sections describe the techniques developed and the experience
gained during the implementation stagdid. These techniques may be useful in building

future multi-agent systems for design to reduce the effort and cost of development.

8.2 Agents in RD

Figure 5-3 on page 100 shows the agents that confpilse

8.2.1 Structure of an Agent

An agent is composed of some generic components for accomplishing common tasks (e.g.,
communication) and some specialized components for achieving its specific goals. The fol-

lowing are generic components of each agent:

1. Message composeromposes a message that is to be sent to one or more agents. Mes-
sage composer receives the name of the receiver agent(s), a performative, and the mes-

sage content.

2. Message sendeputs the messages that should be sent in a queue, finds the receiver of

each message, and dispatches the messages to the receiver agents.
3. Message receivereceives the messages from other agents.

4. Message processdoased on the type of the message received, it sends it to the right

processing procedure to be processed.

150

5. Observablesends notifications about internal events to other interested components of
the same agent. For instance, when a message is processed the message processor dis-
patches anessage_processed event that is of interest to the Logger. The Logger
then makes a log of the processed message. Here ‘Message Processor’ acts like an

observable and the ‘Logger’ is an observer.

6. Logger records various internal events of an agent in different log files. Logger is also

responsible for cleaning up when the agent is no longer needed.

8.2.2Agent Object

All the agents inRD are derived fromAgent object that provides the basis for the com-
munication mechanism and other generic tasks. An agent that is processing messages has
therunning status and when it does not have anything to do hastdred_by status.

The following is a list of the generic tasks that each agent inherits frorAgleat object:

» Registering. Each agent has to register withRlegjistrar in order to be able to send
and receive messages. Each agent registers by giving its name and an identification

number to th&kegistrar

» Composing Messages. An inner objectAdent called MessageComposer is in
charge of creating messages. It can accept requests for different types and formats of
messages with overloaded functions (i.e., a set of functions with the same name and
functionality but different arguments). It assigns a unique identification number to each

message.

151

* Sending MessageblessageSender is another inner object dkgent that has two
message bufferéoBeSentMessages andsentMessages . It finds the address of
the receiver agent and puts the message into the received buffer of the receiver agent.
An agent may send more than one message simultaneously therefore, the message is
first put into thetoBeSentMessages queue and when it is actually dispatched it is
transfered to theentMessages buffer. A report then is given in the interface of the

agent and a log is made of the sent message.

* Receiving MessageblessageReceiver , aninner object of thdgent, has a mes-
sage buffer for the received messages. It also creates a new thread of execution for each
message received and starts that thread. “The term thread is shorthand for thread of
control, and a thread of control is a section of code executed independently of other
threads of control within a single program” [Oaks 97]. A log is made when a message is

received by an agent.

* Processing MessageslessageProcessor , the inner object that starts processing
the received messages, has the following message buffers for each stage of processing:
processingMessages pendingMessages processedMessages
ignoredMessages . If the message is not a generic message, i.e., it cannot be han-
dled in theAgent object itself, it dispatches it to the agent-specific message handlers.
Examples of generic tasks aaghieve_show (meaning: show your interface) and
achieve_clean_up (meaning: stop processing messages, make logs of the current

events and terminate yourself).

152

» Suspending and Resuming. The tasks that need a service from another agent are sus-
pended and then resumed upon the receipt of the response. Each task that needs a
response from another agent, assigns a maximum time that it will be waiting for the
answer. If the response takes more than the maximum time, the agent sends an excep-
tion message t&xceptionHandler agent and terminates execution of that task.

This mechanism can easily be modified so that the agent sends its request to another
agent that might be able to provide its assistance. This is a way to prevent the system

from halting due to non-responding or slow-responding agents.

» Creating logs of the activities of the agent. These activities include message passing

process and other agent-specific events.

» Handling Exceptions. Whenever an exception happens the agent prepares a message
about the exception and sends it to teceptionHandler agent for further pro-

cessing.

» Clean-up. The most generic clean-up tasks such as making a log of the agent’s activities
is done in the agent object. The clean-up is required when the agent is asked to wrap up
its activities and terminate itself.
Each agent has a generic interface through which it gives reports about what it is doing at
the current moment. Figure 8-1 shows the interfacBedigner-K-1 . The agent is in
stand_by status, the top portion of the window shows the recent messages that the agent
has received, the middle section shows what activities the agent is currently doing, and the
bottom section shows the messages that the agent has been sent. The only agent that accepts

inputs from the user iBesignRequirements agent, through which the user enters the

153

requirements and the parameters for constraints. If this information is provided through

input files, theDesignRequirements agent is not used.

Figure 8-1.Interface of an Agent.

In the following paragraphs we review the implementation of some of the most

important agents iRD.

8.2.3Coordinator Agent

Coordinator is the agentin charge of controlling the design process at the highest level

of abstraction. Its goal is to find a design that satisfies the requirements and the constraints.

154

It delegates the tasks designing evaluatingpartial designsbacktracking andupdating

the design state to other agents. Toerdinator ’s tasks are the following:

* |Initializing. Initialization includes creating other agents, creating the first design cycle,
sending initialization requests to the other two coordinator agents thBiesigner-

sCoordinator andDatabaseCoordinator

* Managing. That is to conduct the design process by assigning some abstract tasks to
other agents. Based on the information that other agents sebaoilinator (i.e.,
as a result of carrying the tasks that were assigned to the@daydinator), it
decides who should do what in the next step. This is a management job in which
Coordinator ~ makes other agents work while it oversees the whole process and
makes high level decisions. The following are the tasks@uairdinator assigns to
other agents:

o Design. There are two situations in whiclCoordinator asks
DesignersCoordinator to carry another cycle of design: in the first
design cycle and whenever the previous design cycle has been successful in
satisfying constraints.

o Evaluating. Upon receiving the results of the “Design” request
Coordinator ~ asks theEvaluator to check the results from the current

design cycle against the constraints.

155

o Backtracking. If the results fail to satisfy all the relevant constraints,
Coordinator decides to backtrack to the previous decisions in order to fix
this failure. Please note that, by backtracking to the previous decision making
points, part of the result is destroyed. As a result, the current partial design is
always consistent with the constraints.

o Re-design. When the setup for backtracking is completeCiberdinator
requests a “re-design” from thBesignersCoordinator . If no more
backtracking is possible, théoordinator decides to terminate the design

process. The difference between a ‘design’ and a ‘re-design’ request is that in
the design case the designer agents participate in the process in an
opportunistic manner. In ‘re-design’, however, the process rolls back to a
specific depth in the dependency graph in which some specific designer agents
are asked to re-design. After the backtracking process is complete the normal
‘design’ process resumes. This dependency-directed backtracking prevents the
designer agents that won’'t have any effect on violated constraints from
participating in the design process, thus saving time.

o Updating. If the evaluation result is successful eordinator asks the

DatabaseCoordinator to update the current partial design by adding the

new results.

» Termination. TheCoordinator terminates the design process in any of the follow-
ing cases:

o When the design is complete.

156

o When no answer can be found that satisfies the requirements and the
constraints.

o When an exception happens in the design process that is of type ‘error’ (as
opposed to ‘warning’ exceptions).

The termination process includes the following steps:

o Asking theTracer agentto record the information about the last design cycle
and other information about the process (e.g., termination time, duration of the
process, the total number of messages exchanged, the memory spent, etc.).

o Asking all other agents to clean up and terminate their pending tasks, if any.

8.2.4DesignersCoordinator Agent

The DesignersCoordinator agent is the manager of designer agents. It works
closely with both theCoordinator and the designer agents. It re-routes the design
requests from th€oordinator to designers. ThBesignersCoordinator Is also

in charge of managing the backtracking process among designer dgesitgersCo-
ordinator keeps the following lists that are updated at the beginning or during a design

cycle:

» designersWhoShouldBeAskedIfCanDesign is the list of designers that is set
at the beginning of each design cycle and includes designer agents that in this cycle
should be considered for designing. This list does not include those designer agents that

have already designed and thus are at the shallower depths of the dependency graph.

157

» designerswhoCanDesign is the subset oflesignerswhoShouldBeAsked-
IfCanDesign list that in response to question of if they can design have answered

positively. That is, these designers had all the necessary information for designing.

» designerswhoCannotDesign is the subset of thelesignerswhoShould-
BeAskedIfCanDesign list that cannot design because they do not have enough

information to start designing.

» designersWhoAreChosenToDesign is a subset ofdesignerswhoCanDe-
sign list that are actually chosen to design. In the case of backtracking some of
designers that can design might not affect the violated constraints and as a result there
IS no point in repeating the previous designs that will not be includetksigner-

sWhoAreChosenToDesign

» designersWhoAreNotChosenToDesign is the list of those designers that could
design but could not resolve the constraint violation. Notice that these are designers
whose inputs has not changed since the last time they designed. Therefore, while they
do not have any effect on the violated constraints, the others do not have any effect on

their inputs.

» designersWhoAreDesigning is the list of designers that at this moment are

designing.

158

» designersWhoDesigned is a list that gets gradually filled during the course of a
design cycle with those designers that finish designing. When the ligkssadner-
sWhoDesigned and designersWhoAreChosenToDesign become the same
DesignersCoordinator informs Coordinator ~ of the results that the designer
agents have generated.

Having found thalesignersWhoCanDesign , theDesignersCoordinator agent

adds one more level to the dependency graph. Therefore, the dependency graph is dynam-

ically built as the process of design continues. The dependency graph is used in the process

of backtracking to prepare a backtracking agenda.

The DesignersCoordinator plays a major role in conducting and managing
the backtracking process. It creates new backtracking sessions and updates the backtrack-
ing agenda for the current backtracking session. It also prevents the same paths in different
sessions from being repeated. For this purposeDidsignersCoordinator agent
keeps a log of previous paths that were tried for all backtracking sessions. If the backtrack-
ing process switches to another session the backtracking agenda is compared with the log

to make sure that the proposed path has not been taken before.

Adding a new designer agent to RD is as easy as adding its hame to the list of
designers irDesignersCoordinator . An instance of the new designer is created by
DesignersCoordinator at the beginning of the process. During the process the new
designer along with all other designer agents participate in the design. The participation of
designer agents in the design is encouraged bp#wgnersCoordinator by send-

ing various messages to them.

159

8.2.5 Designer Agents

Designer agents implement the design methods that were introduced in “Design Methods

for Robot Design” on page 123. Designer agents implement the design approaches of the
corresponding design method in the form of procedures and functions. Design approaches
are prioritized based on the preferences in the domain or based on general criteria such as

cost, execution time, information needed, etc.

The implementation can be enhanced so that the ordering of design approaches can
even change dynamically based on the results of the system while running. For instance, if
the system detects that an iterative approach is taking more time, it can re-arrange the

approaches so that the approach is used as the last resort.

Adding design approaches to designer agents is very easy and includes the follow-
ing steps:
» the procedure that implements the design approach is added to the agent,

* any extra design parameter that might be needed for the new design approach is added

to the list of input parameters, and

» the name of the new approach is added to the list of available design approaches consid-
ering the right order.

The major service that designer agents provide is, naturally, doing design that is to receive

some design parameters as input and generate values for some other design parameters. A

designer agent accepts requests for doing design in the following ways:
 design with the first approach,

» design with the current approach,

160

» design with the next approach,

» design with a specific approach,

During the backtracking process designer agents are asked to follow the backtracking
agenda that dictates what design approach they should use. The reason for introducing the
concept of a backtracking agenda is to make sure that every possible path (i.e., resulting
from combining different design approaches, see “Design Path” on page 105) has been
examined. The agent in charge of preparing and executing the backtracking agenda is the
DesignersCoordinator agent. TheDesignersCoordinator agent sends mes-
sages based on the backtracking agenda using different forms of design request service

from the above list.

Design requests do not have to come necessarily frorbdsggnersCoordi-
nator agent. Any agent that sends an appropriate design request message will receive the
response from designer agents. After an agent requests a design service, the designer agent
sends a request @esignState agent for the current state of the design in order to use

the most recent design parameters as input.

A designer agent keeps the history of its previous design cases. A design case for a
specific designer is comprised of the set of input values, the set of output values, the design
approach that was used, the design cycle that was created, and other bookkeeping details.
The idea of keeping design cases for each designer agent is to be able to use the multi-agent
design systems as a sensitivity analysis tool too. That is, each designer keeps track of how
their output parameters changed as a result of change in the inputs or change in the design

approaches.

161

Keeping the history of previous design cases might even be useful in saving time
by avoiding repetition of same cases in different design projects. That is, if the designer
agent receives a request for design that has been done before, it can retrieve the results from
the design cases without repeating the calculations or design procedures. This is very close

to the well known area of Case-Based Reasoning in design [Maher 95].

A designer agent keeps track of which designers have been supplying input to it and
which agents have been consuming its outputs. The agent that is interested in this service
is the DependencyProvider that puts pieces of information gathered from different
designer agents together to build the dependency graph. The dependency graph is updated
for each cycle of design to include the changes that might have happened in the list of

designer agents that participated in the design process.

The other services that a designer agent provides are as follows:
» to look at the current design state and tell whether it can design or not,
» to report its current depth in the dependency graph, and

» to report the history of the design cases that they have done so far for off-line analysis.
TheDesigner object is the superclass of all objects that implement the designer

agents. Some of the important attributes offresigner object are as shown in Table 8-

1:

Table 8-1.Attributes ofDesigner Object.
Attribute Description
inputs the list of input design parameters
outputs the list of output design parameters
designCases the list of previous design cases
currentCase current design case
designApproaches the list of design approaches

162

Table 8-1.Attributes ofDesigner Object.

Attribute Description

depthinDependencyGraph current depth in the dependency graph
inputSuppliers list of designers that supplied the input
outputConsumers list of designers that consumed the output

8.3 Implementation of Messages

In the following we list the different types of messages that the system can handle. The dif-
ferent types of messages in the list are based on the KQML specifications (Knowledge
Query and Manipulation Language) [Finin 93]. We have borrowed many ideas from the
KQML specifications as well as Haddadi’s work [95, Chapter 5] to design the messaging
mechanism. However, the implementation is specific to our system. The reason is that the
KQML specifications or the framework proposed by Haddadi are too general to be useful

for direct implementation.

» tell . This is a “for your information” message in which the sender agent sends a
statement to the receiver to express a fact about the contents of its knowledge base. The
sender will not expect a reply to this message from the receiver. Examples of this type
of message that have been useRhare:

o (tell: design_results) , that theDesignersCoordinator agent
sends to th€oordinator agent to let it know about the results of the recent
designs done by designer agents.

o (tell: constraints_satisfied) , that theDesignConstraints
agent sends tBvaluator agent to inform it that the design results satisfy the

relevant constraints.

163

ask _about . The sender agent asks the receiver about any relevant statement in the
receiver's knowledge base. The sender agent expects a reply to this message from the

receiver.

ask_if . The sender agent asks the receiver if the statement is true in the receiver’s

knowledge base. The sender agent expects a reply to this message from the receiver.

achieve . The sender agent makes a requests that the receiver accomplish a task. The
receiver will inform the sender agent when the task is complete. The response message
may include the results of the action too. If the receiver agent is not capable of doing

the requested task it sendsary response back to the sender.

insert . The sender agent asks the receiver agent to either add or replace the attached
statement to/in its knowledge base. The sender agent does not expect any reply to this

message.

sorry . Anagentsendssorry message to another agent in response to a request that

it cannot understand or process.

164

8.3.1Message Object

Table 8-2 shows the attributes of the message object:

Table 8-2.Attributes of theMessage object

5sages

d, pro-

Attribute Description

id a unique identification number

sender agent sending the message

receivers receiver agents

performative the type of the message

content of type MessageContent

inReplyTo theid orreplyWith of the original message if this is a reply message

replyWith theid that should be used when responding to this message (used for me
that are to be broadcasted)

status at any time one of the following status: created, to_be_sent, sent, receive
cessing, processed, pending, or ignored

tag any additional information, e.g., why the message was sent

timeCreated

the time the message was created

timeToBeSent

the time the message was entered into the ToBeSent message buffer

timeSent

the time the message was actually dispatched

timeReceived

the time the message was received by the receiver agent

timeProcessing

the time the processing of the message started

timeProcessed

the time the processing of the message completed

timePending

the time the message was put in pending status

timelgnored

the time the message was ignored

8.4 Implementation of Backtracking

A backtracking session starts when a set of violated constraints cannot be resolved. A back-

tracking session is uniquely defined by the set of designer agents that might be able to

resolve the violation by changing their decisions. If during the backtracking process a new

set of constraints are violated that might change the set of candidate designers for re-design,

a new backtracking session replaces the old one. If the backtracking session is successful

165

in resolving the set of violated constraints, it is terminated. There is a variable that holds
the current backtracking session in the design processDésgnersCoordinator

agent and all designers have an attribute that refers to this variable. It is null for the
DesignersCoordinator and the designers agents if the design is in regular ‘forward-
tracking’ mode. It is also null for designers that do not participate in the current backtrack-

ing session.

A set of violated constraints always has a unique set of corresponding candidate re-
designers. This is because as long as the dependency relationship between designers is not
changed, the set of designers that affect violated constraints remains the same. As a result,
when a set of violated constraints re-occurs, backtracking will continue from the point that

it stopped last time. Otherwise an infinite loop may happen.

Backtracking designers are the set of designers that may be able to affect the set of
violated constraints, hence resolving them. Backtracking designers affect the violated con-
straints by providing input to the designers that have violated their constraints. This effect
can recursively propagate up to the designers that provide input for the first set of back-

tracking designers.

A backtracking session includes all designers that can potentially be backtracking
designers. All the backtracking designers are arranged based on their depth in the depen-
dency graph. There are two reason for this arrangement. First, in order to make the back-
tracking an exhaustive process, an untried design approach (alternative design decision) by
a backtracking designer should be combined with all possible design approaches of the
backtracking designers in the deeper levels of the dependency graph. Second, in order to

make backtracking an exhaustive process, a new design approach (alternative design deci-

166

sion) by a backtracking designer should be combined with all possible design approaches

of the backtracking designers in the same level in the dependency graph.

A backtracking process starts by creating a new backtracking session followed by
identifying all backtracking designers and arranging them based on their depth in the
dependency graph. All the designers that directly or indirectly (i.e., through intermediate
designers) influence the violated constraint(s) are identified as backtracking designers.
This information is extracted from the dependency graph. The new backtracking session is
broadcasted to all backtracking designers. The first request for re-design is sent to one of
the designers that is the deepest in the dependency graph. If there are several designers with
the same depth, all the possible combinations of their design approaches is considered. For

non-backtracking designers, their latest design case is used.

The question is why would we want to re-try those design approaches in a designer
that have led to constraint violation before? The answer is that it is not the case that a design
approach that has caused (directly) or contributed to (indirectly) to a constraint violation
will violate that constraint again. The reason is that it is the produced value that determines
constraint violation and the produced value depends on the input to the designer too and not
just on the design approach. In other words, it could be the case that the inputs to the
designer are not the same as before and as a result the design approach that caused con-
straint violation before will not cause that violation again. Change of input values to a
designer happens because of a re-design in the designers that provide input to the men-

tioned designer (that are in the shallower levels of dependency graph).

Even for the designers in the shallowest level of dependency graph whose inputs

have not changed, re-trying design approaches that were rejected before should be consid-

167

ered in backtracking process. The reason is that those approaches may have not been com-
bined with all approaches in the designers downstream in the dependency graph. Therefore
to be exhaustive, they should be tried again. The only situation in which re-trying rejected
design approaches will lead to a re-rejection is when the designers whose inputs have not

changed (those with the shallowest depth) directly violate their own constraints.

One interesting behavior that was observed during the rirDoivas when chang-
ing between different backtracking sessions. Backtracking sessions have different sets of
backtracking designers. Different sets of violated constraints might result in different cor-
responding candidate backtracking designers. Backtracking designers are a subset of
designers that could affect the violated constraints, and who therefore are participating in

alternating their design approaches.

In the course of a design process sometimes it happens that a backtracking session
is replaced by a new session because a different set of constraints are violated. The process
continues based on a backtracking agenda that is provided by the new session. Later during
the process the old set of constraints are violated again and as a result the old session takes
over the backtracking process. A mechanism is implemented that prevents different ses-

sions from repeating the paths that have been tried unsuccessfully by other sessions.

The deeper a designer is in the dependency graph the more expensive it is from a
backtracking point-of-view. A design case is composed of the values of the designer’s input
and output parameters and the design approach that the designer used to produce the out-
puts. During the backtracking process designers generate different design cases by receiv-
ing different inputs or using different approaches. The number of design cases that a

designer produces depends on how many different sets of inputs it receives and how many

168

design approaches it has. The number of input sets that a designer receives is equal to the
product of the number of design approaches of the designers that affect this designer (i.e.,
affects its inputs) all the way up to the root of the dependency graph. In other word, the
number of design cases that a designer generates depends on its depth in the dependency

graph.

As aresult, the designers that are deeper in the dependency graph take a bigger por-
tion of the backtracking process. Therefore the effect of an expensive design method (i.e.,
with respect to design time) in the deeper levels of dependency graph is much higher. In
one example, designers at depth zero of the dependency gr&ib e@ach produced 64
design cases; at depth one, 205 cases; and in depths three and four, 820 cases. That is,

designers at depth three and four, design twelve times more than those at depth zero.

Conclusions such as above, can be incorporated into a general design methodology
that humans could follow in their design processes. Design methods that are deeper in the
dependency graph should be selected to be as cheap as possible—that is the design methods
that are more expensive should be moved to shallower depths in the dependency graph if

possible.

The above discussion might lead us to an approach on how to break down the design
knowledge into pieces: We should break the design knowledge in a way that the most

expensive methods are located in the shallower depths of the dependency graph.

Figure 8-2 shows an example of a backtracking process between 10 designer agents
that are arranged in a dependency graph (see “Dependency Graph vs. Cycle Tree, and
Design Cycle vs. Design State” on page 135). The design process starts by making the

design requirements available to the collection of designer agents. After the designers in a

169

row of the dependency graph finish their design the constraints are checked. If any con-
straint is violated, the backtracking takes over and decides what backtracking agenda
should be followed. The backtracking agenda includes the depth to which the design pro-
cess should backtrack. A new design state is initialized at that depth and the process con-
tinues until either a solution is found that satisfies all the constraints or the system fails to

find such a solution.

| Design Requirements |

Design State at Depth 0

X

.4— Constralnt Checking

\
——»{ Design State at Depth 1|

\
\
\
\
\
\
\
\
\
\
\ \
\ \
\
oA |
= \
g \
:_E:é :(L(Constraint Checking /

\
:E .— . Design State at Depth 2
QO \
\ @® \
s A \
\ \
\ \
: < X Constraint Checking):/—|
: o—/——>> ' Design State at Depth 3 |
\
~ :
\
vOA
\ \ /
\
\ _:4— Constraint Checking
L, \

Design Product
Y Setof Design Parameters @ Selecting Backtracking Agenda
/ Successful Design State X Unsuccessful Design State
-— Backtrack —>» Re-design

Figure 8-2.Flowchart of Backtracking Process.

170

8.4.1 An Algorithm for Backtracking

The algorithm for backtracking that is proposed in this section is the final version of a series
of algorithms that evolved during the process of designing and implemerbndhe orig-

inal algorithm was influenced a great deal by the backtracking mechanism of an expert
system for designing elevators called VT ([Marcus 92]). Being exhaustive and fast are the
two criteria that were used to modify the earlier versions of the backtracking algorithm in
RD. Being general was later added to the list of criteria in order to make the algorithm
applicable to situations that the set of designer agents that participate in the design process

might change during the design process.

Assuming that each constraint applies only to one parameter (that is each constraint
has one input) and each parameter is produced by no more than one designer, the following

algorithm is proposed:
1. Reset the list of prospective re-designers;

2. For each violated constraint find the designer that can affect it and is the deepest in the
dependency graph (that is the closest designer to the depth at which that constraint vio-
lation occurred). This rule is to reduce the propagation of the changes due to the re-

design to other design parameters;

3. If there is at least one constraint that cannot be resolved by re-design (because there is
no designer which can affect that constraint that has not exhaustively re-designed) then

the design has failed,;

4. Order all the designers in step (2) based on their depth in the dependency graph,

171

5. For the set of designers in (4) (ready for re-design) that have the lowest depth check if
any of them affect the designers in (4) but at higher depths:
o Ifthere is such a designer, remove it from the list of (prospective re-designers),
o If there is no such designer, move to the set of re-designers in the higher depth

and repeat (5),

6. Roll back to the last design state in the depth of re-designers in (5) with lowest depth,
create a new design state with its parent being the most recent design state at one level
up,

7. Start re-design. For each designer downstream in the process check if it is supposed to
re-design (that is if it is in the list of prospective re-designers).

In this chapter we described some of the implementation detaRDofThis prepares us

for the next chapter that discusses the experiments that we did using RD. In the next chapter

we show how we defined the space of requirements and constraints. We also show the

results of using RD in simulating the design process and provide some preliminary analysis

of the results.

172

9 Experiments

In previous chapter we talked about the implementation details of the multi-agent
design system for robot desigRD. In this chapter we describe the experiments that we
did usingRD to produce traces that in the next chapter will be used to generate design

methodologies.

First we discuss how the range of design requirements and constraints were chosen.
During this part we use the results of an extensive sensitivity analysis to see effect of dif-
ferent factors in the results of the system. We used the results of the sensitivity analysis also
to verify the correctness of the system by checking to see if they conform to the first prin-

ciples.

We then present the traces generated by the system and do a preliminary analysis to

evaluate the opportunities for extracting methodologies from them.

9.1 Range of Requirements and Constraints

In this section we choose the range of values for the requirements and the constraints that
defines the requirement space for the set of projects in the experiments. The range of
requirements define the sub-set of requirement space that we select for experimenting with
the system. Varying the constraints while keeping the requirements constant, brings the
effect of constraints into the process of generating design methodologies (see Figure 6-3,

"Different Constraints Produces Different Designs and Traces." on page 111).

173

In the experiments conducted, all the design parameters that serve as requirements
were varied over different values. From the list of constraints, however we picked two of
them to vary over a specified range. The reason we did not vary all the constraints is to
reduce the number of projects that should be solved. Varying all the constraints each with
two different values will produce a huge number of projects in the order of hundreds of
thousands. Therefore, we needed to pick the most important constraints, i.e., the most sen-
sitive constraints. Sensitive constraints are those where a change of their value will have
the most dramatic effect on the different paths taken by the system. In the following section
we present the results of a sensitivity analysis that we did with the h&pab first choose
the boundaries of requirements and secondly find the most sensitive constraints and their

range.

9.1.1 Sensitivity Analysis

In order to be able to select the range of design requirements and constraints we need to get
a picture of how design parameters change with changes in design requirements. That is,
we need to do a sensitivity analysis in the domain in order to be able to determine the range

of requirements that will lead to covering a large design space.

Similarly, we need to study the effect of design approaches in a designer agent on
design parameters generated. Different design approaches should generate alternative solu-
tions that are sufficiently apart from each other. The reason is that if different design
approaches keep generating values that are almost in the same range, there is less chance

that the violated constraints will be satisfied. Therefore, we need to make sure that picking

174

different approaches (i.e., taking alternative paths) will actually generate different solu-

tions.

For instance, as a result of sensitivity analysis we discovered that the design
approaches irDesigner_S 1 are not generating sufficiently different designs. The
design approaches of this designer were originally based on choosing different ratios for
thickness to the dimension of the cross section of the link. Later in this chapter we will see
that for ratios greater than 0.1 the change in the dimension of the link is negligible
(Figure 9-5). In fact we found out that there is an optimum value for the ratio that is around
0.1. Consequently, we fixed the ratio of the thickness to dimension to 0.1. On the other hand
we realized that the dimensions that are calculated based on stress analysis for the cross sec-
tion of the links cause excessive deflection for the tip of the robot (with regard to the con-
straints). Therefore, we replaced the design approaches with the ones that are based on the

ratio of the dimension of the cross section to the minimum required by the stress analysis.

For the sake of discussion we assume that the constant parameters of the constraints
do not change from one project to another. Changes happen only to requirements. the
requirements are: workspace |, workload settling_time , and
maximum_overshoot . The last three of these parameters are scalar. Therefore the most
straightforward method to vary them for different projects is to define a starting value, an
increment, and the number of increments. Woekspace requirement, however, cannot
vary as simply as the others because it is a set of points in the plane. Some collective
attributes could be related to the workspace points that are based on their distribution in the
plane. A primary investigation of the design methods shows that the distribution of the

points may not affect the result of design very much. What seems to affect the design more

175

is how the points are stretched in the plane and the area that they cover. Therefore, we con-
sider the two following collective attributes of the workspace based on the rectangle that

includes the points:

» aspect ratiothat is the ratio of the width of the rectangle circumscribing the work-
space, ‘workspace rectangle’, to its length assuming length is greater than width (see

Figure 7-2, "Different Locations for the Base of the Robot." on page 126), and,

» area the area of the workspace rectangle.
Now we are able to vary the workspace in the same manner as the scalar parameters by

varying the above two attributes in a range.

The important point is how to pick the start and end points so that most of the design
space is covered. That is, how to pick the limits on the requirements so that a large part of
the trace space is covered, because we are interested in obtaining the largest set of traces
that have led to some points in the solution space, without actually testing all possible

requirements.

In the following sections we present some of the results of the sensitivity analysis
that we did to find the proper range of values for requirements and to find the most sensitive

constraints and their ranges.

9.1.2 Sensitivity Analysis on Control Gains

We found that the gain of the controller depends on many other design parameters. One of
the design parameters that has the most effect on the gains is the dimension of the cross sec-

tion of the links.

176

Equation 2-23 on page 38 shows that both proportional and derivative gains of the
controller for each link is a linear function ofJ the moment of inertia of the links. On the
other hand Equation 2-20 on page 37 shows thgbr the first link is a linear function of
the masses of the first and second links, whilgfor the second link depends only on the
mass of its own. Finally, Equation 2-8 on page 34 shows that the mass of the links is a
second order function of the dimension of the cross section of the link. Therefore we would
expect to see a non-linear change in the gains versus dimensions of both links for gains of
the controller for the first link. We also would expect to see that the gains for the second
link does not depend on the dimension of the first link. Figures 9-1 to 9-4, that are based on
the results oRD, verify the above conclusions about how the proportional and derivative

gains for both links vary by changing the dimensions of the cross sections of the links.

Figures 9-1 to 9-4 show not only how the controller's gains change versus the
dimension of the links, they also provide some candidate value for what the boundaries of
the constraints on the gain should be. Kpl, Kd1, Kp2, and Kd2 are proportional and deriv-
ative gains for the first and the second links respectively. d1 and d2 are the dimension of
the cross section of the first and the second links respectively. The figures show that among
all the gains Kp1 has the highest probability of violating its constraint because it takes very

large values.

To conduct the sensitivity analysis of Figures 9-1 to 9-4 the values of other param-
eters that would affect the gains of the controllers were kept constant. These parameters are:
the link lengths (1.53m and 0.768m), material (steel), shape of the cross section (hollow

round), workload (1 kg), settling time (3 sec), and overshoot (40%). These values are nom-

177

inal—the way the gains change versus dimensions was not affected by changing these val-

ues.

T Effnct af Cose Saction Dimenson on Kp (holims: rousd)

DD .
4= 153m
w200 2= 3. 7EE M
mrerterin| derafy « TEI0 kgim
e e S @ Falaad noind
workland w1 kg
e deiiheg Bme = & s
- mepmhaod =
2 o .
404 -
2 -
0ol
e e
ar - e
7 [& 7]
ans (R L]
1l rs] . -
- o
il e . g0
& ok L]

1 {mj

Figure 9-1. Sensitivity Analysis on Kp1 due to Changes in Cross Section Dimension.

178

Tt Effnct of Coss Section Dimenson on Kd 1 (holiow rousd]

Figure 9-2.Sensitivity Analysis on Kd1 due to Changes in Cross Section Dimension.

179

Tt Effnct of Cse Section Dimenson on Kpd (holiow rousd]

HeiEIm
e DFEm
mpsinl gty « TAEDkpm
= . Eitd Se0on = holow rousd
wididnad = 1 by
0 | metting bime = 1 see
st = IR
-
5 H
-
18-
10 -
B
-
e
iﬂ'ﬂ"'- =

Figure 9-3. Sensitivity Analysis on Kp2 due to Changes in Cross Section Dimension.

180

Thn Effeect ol Croes Sactian Desenson on Kdil (oo imusd]

Figure 9-4. Sensitivity Analysis on Kd2 due to Changes in Cross Section Dimension.

Figure 9-1 to Figure 9-4 suggest that reducing the dimension of the cross section of
the links reduces the controllers’ gains. Reducing the cross section dimension of the links,
however, will dramatically increase the maximum bending stress of the link (see
Equation 2-6 on page 34). One way to keep the stress constant while reducing the dimen-
sion of the cross section (hence reducing control gains) is to increase the thickness of the
cross section. Figure 9-5 shows how the dimension of the cross section is reduced by
increasing the thickness/dimension ratio for a link with hollow round shape. Clearly there
is an optimum value around 0.1 beyond which the increase in the thickness does not reduce
the dimension but adds to the mass of the liDksigner_S_1 uses this optimum value

for structural design and finding the dimension and thickness of the cross section.

181

M= 153m

[« B7ER M
rrsaliial dematy s P9 kgdm
g4 seCtion « holos round
wrrkload = 1 kg

ating fmo = 3 anc
avirihsdgl « 40%

To conduct the sensitivity analysis of Figure 9-5 the values of other parameters that
would affect the dimension of the cross section of the links were kept constant. These
parameters are: the link lengths (1.53m and 0.768m), material (steel), safety factor (3),
shape of the cross section (hollow round), and workload (1 kg). These values are nominal

and do not affect the way the dimension changes versus the ratio.

Crass Sachen Demmeter o Fret Lisk v ThicknassTivmseior Fab:s

L0
I. N =1 KR
= g % - 07583
:E' oos b s deraity = 7580
rr} yisld strength = SS0003000
= Db mifhity hackad = 3
E Lrosh dorbon Hhape = Ml aund
.Ii Doy waih bosad = 1
fidt
00F L
B nm it n1a i L] 8] [] 245 3
Tk
Ceoaw Secion Cinmader af Secora Link v ThickeraaiTiameier Aatin
DS . = z L i : z .
|
E
= Qs £
£
E ot
:
e
i

0 e iK1 g 0 bE 1 0d 345 BS
b

Figure 9-5. Sensitivity Analysis on Cross Section Dimension due to Thickness.

182

Figure 9-6 shows the same trend as in Figure 9-5 for a cross section with a hollow square

shape. Therefore, we use the thickness to dimension ratio of 0.1 for both shapes.

Croas Sechicn Demmeter of Fret Lisk we ThicknaasThamebor Fabs

LT ¢
N =1 EEE

0L |
E B = 0TEsE
g bl | mnen derarty = TER]
& o prdd slrength = BA000200
E e anforty Sactor = 1
a 10k dThin $hEpE = Il fuisd

b2}

wark foad = 1
[=i} 1 1
B nm at n1s nz s Or 515 o4 4% L
ko
Cepgw Srcton Dinmeder ol Fecond Link va ThickersaTiamater Batio
E ol
£
E e R
o b f
A o |
E s a1 0is az (] b3 L L] 04 148 b5

1]

Figure 9-6. Sensitivity Analysis on a Hollow Square Cross Section Dimension.

183

Figure 9-7 shows that the dimension of the cross section of the links changes almost lin-

early with respect to the safety factor.

Traas Sacticn [hemater of Fnet Lk #n Sefety Fackar
OLLS . ¥ =

1 = 15356
L e]
ikl derity = Fin)

Dube | i girength = 25000

ke aloiametel = 6.1
Eririh Si==how dhapE = Il durns

daeetir, Trat bk {im)

work boud = 1
1 15 2 28 2 bl & 445 -1
SfeT O

Copam Sossion Dinmafoer af Second Link v Safebhy Fesior

DD F

Saimeied, deosnd ik i
- -
=

Figure 9-7.Sensitivity Analysis on Cross Section Dimension due to Safety Factor.

Figure 9-8 shows the effect of the dimension of the cross section on the deflection of the
tip of the robot. It is clear that the deflection of the tip, similar to the proportional gain of
the first controller, has a high chance of violating its constraint due to its exponential
increase when the dimension of the cross section is reduced. Also, it was observed that for
a large portion of the design space while the deflection of the tip grows to an unacceptable
size, the stress level in the link remains in the safe range. One reason for this effect is that

the cantilever configuration of the links produces large deflections. As a result,

184

Designer_S_1 first picks the design approaches that produce large cross section dimen-

sions for the links to avoid excessive deflection.

The EHecy ol Croeee S ecboe Dimersicn on Ceflechen ol tha Tiz (ki morsd]

(R}

a3 —

o d.ad

2.3 224

Eas B 3 -
BB bET az
b ar |mj

2 [

Figure 9-8. Sensitivity Analysis on Deflection of the Tip Due to Dimension of Cross Section.

Figure 9-9 shows the effect of the shape of the cross section on the deflection of the tip of
the robot. Clearly a square cross section produces smaller deflection. The nominal values
of the other parameters that affect the deflection of the tip are given in the graph and are the

same for both round and square shapes.

185

E#¥act of Crass Section Shape on Deflecton of Be Am
G '

haallz raung

0 -

[*R F4

arg

DD -

defieston [m|

D06

DLOE -

Figure 9-9. Sensitivity Analysis on Deflection of the Tip due to Cross Section Shape.

Figure 9-10 shows that links from steel have smaller deflections relative to links made from
aluminum. Aluminum, however, is lighter, hence it produces smaller moments of inertia
and smaller control gains. The values for the other parameters that affect the deflection of
the tip were the same as shown in Figure 9-9 except that the shape of the cross section was

fixed to circular and the material changed.

186

E¥nct of Mwiasnl on Deflecton of te Arm

]

R S

OEh -

el im|

CALls

ol

DB -

Figure 9-10.Sensitivity Analysis on Deflection of the Tip due to Material.

The most dramatic effect on the control gains is caused by the link lengths. Reduc-
ing the link lengths by half causes reduction in the gains for Kp1 from 1200 to 160, for Kd1
from 200 to 20, for Kpl1 from 30 to 4.8, and for Kd2 from 4.8 to 0.75. The reason for this
large effect is the multiple fold effect of the length on the moment of inertia of the links due
to reduction of the mass and the length itself. As the result, minimization of the link lengths
can become very effective in satisfying tight constraints. The minimization approaches,
however, are very expensive in terms of the design time because of their iterative nature.

Therefore, we push the design approachd3asigner K 2 that are based on minimi-

187

zation onto the end of the list of approaches. That is, we use the expensive approaches only

after the less expensive design approaches cannot generate a satisfactory design.

The control gains decrease considerably by selecting aluminum over steel, assum-
ing the same dimensions for the link. The reason is a much lower density for aluminum
(2630kg/m3 compare to 7920kg/m3 for steel). The maximum Kpl is reduced from 1200 to
450, for Kd1 from 200 to 80, for Kp2 from 30 to 15, and for Kd2 from 4.8 to 2.4 by switch-

ing to aluminum.

The control gains increase for a hollow square shape for cross section relative to
hollow round shape, however, the magnitude of change is not as large as the other factors.
For Kp1 from 1200 to 1500, for Kd1 from 200 to 280, for Kp2 from 30 to 37, and fro Kd2

from 4.8 to 7.5.

Many sensitivity analyses similar to what the above graphs show were conducted
in order to find the appropriate range for design requirements. Table 9-1 shows the range

of values for the requirements.

Table 9-1.Different Values for the Requirements.

workspace (see Table 9-2) {"small-M", "small-L", "big-M", "big-L"}
workload (kg) {1.0, 2.0, 3.0, 4.0, 5.0}

settling_time (sec) {3.0, 2.0, 1.0}

maximum_overshoot (%) {50, 40, 20, 10}

Table 9-2 shows the coordinate of the points in each workspace and Figure 9-11
shows the shape of the four different workspaces in the plane, hence the name chosen for
them. In page 176 we described two collective attributes of the workspace, i.e., the aspect
ratio and the area that are important. The ‘M’ and ‘L’ type of workspace have different

188

aspect ratios. The size of the workspace, i.e., small or big takes the second attribute (area)
into account. The combination of these two attributes for shape and size produces four dif-

ferent workspaces as shown in Figure 9-11.

Table 9-2.The Coordinates of the Points in Each Workspace (in meter).

small-M x=[050.751.01.251.51.75 2.0 2.25 2.5]
y =[0.250.50.751.0 0.75 1.0 0.75 0.5 0.25]

small-L x =[0.50.750.750.75 1.0 1.0 1.25 1.25 1.25 1.5 1.5 1.75 1.75 2.0]
y=[0.50.250.751.751.01.50.51.25 2.0 0.75 1.5 1.0 1.75 1.5]

big-M x =[1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0]
y=[051.01.52.01.52.01.51.0 0.5]

big-L x=[1.01.5151.52.02.02.52.5253.03.03.53.54.0]

y=[1.0051.5352.03.01.02.54.01.53.02.03.53.0]

6
* small-M
c X small-L
777777777777777777777777777777777777777 + big-M
big-L
4
£ 3
>
2
1
0
0 1 2 3 4 5 6

x (m)

Figure 9-11.Different Workspace Used as Requirements.

189

The lower and the upper limits of the values selected for the workload, settling time,
and overshoot are based on the feasibility of the controller’s gains as well as the deflection
of the tip. The variation of the values in each set is based on the sensitivity of the control-
ler's gains and the deflection to each requirement. We were limited in the number of vari-
ations to keep the size of the design problems that need to be solved within a manageable
range (e.g., 1000 problems). That is because the number of the problems is a function of

the number of the variations of the requirements and constraints.

9.1.3 Finding Critical Constraints by Sensitivity Analysis

The result of an extensive sensitivity analysis on design parameters shows that the set of

design parameters can be divided into three subsets:

1. The first subset includes the deflection of the arm and the control gains (especially
Kpy)- These are the design parameters that are effected by the design requirements the

most and as a result are the most likely to violate the corresponding constraints.

2. The second subset of design parameters are less critical in violating their corresponding

constraints. This subset includes accessible region area, and link lengths.

3. The third subset of design parameters that includes the rest of design parameters are the
most likely to remain within their constraint ranges.

The sensitivity analyses also revealed that the constraints on the proportional gain of link

1 and the deflection of the tip are the most sensitive ones. Therefore, they are the two con-

straints that we chose to change for different projects. Changing a constraint here means to

change the set of acceptable values by that constraint. That is, we would like to see how

190

making a constraint tighter or looser affects the system in taking different paths (hence,

generating different traces).

In “Constraints” on page 139 we described how the set of acceptable values for a
constraint might be a function of design parameters that are changing during the design pro-
cess, therefore, for such constraints the set of acceptable values change dynamically during
the process. In these situations we describe the set of acceptable values by defining the
values for the variables that are used to make up the acceptable set of values. For instance,
the maximum acceptable ratio of the diameter to the link length is such a variable for the
constraint on the maximum size of the dimension of the cross section of the link (see the
example in page 141). Table 9-3 shows these variables and the set of values for them for
constraints that were usedRD. As it can be seen only the constraints on the deflection of

the tip and one of the gains is varied.

Table 9-3.Values for ‘Variables’ of the Constraints.

The Variable Name The Set of Values
minLink1Length {0.0}
maxLinklLengthToWorkspacelLengthRatio {1.0}

minLink2Length {0.0}
maxLink2LengthToLink1LengthRatio {1.0}

minThetalMin {-3.141592653589793}
maxThetalMax {3.141592653589793}
minTheta2Min {-3.141592653589793}
maxTheta2Max {3.141592653589793}
minLink1Dimension {0.0}
maxLink1DimensionToLinklLengthRatio {0.1}
minLink2Dimension {0.0}

191

Table 9-3.Values for ‘Variables’ of the Constraints.

The Variable Name The Set of Values
maxLink2DimensionToLink2LengthRatio {0.1}
minLink1ThicknessToLinklDimensionRatio {0.05}
maxLink1ThicknessToLinkl1DimensionRatio {0.25}
minLink2ThicknessToLink2DimensionRatio {0.05}
maxLink2ThicknessToLink2DimensionRatio {0.25}
minAccessibleRegionArea {0.0}
maxAccessibleRegionAreaToWork- {1.0}
spaceAreaRatio

minTipDeflection {0.0}
maxTipDeflectionToLinkLengthsSumRatio {0.01, 0.001}
minProportionalGainl {0.0}
maxProportionalGainl {1000, 100}
minDerivativeGainl {0.0}
maxDerivativeGainl {200}
minProportionalGain2 {0.0}
maxProportionalGain2 {200}
minDerivativeGain2 {0.0}
maxDerivativeGain2 {200}

The combination of all the variations of design requirements and design constraints

as shown in Table 9-1 and Table 9-3 generates 960 different projects:

2(deflection) x 2(gain) X 4(workspacg X 5(workload) x 3(settling- time) X 4(max— overshoot = 960

192

9.1.4 Categorizing Projects

The range of requirements or constraints can be partitioned into different subsets and
assigned qualitative names. Figure 9-12 shows an example of such categorization. The
reason we divided the requirements into five categories and the constraints into two cate-
gories is to cover all the values in the set of requirements and constraints shown in Table

9-1 and 9-3.

Combination of different situations with respect to the requirements and the con-
straints produces 10 different situations for the design projects only with respect to one
requirement and one constraint. For instance, in 960 projects that were solved during the
experiments 92% had at least one very tough requirement or one tight constraint (situations

5to 10 in Figure 9-12).

Lo tight 6 - T 8 9 0
= ‘ ‘ ‘ ‘ ‘
o
17
c
S | | | | |
loos@ 4= - - - - - - - - 1. - ____. 2 - _____ 3. 4 - - ____ 5. _____]
| | | | |
very easy easy moderate tough very tough

requirement

Figure 9-12.Categorizing Projects Based on Requirements and Constraints.

193

9.1.5 Effect of Design Approaches on Constraints

In this section we describe how the combination of some of the design approaches may
affect design parameters leading to constraint violation or satisfaction. We give an example
of a project that was not successful, i.e., none of the combinations of the design approaches
could find a design that would satisfy all the constraints. In this example, the constraint that

could not be satisfied was the constraint on the proportional gain of the controller.

In a run with the following requirements, we observed that the gain of controller
(proportional_gain_1) would change between 105 to 16762. For this problem a
solution was never found that would satisfy the constraint on the gain (the maximum allow-
able constraint on the gain was 100). This wide range of change was due to adopting dif-
ferent design approaches by designers. The results of a primary investigation showed that
when Designer K 1 chooses to minimize the summation of link lengths and
Designer_S 2 chooses aluminum for the material

(aluminum_alloy 5456 H116) the minimum value for the gain is found.

We discovered that a low control gain can be achieved by minimizing the link
lengths and selecting a material that has a very high elasticity modulus to density ratio. This
relationship can be derived from first principles. A short and light weight link has a low
moment of inertia that needs less control effort hence lower control gains. Table 9-4 shows

what design approaches led to the lowest control gains for a specific project.

Table 9-4.Design Approaches of the Lowest Control Gain

Proportional Gain 1 105.187| 105.36|7 105.4+5 105.5|70 105|648 10115.701 1(15.783 1P5.875 105.971
Designer_K_1 minimize the summation of link lengths

Designer_K_2 choose the second link to Bes of the first link | 0.75
Designer_K_3 choose deft-hand configuration for the robot

Designer_K_4 use the default approach for calculating accessible region area

194

Table 9-4.Design Approaches of the Lowest Control Gain
Proportional Gain 1| 105.187 105.36} 105.4+5 10570 105|648 105.701 1(5.783 1p5.875 105.971

Designer_S_1 4 3 cross section 4 times 3 2 3 4 4
of minimum allowable

Designer_S_2 usealuminum for the materials of the links

Designer_S_3 safety factor 1.1 1.4 1.1 | 1.4 1.1

Designer_S_4 sguarecross section | circular square | circular | square | circular | square

Designer_S_5 use the default approach for calculating the deflection of the tip

Designer_C_1 use the default approach for calculating the gains of the controller

Table 9-5 on the other hand shows what design approaches should be avoided when
a low gain is requiredDesigner_1 1 has used a design approach that puts the base of
the robot to the left or below the width of the workspace rectangle. While this makes the
sweep angles small, it generates long link lengBesigner 2 2 selects steel for the
material (as opposed to aluminum) that makes the link heavyDasdjner 2 3 selects
a high safety factor that increases the dimensions of the cross section of the link. All of
these approaches help to increase the moment of inertia of the link that on the other hand

increases the gain.

One last observation based on the results of Table 9-5 is the contribution of
Designer_1 2 to the high gainDesigner_1 2 is the designer that calculates the
length of the links of the robot. It has three approaches that are ordered based on the ratio
of the second link’s length to the first link’s length. The first approach sets the length of the
second link as half of the first link, the second approach 0.75 and the last approach sets the
link lengths equal to each other. As a result, to cover the same workspace the first and
second approaches find a longer length for link 1 that at first does not seem to be in the
favor of a low gain. But the fact is that the effect of the moment of inertia of the second link

on the first link is larger than the effect of the first link’s length. As a result, for a lower gain

195

(in fact, for a better distribution of the values of the gains between link 1 and 2) it's better

to make the second link shorter.

Table 9-5.Design Approaches for Highest Control Gain

Proportional Gain 1 9171 9618 9517 12541 12694 16761
Designer_K_1 put the base of the robot to the left or below midway width of the workspace rectangle
Designer_K_2 link 2 equalto link 1 link 2/ link 1 = | choose the second link to legualto the first link

0.75
Designer_K_3 choose deft-hand configuration for the robot
Designer_K_4 use the default approach for calculating accessible region area
Designer_S_1 2 3 cross section 4 times of minimum 3 4

allowable

Designer_S 2 usesteelfor the materials of the links
Designer_S_3 safety facto8
Designer_S 4 circular section| squaresection | circular section| squaresection circular section
Designer_S 5 use the default approach for calculating the deflection of the tip
Designer_C_1 use the default approach for calculating the gains of the controller

The requirements for the project that followed the approaches of Table 9-5 are

shown in Figure 9-13:

workspace: x = [1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0]
y = [0.5 1.0 1.5 2.0 1.5 2.0 1.5 1.0 0.5]
workload = 1.0 kg
settling_time = 1.0 sec
maximum_overshoot = 10.0%

Figure 9-13.Frequency of Successful Traces.

The above observations show two things:

1. Study of the behavior of the system in microscopic level (i.e., the steps that it takes to

resolve a constraint violation) is rational and based on the first principles of physics.

196

2. At a macroscopic level the behavior of the system has some patterns that have emerged
from its activities in the microscopic level. This is a promising sign of being able to dis-

cover design methodologies from the macroscopic behavior of the system.

9.2 Traces Produced by RD

We can define many different types of traces for the system, such as the trace of message
handling, the trace that results in building the dependency graph, the trace of the design
states, the trace of the system during the recovery from constraint violation, etc. The trace
that we are interested in is the one that leads us to design methodology. Depending on how
rich the design methodology is going to be (in terms of including more aspects or more
details), we may have to look at various types of trace that the system produces. The most

basic design methodology can be extracted from the trace of the design states.
The traces oRD are stored in four different files:

1. Afile that stores the set of design requirements for each design project (each design

project would be one example in the training set),

2. Afile that stores the set of design constraints for each design project. Note that even if
we keep the set of design constraints constant for different projects, the upper and lower
boundaries of some of the constraints may change because they depend on the current
value of some design parameters. The reason is that for some of the constraints we do
not define the upper and lower boundaries explicitly, but in terms of the current value of
a design parameter. For instance, we define the maximum acceptable value for the sec-
ond link of the robot to be equal to the current value for the first link’'s length—that is,
the second link is not allowed to be longer than the first link. Because the first link’s

197

length changes during different cycles of design, the upper boundary for the constraint
on the second link’s length is dynamic. That should be considered when comparing dif-

ferent projects with similar traces for the requirements and design approaches.

. Afile that stores the sequence of design approach indices for designer agents. The order
in which we store the design approaches in a sequence is based on the order that

designers have in the dependency graph.

. A file that contains the values of all design parameters for the project. If the design is
successful, this is the design product description otherwise it is just the last set of values

for the parameters as found RpD.

Each project will have a unique identification number that will be stored in each of the

above trace files. Therefore we can relate traces of different type (requirements, constraints,

approaches, design parameters) to each other via this identification number.

The following is summary of the information that different trace files can contain.
the serial number of the trace,
the design requirements and constraints for this trace,
whether the design was successful or not,

the values of design parameters for a successful design (i.e., description of the design

product),
the design dependency graph for designer agents,

the sequence of design approaches in each designer agent that led to a successful

design,

198

the number of design cycles before reaching a successful design or the number of

design cycles after exhausting all possible solutions for failure situations,
the time and memory that were spent during this design project,
the number of messages that were exchanged between agents,

the number of sent, received, processed, and ignored messages for each agent (to detect

bottlenecks in information exchange, overloaded agents, etc.)

the time spent by each agent in processing its tasks especially the total time taken by

each designer agent to design,
the number of design cases (receiving inputs, generating outputs) done by each agent,

the number of backtracking sessions that were created, their corresponding violated

constraints, and the number of agendas in each backtracking sessions,

if the solution was found while in a backtracking session, the session number, the

agenda number, and the violated constraints of that session.

The above information could be used to analyze various aspects of the design process as

well as the design product. For instance, we could draw the graph of a design parameter’s

values versus design cycles for a design project to show how they have changed over the

period of the design process with respect to different design approaches. The boundaries of

the design constraint on a specific design parameter value can be drawn too to show the

best and worst cases in terms of satisfying the constraint.

We will prune the traces for the purpose of generating methodologies, so that they

only contain the key information about the design process. The least amount of information

that should be included in the traces are:

199

1. the serial number of the trace,

2. the sequence of design approaches in each designer agent that led to a successful

design.

9.3 Distribution of Traces

The factors that are effective in distribution of traces with respect to problems are the
selected range for requirements and the upper and lower limits of the constraints. The other

factors are the design approaches and domain dependencies between design parameters.

Requirements influence the distribution of the traces in two different ways: First,
the set of design parameters that are selected as requirements, and second, their values. Due
to the domain dependencies, design requirements effect the rest of design parameters with
varying strength. We have assumed that design requirements do not change during the
design process. Therefore, the traces that are generated will be very dependent on which set
of parameters have been selected as requirements. As a result, the generated traces will be
concentrated around traces that are influenced by the set of requirements. Selecting a dif-
ferent set of design parameters will produce a set of traces with concentration in different

parts of the trace space.

The upper and lower limits of the constraints directly affect the distribution of
traces. This is because the violation of constraints cause different combinations of design
approaches to be tried. Selection of the limits of most of the constraints is a domain depen-
dent task and therefore seems to be ineffective in changing the distribution of the traces.
However, the fact is that the limits of the constraints can dynamically change as a function
of design parameter values. Therefore, they may become an important factor in the distri-

200

bution of traces. In addition, some of the design constraint’s limits are chosen based on the

engineering judgement and the specific application in mind.

Selection of the actual design approaches directly affects the distribution of traces
of approaches. If different design approaches generate design parameters’ values that are
considerably apart from each other, there is more chance that the corresponding violated

constraints will be satisfied somewhere later in the process.

Please note that the ‘design approaches’ factor is not independent of ‘requirements’
and ‘constraints’ factors. Changing the set of design requirements makes a different set of
parameters and their corresponding constraints critical. This might make the less effective

approaches more effective with regard to those parameters and constraints.

Dependencies between design parameters determine whether choosing a different
design approach can resolve the violated constraints. There are two difficulties, however,
in using domain dependencies for directing the selection of one design approach over
another: First, some of the dependencies are not monotonic. Second, the violated con-
straints often require contradictory changes in design approaches. In the following we will
see that reduction of the deflection of the robot’s arm is usually in contradiction with reduc-
ing control gains. The constraints on these two parameters are of critical type, meaning that

they are effected by the requirements and are violated more often than the others.

9.4 Generating Traces

We usedrRD to solve a set of 960 design projects on the following machines:

201

1. SUN Ultra 5 Workstation, Running OS Solaris 2.5.1, CPU UltraSparc, 4 GB HDD, 64

MB RAM.

2. Digital 433au Workstation, Running Digital Unix 4.0D, Alphachip 433 MHZ CPU, 4

GB system Disk, 576 MB of RAM.
The run time varies from project to project from a few seconds to a couple of hours. The
projects with easy requirements and loose constraints are solved very fast. This is, because
there is a high chance that the solutions that are found early in the process satisfy all the
constraints. For hard problems (i.e., tough requirements and tight constraints), however, the
number of satisfying solutions are not many or do not exist at all. As a result, the system
needs more time to search through all possible solutions. For the set of 960 projects that

RD solved, the two machines were running for a period of around three weeks.

Figure 9-14 shows the frequency of successful projects compared to unsuccessful
traces for the whole set of projects. The large number of unsuccessful traces relative to the
total number of projects (38%) is due to the coarse grid that we have chosen on the require-
ment space. The number of projects with tough requirements and tight constraints is quite
large compared to total number of projects. In fact 92% of the projects have at least one

requirement that can be considered tough or one constraint that can be considered tight.

202

Frequency of Successful and Unsuccessful Projects

590

370

unsuccessful successful

Figure 9-14.Frequency of Successful and Unsuccessful Projects.

Figure 9-15 shows how the successful and unsuccessful projects are distributed.
The figure shows that a pattern is repeated that divides the projects into two parts at 480.
These two parts correspond to the point where the constraint on deflection changes, that is
for the first half of the projects the constraint on deflection is loose and for the second half
it is tight. Toward the end of each half that the tough requirements combine with the tight
constraint on the gain of the controller, the number of failed projects increases. The number
of unsuccessful projects is clearly more in the second half because of the effect of the tight

constraint of deflection.

203

Distribution of Successful and Unsuccessful Projects

successful e o ————————————— s o555 5 5 s 4 o ,

unsuccessfu R - e e e

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
project ID

Figure 9-15.Distribution of Successful and Unsuccessful Projects.

Figure 9-16 shows how many projects followed a specific trace. The promising
results is that the distribution of the traces is quite scattered—that is, many projects fol-
lowed similar traces. Remember that the a specific trace index shows a unique combination
of design approaches (see “Design Path” on page 105). Therefore, the total number of pos-
sible traces is the product of the number of design approaches of all the designer agents.
For the experiments shown in this dissertation the total number of possible traces is 2304.
Among all 2304 possible traces only 84 were followed to generate successful designs, i.e.,
less than 4%. Throughout this and the following chapters we refer to the set of traces that
produced successful designs as successful traces. The low percentage of successful traces

204

indicates that for each group of projects that followed a particular trace there is a unique
combination of approaches leading to successful designs, hence there is a high chance that
if similar projects follow the same trace they will succeed in generating a successful
designs. As a result, the path followed by those projects can lead us to formulating a design
methodology for the projects that followed that trace as well as projects that are similar to

those projects.

We may even find traces in the set of successful traces that are close enough so that
they can be clustered together form a generalized trace. A generalized trace covers all the
projects that followed each of the traces incorporated in the generalized trace. In the next

chapter we will extensively discuss clustering of traces into generalized traces.

205

Frequency of Traces
160 ‘ ‘

140r
total number of traces with non-zero frequency = 87

\

\

il

\

\

number of traces with successful design = 84 \
120 1
number of traces with unsuccessful design = 4 |
[

|

1001

frequency
(@)
<

60

T

40

20F

T T

0 500 1000 1500 2000
trace index

Figure 9-16.Frequency of Traces.

Figure 9-17 shows how the traces are distributed relative to the projects. It clearly
shows that there are some patterns in projects taking one particular trace. We intentionally
have set the grid in Figure 9-17 to match one of the dominate patterns that is happening
every 60 projects. This pattern matches the change of workspace requirements: the first 60
projects have a ‘small-M’ type of requirement for the workspace. The next three subsets of
projects in groups of 60 projects have a ‘small-L’, ‘big-M’, and ‘big-L’ type of workspace

respectively (see Figure 9-11 on page 189).

206

Observing these patterns is another promising sign of being able to formulate
design methodologies based on the traces of the system. These patterns show that the
projects that followed the same traces have common features, e.g., they have the same
requirements on workspace. As a results, we might be able to generalize the set of projects
that followed the same trace based on their common features. Generalizing projects is

another step toward formulating methodologies.

Trace Index vs Project ID

2500 T T \ T T
2000+ . . Pon._.’ o ® : o amess oo s o ‘© oo em— -
15001 o soecmce P wecccmece e ® o oo =—eses pe— oo |
X
(9]
©
£
(O]
Q
©
1000F st .
5001 *
0 | el [T e | —_ o [T \ \
0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960

project ID

Figure 9-17.Traces versus Projects.

Figure 9-18 shows the frequency of all 84 successful traces. It is evident from this

figure that a small number of traces have very high frequencies (say higher than 20). This

207

is even more good news for being able to find design methodologies. A small number of
traces with relatively high frequency shows that even without clustering traces together, we
might be able to find methodologies that are based on those traces and still cover a large

number of different situations (e.g., 70 different projects).

Moreover, existence of a small number of traces with high frequencies helps in
clustering traces together. The high frequency traces can act like seeds for clustering—that
is to absorb the traces with lower frequencies and form generalized traces with even more

frequencies.

Frequency of Successful Traces

80 T

0 1 2 9 10 48 49 50 57 97 98 146 153 192 193 194 205 209 240 249 254

80 T
a0l -

20 . -
0

304 769 770 816 817 818 825 864 866 872 874 914 960 961 962 970 984 994 1009 1010 1018

80 T

1926 1969 1974 1977 1978 1986 2018 2021 2022 2097 2116 2117 2118 2125 2141 2164 2173 2186 2192 2220 2268
trace index

Figure 9-18.Frequency of Successful Traces.

208

Figure 9-19 proves that the traces that were followed by projects with common fea-

tures have common features too. That is, there is a correlation between clusters of projects

and clusters of traces. For instance, all the projects that had required ‘small-M’ for work-

space have followed traces that either put the base of the robot below or to the left of the

workspace rectangle or put the base at a location that minimizes the sum of link lengths. As

we mentioned before, the existence of a correlation between clusters of projects and traces

is a promising sign of being able to formulate methodologies.

all traces generated for the "Small-M" workspace

2500 T T T T T T T T T T T T T T T
. - . m——
2000 o —
x
S
2 1500 —
()
§ 1000 =
=
500 —
0 | ! ! R ! \ [! ! A ! !
0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
all traces in which Designer-K-1 used "base-at-left-below-midway-workspace-length" approach
2500 T T T T T T T T T T T T T T T
2000 —
x
S
2 1500/~ —
()
§ 1000
500 —
0 | el sl et [Rt A L !
0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
all traces in which Designer—K-1 used "minimize-link—lengths—summation" approach
2500 T T T T T T T T T T T T T T T
. ceoen . . . —
20001 oy weemmem o e — T et e —_—
x
S
2 1500/~ —
()
cé 1000
~ 5001 -
0 | | | | | | | | | | | | | | |
0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
project ID

Figure 9-19.Correlation between Requirement Space and Trace Space.

209

In this chapter we described hd®D was used to experiment with the design pro-
cess. We presented the results of the experiments and showed that they are promising in
being able to discover the design methodologies. In the next chapter we analyze these

results in order to extract design methodologies.

210

1 O Results

In this section we analyze the traces produced by the system in order to extract
useful information from them. Some of this information such as dependency between the
designers can be easily gathered from the trace of the system. More analysis, however, is
needed for extracting the patterns that lead to the formation of methodologies. Also, traces
need to be clustered based on their similarities in order to generalize the patterns. General-
ized patterns are a way to produce methodologies that are applicable to a wide range of

problems.

10.1 Summary of the Observations

The following summarizes the observations that we have made based on the traces gener-

ated by the system that were represented in Chapter 9.

1. The ratio of the traces taken by the system that led to a successful design compared to
all possible traces is quite small: 84/2304 = 0.0365 (3.7%). This shows that the system
has been able to successfully identify the small percentage of paths (i.e., 3.7%) that

among all others lead to good designs.

2. The variation of traces with respect to projects clearly shows some patterns that is a

good sign for being able to cluster groups of traces together.

211

3. In Figure 9-19 on page 209 there is a correlation between the patterns in groups of
traces and groups of problems (i.e., requirements and constraints). This is a promising
sign of being able to map clusters of problems to clusters of traces—a major step

toward being able to index methodologies.

4. Frequency of the traces is not distributed evenly thus, the coverage of traces are differ-
ent. This might lead to a way to evaluate the quality of different traces. Similarly, meth-
odologies that are built using different traces might have different quality (see

“Goodness of a Cluster of Traces” on page 217).

5. Due to preferential order of use of design approaches, traces are different regarding the
desirability of their approaches. This might lead to another measure for the goodness of

a methodology.

10.2 Dependency Graph

Discovering the dependency between designers is the first set of results that we
extract from the traces of the system. Some designers need inputs that are generated by
other designers, therefore, they have to wait until the designers that supply input to them
finishes its job. Having small designers combined with an opportunistic strategy provides
a way to discover dependencies among design parameters automatically. Additionally, the

concurrency between designers in each design cycle can also be discovered by the system.

At the end of each run theependencyProvider agent prints out the informa-
tion about the dependency between designers. This information leads to formation of the
dependency graph (see Figure 7-13 on page 136). The dependency graph resulted from the
experiments is shown in Figure 10-1.

212

The dependency graph is formed dynamically during run time. In general the
dependency graph changes its structure and its members during the course of a design pro-
cess. The reason is that participation of some of the designers in the design might become
unnecessary due to some decisions regarding how to conduct the design by designers in the
up-stream. Similarly some new designers might be able to contribute to the design because
of some early decisions. As a result, the way designers depend on each other might change,

and that in turn changes the dependency graph.

213

o Design Requirements

@ Designer_s_2 Designer_s_3 Designer_s_4#

OO @ @

®
remate
|
@'® Q) s
‘ “ ‘ Control
@ Designer_s_1 @ Designer
AN
DIOIDIE) DD
[[]
DA ==

P N\

—= \- YoY% %
99099, 9.9 %

3

@ é@ @) e @

Design Parameters:

5

@ workspace @workload @ settling_time @maximum_overshoot
@ base_location

@material_name @ material_mass_density material_yield_stres@ material_elasticity_modulus

structural_safety_factor@ Iink_cross_sectional_shape@ link1_length @ link2_length
theta2_min @ theta2_max thetal_min @ thetal_max

link1_cross_section_dimension link2_cross_section_dimension
link1_cross_section_thickness @ link2_cross_section_thickness
@ accessible_region_are@ tip_deflection

proportional_gainl@ derivative_gain proportional_gain2 @ derivative_gain2

Figure 10-1.Dependency Graph for Design of a 2 DOF Robot

214

10.2.1 Discussion

The dependency graph of Figure 10-1 can be used during dependency-directed backtrack-
ing. When a constraint is violated, the design parameters and the designers affecting the
constraint are identified. Based on which designers are responsible for generating those
design parameters, a backtracking agenda is prepared and executed. Dependency-directed

backtracking is more efficient in recovering from constraint violations.

Table 10-1 compares the two runs of the system for the same project one with
dependency-directed and the other by exhaustive backtracking. It is clear that dependency-
directed backtracking is a superior method in terms of spending time and resources to find

a successful design.

Table 10-1.Project 161.

type of trace | numberof| timespent| memory | number of| number of
backtracking index cycles (hour) size events | messages
exhaustive 2118 5294 02:54:24 36921.0 K 2085879 341268
dependency 2118 2171 00:47:Q7 13304.pK 867179 140(1)69

The dependency graph of Figure 10-1 shows not only the way designers are depen-
dent on each other, it also reveals that the following objectives for the design process have

been achieved:

* Integration. From the mix of designers we can see that an integration of disciplines has

happened.

» Information Sharing. The links in the dependency graph shows the information

exchange between different disciplines and designers.

215

» Collaboration. Different designers from different disciplines collaborate with each
other in order to push the design process ahead and generate a good design. Collabora-
tion also happens during backtracking when based on the dependency data some of the
designers may have to change their most desirable decisions in order for another

designer be able to recover from a constraint violation.

» Concurrency. Itis clear that the possible concurrency between different designers has

been discovered.

» Bottlenecks.The dependency graph of Figure 10-1 shows that in the second row only
Designer_K_2 can design. That is, while in the first row four designers and in the third
row two were designing simultaneously, in the second row no concurrency can happen.
As a result, the design process at this row is not as efficient as the other stages. There-

fore, this is a bottleneck in the design process.

10.3 Clustering the Traces

In order to be able to extract design methodologies based on the traces generated by the
system we need to cluster similar traces together. The similarity of two traces can be mea-
sured based on how their ingredient design approaches differ from each other. We will
define a metric for measuring the distance between two traces in a mathematical form later

in this section. The further two traces are from each other the less similar they will be.

A generalized trace will replace each cluster of similar traces. Later we will find
correlation between each generalized trace and sub-sets of requirements and constraints.

Suppose that the following five traces are clustered together:

216

Table 10-2.An Example Trace Cluster

trace | Designer_K_1| Designer_S_2| Designer_S_3| Designer_S_4| Designer_K_2| Designer_K_3| Designer_S_1
index approach approach approach approach approach approach approach
1926 5 0 0 0 0 1 2
1974 5 0 1 0 0 1 2
2018 5 0 2 0 0 0 2
2021 5 0 2 0 1 1 1
2022 5 0 2 0 0 1 2

A candidate generalized trace for the cluster of Table 10-2 is shown in Table 10-3:

Table 10-3.Generalized Trace for Trace Cluster of Table 10-2

generalized | Designer_K_1| Designer_S_2| Designer_S_3| Designer_S_4| Designer_K_2| Designer_K_3| Designer_S_1|
trace approach approach approach approach approach approach approach

example 5 0 ©O]1]2 0 ©O]1) O]1 112

In some domains the collection of design approaches for each designer agent in the gener-
alized trace (e.g., (0 | 1 | 2) for Designer_S_3) can be generalized based on the common
features of those approaches. For instance, the collection of the design approaches might
be generalized as catalog approaches or iterative approaches. In this dissertation we do not

do such generalization.

10.3.1 Goodness of a Cluster of Traces
The goodness of a cluster of traces can be measured based on two factors:

1. The number of projects that followed the traces clusterecdcoverage
This is a measure of how many different design situations (i.e., projects) are covered by the
traces clustered. We call this measuredbeerageof the cluster. We can calculate the cov-

erage of a cluster by adding the frequencies of the traces clustered. Methodologies that are

217

generated from clusters with higher coverage are applicable to a wider range of design
problems. As we discussed in “Better Design Methodology” on page 60 being applicable
to a wider range of design problems is one of the factors that distinguishes superior design

methodologies.

We calculate the coverage of a cluster by adding the coverage of traces it contains

using Equation 10-1:

ﬂraces D (10 1)
coverage [0 _
a2 %

i=1

where, pis the number of projects covered by tracand “traces” is the number of traces

in the cluster.

2. The number of variations of design approaches in the clusteaniformity

Traces differ from each other because of the difference in the design approaches that
designers have used. Clustering accumulates these different approaches in one place caus-
ing some loss information. That is, instead of being specific about what approach should
be used for the situations covered (i.e., projects covered), the cluster suggests a collection
of the possible approaches. We refer to this measure amife@mity of the cluster. The

most uniform cluster is the one that does not have any variation in its approaches. Two fac-

tors affect the uniformity of a cluster:
1. the number of designers that vary their approach in the cluster, and

2. the amount of variation for each designer that varies its approach.

218

We would like to give more credit to those clusters that have a smaller number of designers

that vary their approach.

Based on the above factors we can assign a number to the uniformity of a cluster

using Equation 10-2:

ﬂjesigners 0)
uniformity= 0 lD (10-2)
O a

j=1

where 3 is the number of approaches accumulated for desjgmethe cluster, and

“designers” is the number of designers in generalized trace.

The most uniform cluster is the one that does not have any variation in its
approaches, i.e. all of the participant designers have used only one approach during differ-
ent projects. For instance, if seven designers have participated in the design process the

maximum possible uniformity factor would be 7, Equation 10-3.

eS|gners 7
uniformity= [J mj Z E z e (10-3)
a0 &1 1
Please note that Equation 10-2 incorporates both factors mentioned above. For
instance, assuming that seven designers are involved a cluster with one designer varying its

approach four times receives more credit than a cluster with two designers each varying

their approaches two times, Equation 10-4.

219

7

: , O 10 1,1,1,1.1.1.1_

= = SH 4+ 4+ S+ 4+
uniformity,e_ tour Szag 4 AERERERE R = 6.25
B (10-4)
.

. . O—20 1. 1 1 1 1 1 1

uniformity,,o— two-two= U —E: §+1+1+§+1+1+1 =6

H=1
The goodness of a cluster of traces can be defined as the product of its coverage and

its uniformity, Equation 10-5:

ﬁraces dlesigners D

G~= [J DDXD
(o ,Zl |D

(10-5)

The ideal situation is when all the projects have followed the same trace. That is,
there will be one cluster containing only one trace that is applicable to all the projects. For

the experiments that we have done here an ideal cluster would receive a goodness of 6720:

l
U 10
Gc= Dz p,Dx DZ —D = 960x 7 = 6720 (10-6)

However, the ideal situation is very unlikely to happen for real problems.

Table 10-4 gives two examples of the goodness of clusters:

Table 10-4.Goodness of Clusters.
Cluster |DK1|DsS2 DsS3 DsS4 DKp DKPB DSlicoveragg uniformity Ge

cluster-1 5 o [©]1 O @1y ©y @13 50 4.83 241.5

cluster-2 5 0 01y 0 0 1 112 35 6.00 210.0

220

Cluster-1 has received a higher score for goodness despite the fact that it is more
uniform. That is, coverage has had more effect on the goodness of the cluster. Obviously,
weight factors can be introduced into the equation that makes the goodness more biased
toward the coverage or uniformity. In this dissertation we do not weight the coverage or the

uniformity.

To be applicable to general situations the coverage and the uniformity of the cluster
should be normalized. In general situations the number of designers may vary from prob-
lem to problem. Normalization is needed also when we want to compare the goodness of
clusters from different sets of experiments and across different domains. The coverage can
be normalized by dividing the resulting number by the total number of projects in the exper-
iment. The uniformity can be normalized by dividing it by the maximum score for the uni-

formity of the cluster (equal to the number of participant designers).

Normalizing the goodness generates very small numbers that are hard to compare
to each other. To increase the resolution we multiply the result by 1000. The general equa-

tion for calculating the normalized goodness of a cluster is shown in Equation 10-7:

races D Uﬂe&gnerslm

DE pd O 20
Gen = 0 0= A0 1000 (10-7)
CN™ Tp T,

10.3.2 Cluster Tree

The result of clustering the traces can be represented in a tree structure [Langley 96, page

216]. At the leaves are the traces and the root node is the cluster that contains all the traces.

221

The nodes in the middle are the result of the clustering process with each having a parent
and some children. A parent node is the cluster that contains all of its children clusters. This
is because the cluster tree is constructed from the leaves towards the root (i.e., the children
are clustered together to generate the parent cluster). However, naming a node as parent or
child is merely based on the structure of the tree and not based on the process that builds

the tree. Arow in the cluster tree is composed of all clusters at the same depth.

The whole cluster tree for the traces generated during the experiments is included

in Appendix B.

10.3.3 Naming Convention for the Clusters

The name of the clusters shows the location of the cluster in the cluster tree. The leaves of
the tree are traces generated by RD and the root is a cluster that contains all traces. The
name of a cluster is composed of two numbers separated by either an underscore ‘_’ char-
acter or a dash ‘-’. The first number is the height of the cluster node in the cluster tree and

the second number is the position of the node, from left to right, at that height.

For instance, Cluster 1-16 is the result of the first round of clustering traces (i.e., it

is located one level above traces generated by RD) and is the 16th cluster in that level.

10.4 Evaluation of Clusters

In this section we evaluate the quality of the clusters generaté&tbipy looking at their

coverage, uniformity, and goodness.

Figure 10-2 shows the coverage of the clusters. Five groups can be distinguished

based on the range of coverage:

222

Groupl: with high coverage around 60%. These are clusters at a height of 16 or

higher in the cluster tree.

Group 2: with a coverage between 30% to 50%. These clusters start from clusters at

height 1 and continues up to clusters at height 15 in the cluster tree.

Group 3: with a coverage of around 10% that includes clusters from height 1 to

height 15 in the cluster tree.

Group 4: with coverage of 3 to 6% that includes clusters from height O up to height

15.

Group 5: with coverage less than 3% that includes clusters at all heights except the
cluster at the root of the tree. It is worthy to note that some of the clusters at high lev-
els in the cluster tree have very small coverage. One might think of these clusters as

the noise in the results and eliminate them from clustering process all together.

223

70

Coverage of Clusters

60—

501

N
o
T

coverage (%)

w
o
T

20

10~

.
&

PR

T T T T T T T T T T T T T T T T TTTTT

& & %

D T I O O O R L D R I D D LS

Figure 10-3 shows the uniformity of clusters. Similar to the coverage, we can dis-

tinguish five groups:

» Group 1: clusters with a uniformity less than 0.5 that start forming after the height of

10

21 30 405060 80 100 120 150 180 260
clusters

Figure 10-2.Coverage of Clusters Generated.

15 in the cluster tree.

» Group 2: clusters with a uniformity around 0.6 that start from clusters with height 2

and continues up to height 15.

* Group 3: clusters with a uniformity around 0.8 that starts at height 1 and continues

up to the clusters very close to the top of the cluster tree.

224

» Group 4: these are clusters with a uniformity around 0.9 that similar to Group 3

includes clusters from height 1 up to clusters very close to the root of the tree.

» Group 5: these are basically clusters with only one trace that have uniformity of 1.0.
This group covers clusters from height zero up to one level below the root of the tree.

In fact, as expected, the leaves of the tree, traces generd®&dl bl have unifor-

mity of 1.0.

Uniformity of Clusters
1 e B R s bt e S e e e S e NI
ool I R
0.8 R TS R -
0.7 &

o
)
T

i

uniformity (normalized)
o =}
» [¢)]
T T
1 i

o
w
T

|

©
[N
\
\

| | | | | | | | | | | | | I I I
00 10 21 30 405060 80 100 120 150 18 0 260
clusters

Figure 10-3.Uniformity of Clusters Generated.

Figure 10-4 shows the goodness of the clusters. From this figure it is clear that in

each row of the cluster tree there is a cluster whose goodness is considerably higher than

225

the others. These are clusters with a goodness higher than 180 in Figure 10-4. For the group
of clusters up to height 15 there is one cluster with a goodness around 60 and another one
with a goodness between 10 and 40. The last group of clusters have very small goodness

and are distributed throughout the cluster tree.

Goodness of Clusters
300 T T T T T T T T T T T T T T T T T TTTTTI

250 . 7]

200/ ot .

150 5

goodness

100 »

50[: : : S &

00 10 21 30 405060 80 100 120 150 180 260
clusters

Figure 10-4.Goodness of Clusters Generated.

226

Table 10-5 shows the clusters with the highest goodness in ascending order of

goodness:

Table 10-5.Clusters with highest goodness.
Cluster | Coverage Uniformity Goodnegs
3-0 33% 0.5476 180.8284
4-0 35% 0.5476 194.5188
5-0 37% 0.5476 207.0685
6-0 38% 0.5476 211.0615
7-0 38% 0.5476 211.6319
8-0 38% 0.5476 212.7728
9-0 38% 0.5476 213.3438
15-0 48% 0.4524 218.6508
1-0 28% 0.7976 224.3304
2-1 28% 0.7976 224.3304
17-0 59% 0.3810 227.3810
18-0 59% 0.3810 227.7778
19-0 59% 0.3810 228.174p6
20-0 60% 0.3810 228.5714
21-0 60% 0.3810 228.9688
22-0 60% 0.3810 229.365(
23-0 60% 0.3810 232.1428
24-0 61% 0.3810 232.539)¢
25-0 61% 0.3810 233.730R
26-0 61% 0.3810 234.1270
10-0 42% 0.5476 235.0198
11-0 43% 0.5476 236.160
12-0 43% 0.5476 236.731p
13-0 44% 0.5476 244.71738
14-0 44% 0.5476 245.287)
16-0 58% 0.4524 263.888p

227

Figure 10-5 enlarges the portion of the goodness graph that contains the clusters
with the highest goodness. The cluster with the highest score is Cluster 16-0 that has a
goodness of 264. This peak happens after a jump in the convergence of clusters from height

14 to height 15.

Clusters with Highest Goodness

270 T

*

260 — 1

240 — =

N

N

S
T

%%****

goodness
I
|

N
=
)
I
|

190 - —

180 — * —

L L
170
10 21 30 40 50 60 70 80 90 100 110 12.0 13.0 14 0 150 160 17.0 18 0 19 0 200 21_0 220 23_0 240 250 260

clusters

Figure 10-5.Clusters with Highest Goodness Measure.

10.5 Formulating Methodologies

To be able to formulate methodologies we need to find correlation between subsets of

projects and clusters of traces. A correlation exist between a subset of projects and a spe-

228

cific trace or cluster of similar traces, if the projects have followed that trace or cluster of

traces.

Selection of the final methodologies from the set of candidate methodologies is a
trade-off process. In one end you have methodologies that are very detailed but are not
applicable to many projects. On the other end there are methodologies that are more general

(i.e., do not say as much about the details) but are applicable to a large number of projects.

The generality of the methodologies generated based on clusters of traces increases
as the height of the cluster in the cluster tree increases (i.e., as additional similar clusters
are combined into new clusters). On the other hand, as more clusters get grouped together
the number of projects included grows and as a result increases the applicability of the clus-
ter. However, to compare methodologies that are derived from clusters with the same

height in the cluster tree we can use the goodness of the clusters.

In the following sections we analyze different traces and the projects that have
caused them in order to find patterns which allow generalization of the observed correla-
tion. We then analyze clusters of traces and their corresponding projects in order to formu-

late the a set of candidate methodologies.

10.6 Clustering the Problems

The purpose of this section is to cluster those problems that have followed the same trace
into clusters of problems. That is, we want to study the similarity of problems that followed
similar traces (for now only one trace and later clusters of traces). Similar problems are
those that have the same value for a particular requirement or constraint (or a combination

of requirements and constraints).

229

Similar to generalizing cluster of traces, the problems can be generalized too (as we

will see in the following subsections). We have used the same clustering method that we

used for traces to cluster the problems.

To demonstrate the clustering of problems that have followed the same trace we
pick a small number of traces with the highest goodness. These are the traces that will have
the most influence in generating the methodologies. We only have included the traces that
have a goodness higher than 20 (equivalent to covering at least 20 projects) as are shown
in Table 10-6. The clusters of the problems for each trace in Table 10-6 is given in Appen-

dix C. In the following subsections we present the result of clustering projects that followed

traces 0, 1, 2, 49, and 770.

Table 10-6.The Goodness of Traces with Highest Frequency.

Trace frequency coverage uniformity normalized goodness
(%) (normalized) Gen

1 72 7.50 1 75.0
2 64 6.67 1 66.7
1545 54 5.63 1 56.3
0 52 5.42 1 54.2
49 33 4.40 1 34.4
1537 28 2.92 1 29.2
1546 24 2.50 1 25.0
770 20 2.08 1 20.8

10.6.1 Trace O

Trace 0 corresponds to the design approaches in Table 10-7. Note the lower the Approach
Index the higher the preference is that the designer has for that approach, i.e., in this trace

each designer has picked its “best” approach.

230

Table 10-7.Trace 0.

Designer Approach Approach
Index
Kinematic 1 0 base_at_left below_midway_ workspace_length

Structural 2 0 steel_stainless_AISI_302_annealed

Structural 3 0 safety factor_3

Structural 4 0 hollow_round

Kinematic 2 0 link_lengths_ratio_0.5

Kinematic 3 0 thetal is_alphal minus_alpha2
0

Structural 1 dimension_min_ratio_4

Table 10-8 shows the set of generalized problems that followed Trace 0. All the
problems that followed Trace 0 are limited to the workloads of 1.0 and 2.0 kg. Also, only
type “M” of the workspace can be seen in the problems. That is, if we cluster the general-
ized problems of Table 10-8 (i.e., going up the cluster tree) a more generalized problem is
obtained that can be characterized as having type “M” workspace and workload require-

ment of 2.0 kg or less.

Table 10-8.Generalized Problems that Followed Trace O

Projects in | Constraint on| Constraint | Workspace| Workload Settling Maximum
the Cluster Deflection on Gain 1 (kg) Time (sec)| Overshoot (%)

1to 12 0.01 1000 small-M 1 (31211 (50]40]20|10)
122 to 124, 0.01 1000 big-M 112 312 (40120110
127 to 128,
135 to 136,

and 140
241 to 248 0.01 100 small-M 1 (312 (50401 20]|10)
except 245
481 to 492 0.001 1000 small-M 1 (3l12]1) (50]40]20]|10)

231

Table 10-8.Generalized Problems that Followed Trace 0

Projects in | Constrainton| Constraint | Workspace| Workload Settling Maximum
the Cluster | Deflection on Gain 1 (kg) Time (sec)| Overshoot (%)

602 to 604, 0.001 1000 big-M]2 312 (40]20] 10

607 to 608,

615 to 616,
and 620

721to 728 0.001 100 small-M 1 312 (501401]20]10)
except 725
and 726

10.6.2 Trace 1

Trace 1 corresponds to the approaches in Table 10-9.

Table 10-9.Trace 1.

Designer Approach Approach
Index
Kinematic 1 0 base_at_left below_midway_ workspace_length

Structural 2 0 steel_stainless_AISI 302 _annealed
Structural 3 0 safety factor_3
Structural 4 0 hollow_round
Kinematic 2 0 link_lengths_ratio_0.5
Kinematic 3 0 thetal is_alphal minus_alpha2

1

Structural 1 dimension_min_ratio_3

The projects that followed Trace 1 and the corresponding generalized problems are

shown in Table 10-10.

232

Table 10-10.Generalized Problems that Followed Trace 1

Projects in
the Cluster

Constraint on

Deflection

Constraint
on Gain 1

Workspace

Workload
(k9)

Settling
Time (sec)

Maximum

Overshoot (%)

13to 24

0.01

1000

small-M

2

Glz2]1

)

(504020 |

10)

121, 126,
132, 134,
139,
146 to 148,
151 to 152,
159 to 160,
163 to 164,
171t0 172,
175t0 176

0.01

1000

big-M

1[2]3
415)

| B12]1)

(50140201

246, 252,
254 to 256,
259 to 260

0.01

100

small-M

(112)

@lz]1

(40120 10

364

0.01

100

big-M

1

3

10

493 to 504

0.001

1000

small-M

2

@2

)

(50 | 40 | 20

10)

614, 619,
626 to 628,
631 to 632,
639 to 640,
643 to 644,
651 to 652,
655 to 656

0.001

1000

big-M

21314
5)

312

(40| 20 | 10)

726, 732,
734 to 736,
739 to 740

0.001

100

small-M

(112

Glz2]1

(40201 19

To generalize all the problems of Table 10-10 we observe that for all the projects

that followed “Trace 1” only “M” type of workspaces were used. Also, if the constraints on

the deflection and the gain both become tight, then the path of “Trace 1” is followed only

for “small-M” type of problems.

Path of “Trace 1” is taken because Trace 0 could not generate a successful solution.

The first approach dDesigner_S 1

in Trace 0 would generate too large cross sections

for the links that violates the constraint on the acceptable ratio of the cross section dimen-

233

sion of the link to its length that was set to 0.1—that is the dimensions of the cross section

of the links could not be larger than 0.1 of the link length.

Due to the violation of the constraint on the dimension of the cross section the
system takes the next available path that corresponds to Trace 1. The following is the report

generated byRD for Project 13, reporting the violation of the aforementioned constraint.

- unresolved constraints are:

constraint constraint_2_1 1 of type
numeric_continuous_b<x<=c:
0.0 <link1_cross_section_dimension (0.0859) <= 0.0768

constraint constraint_2_1 2 of type
numeric_continuous_b<x<=c: 0.0 <
link2_cross_section_dimension (0.0466) <= 0.0384

Figure 10-6.Constraint Violation in Project 13.

10.6.3 Trace 2

Trace 2 corresponds to the design approaches in Table 10-11. The difference between
Trace 2 and the two previous traces is thatBlesigner S 1 had to reduce the dimen-

sion of the cross section of the link even further to find a satisfactory design.

Table 10-11.Trace 2.

Designer Approach Approach
Index
Kinematic 1 0 base_at _left _below_midway_workspace_length

Structural 2 steel_stainless_AISI_302_annealed

Structural 3 safety_factor_3

Structural 4 hollow_round

O]l ol o| ©

Kinematic 2 link_lengths_ratio_0.5

234

Table 10-11.Trace 2.

Designer Approach Approach
Index
Kinematic 3 0 thetal is_alphal minus_alpha2
Structural 1 2 dimension_min_ratio_2

Table 10-12.Generalized Problems that Followed Trace 2

Projects in | Constraint on| Constraint | Workspace| Workload Settling Maximum
the Cluster | Deflection on Gain 1 (kg) Time (sec)| Overshoot (%)
25to 36 0.01 1000 small-M 3 (3121]1) (50]40]20]10)
371048 0.01 1000 small-M 4 (3121]1) (50]40]20]10)
except 45
49 to 60 0.01 1000 small-M 5 (3121]1) (50]40]20]10)
except 57
125, 131, 0.01 1000 big-M 1]12]13] 3]2]1) | (50|40]20]10)
133, 138, 415)
144 to145,
156 to 157,
158, 170
245, 251, 0.01 100 small-M @1213) 83]12]1)| (50]40]|20]1p)
253, 264, 4]5)
266 to 268,
271 to 272,
178 to 280,
283 to 284,
291 to 292,
295 to 296
363, 376 0.01 100 big-M 112 3 (20| 10)

For all the projects that followed Trace 2 the constraint on the deflection is only lim-
ited to 0.01. Also, as in Trace 0 and Trace 1, only type M workspaces appear in the require-

ments.

235

10.6.4 Trace 49

Trace 49 corresponds to the design approaches in Table 10-13. Compare to the three pre-
vious traces that we studied so far, Trace 49 is less desirable bédesigaer S 3 had

to reduce the safety factor from 3 to 2.

Table 10-13.Trace 49.

Designer Approach Approach
Index

Kinematic 1 0 base_at _left below_midway_workspace_length
Structural 2 0 steel_stainless_AISI 302 _annealed
Structural 3 1 safety factor_2
Structural 4 0 hollow_round
Kinematic 2 0 link_lengths_ratio_0.5
Kinematic 3 0 thetal is_alphal minus_alpha2
Structural 1 1 dimension_min_ratio_3

Table 10-14.Generalized Problems that Followed Trace 49

Projects in | Constrainton| Constraint | Workspace| Workload Settling Maximum
the Cluster | Deflection on Gain 1 (kg) Time (sec)| Overshoot (%)
505 to 516 0.001 1000 small-M 3 (3]12]1) (50]40]20]|[L0O)
except 513
517 to 528 0.001 1000 small-M 4 (3]12]1) (50]40]20]|[L0O)
except 525

733 0.001 100 small-M 2 3 50
746 to 748, 0.001 100 small-M 3 312 (501401]20]10)
751 to 752
758 to 760, 0.001 100 small-M 4 312 (4020110
763 to 764

236

Trace 49 has been followed only for the situations where the constraint on the
deflection is tight (maximum 0.001 of the sum of the link lengths) and only for “small-M”

type of workspace.

10.6.5 Trace 770

The design approaches that are followed in Trace 770 are shown in Table 10-15. In this
trace compare to previous traces that we have studied so far, an important change has hap-
pened in the design approach@ésigner K_1 . None of the approaches based on put-

ting the base of the robot at the left or below the length as well as the width of the workspace
rectangle have produced a satisfactory design. Putting the base of the robot at the right or
above the workspace rectangle, however, has been successful. Later we will justify this

decision byDesigner_ K_1 based on the shape of the workspace in the requirements.

Table 10-15.Trace 770.

Designer Approach Approach
Index
Kinematic 1 2 base_at_right_above_midway_workspace_length

Structural 2 0 steel_stainless_AISI 302 _annealed

Structural 3 0 safety factor_3

Structural 4 0 hollow_round

Kinematic 2 0 link_lengths_ratio_0.5

Kinematic 3 0 thetal is_alphal minus_alpha2
2

Structural 1 dimension_min_ratio_2

237

Table 10-16.Generalized Problems that Followed Trace 770

Projects in | Constrainton| Constraint | Workspace| Workload Settling Maximum
the Cluster | Deflection on Gain 1 (kg) Time (sec)| Overshoot (%)
61, 66, 72 0.01 1000 small-L 1 31211 (50|40 10)
73t0 74 0.01 1000 small-L 2 3 (50 | 40)
86 to 88, 0.01 1000 small-L 3 312 (20] 10)
91t092
98 to 100, 0.01 1000 small-L 4 312 (40|20]10
103 to 104
111to 112, 0.01 1000 small-L 5 312 (20] 10)
115to 116
304 0.01 100 small-L 1 3 10

For projects that followed the path of Trace 770 both constraints on the deflection
of the tip and the gain of the controller are loose (except the last project in which the con-
straint on the gain become tight that is compensated by loosening the requirements on

workload and settling time).

The interesting feature in all these projects is that all of them have the “small-L”
type of workspace as their requirements. It is interesting because the shape of the work-
space is not symmetric as “M” type, hence there is a difference in putting the base of the
robot to the right or left (because the orientation of the rectangle that circumscribes the
workspace is vertical) of the workspace. That is, the first approadhesigner_ K _1
that puts the base to the left of the workspace has failed to satisfy the constraints, whereas

switching to the right of the workspace has recovered the constraint failure.

10.7 First Set of Clusters

In previous sections we studied the clustering of traces and demonstrated sample results of

clustering their corresponding problems. We mentioned that to extract methodologies we

238

need these two types of clusters, i.e., traces and problems. We also mentioned that extract-
ing methodologies based on clusters of traces from different rows in the cluster tree is a
trade-off between the methodology being too abstract but applicable to a large number of
different situations or being detailed and applicable to a small number of situations. The
approach for extracting the methodologies, however, is the same. To demonstrate the
approach of extracting methodologies, in this section we use clusters at height 1 in the clus-
ter tree. These clusters generate the most detailed methodologies (except for methodologies

based on traces themselves).

The process of extracting the methodologies can be automated based on the
approach proposed by Reich [91] and summarized in page 116. The idea is instead of clus-
tering the traces and then clustering the problems that have followed each cluster, merge

the traces and problems and cluster the resulted combined trace.

In this dissertation we extract the methodologies manually in order to explicitly
show the correlations that exist between traces and problems. In order to do that we find
patterns in a cluster of traces regarding the use of specific design approaches that corre-

spond to a cluster of problems.

The first round of clustering traces has led to 34 clusters. The most populated clus-

ters along with their goodness number based on Equation 10-5 are shown in Table 10-17.

Table 10-17.Goodness of First Level Clusters

Cluster| number of traces coverage| uniformity goodness
(%) (normalized)
1-0 9 28.12 0.7971 224.2
1-8 4 8.43 0.7857 66.3
1-16 3 3.95 0.8571 33.9
1-2 8 3.95 0.6429 254
1-5 4 2.70 0.7857 21.3

239

Table 10-17.Goodness of First Level Clusters

Cluster| number of traces coverage| uniformity goodness
(%) (normalized)
1-4 4 2.50 0.7857 19.6
1-6 4 2.29 0.7857 18.0

10.7.1 Cluster 1-0

The first cluster, Cluster 1-0, covers 270 projects and includes 9 traces. Roughly speaking
Cluster 1-0 is the collection of projects with mostly loose constraints and requirements.
Projects that have more tight requirements and constraints have used approaches 4 and 5 of

the Designer_K 1 to reduce the length of the links.

Table 10-18.Cluster 1-0. Total 9 traces covering 270 projects.

Designer Approach Approach
Index
Kinematic 1 0, base_at_left below_midway_workspace_length
2, base_at_right_above_midway_workspace_length
4, minimize_accessible_region
5 minimize_link_lengths_summation
Structural 2 0 steel_stainless_AISI 302 _annealed
Structural 3 0 safety factor_3
Structural 4 0 hollow_round
Kinematic 2 0 link_lengths_ratio_0.5
Kinematic 3 0 thetal is_alphal minus_alpha2
Structural 1 0, dimension_min_ratio_4
1, dimension_min_ratio_3
2 dimension_min_ratio_2

For example the first project that has taken a different path than of the Cluster 1-0
is project 45 in whictDesigner_K_3 has chosen a right-hand configuration for the robot
arm as opposed to a left-hand configuration (see Figure 2-3 on page 31). Both projects in

the neighborhood of project 45 followed the path shown in Cluster 1-0.

240

Let us look at the requirements and constraints for these three projects to see what

has caused for project 45 to take a different route:

Table 10-19.Comparing the Requirements and Constraints for Projects 44, 45, 46.

Project ID| Constraint oy Constraint | Workspace| Workload Settling Maximum
Deflection on Gain 1 (kg) Time (sec) | Overshoot

44 0.01 1000 small-M 4.0 2.0 10%

45 0.01 1000 small-M 4.0 1.0 50%

46 0.01 1000 small-M 4.0 1.0 40%

Project 45 has taken the trace 1926 while projects 44 and 46 both have followed the

route of trace 2, Table 10-20.

Table 10-20.Traces taken by projects 44, 45, 46.

Designer Approach Approach
Index
Kinematic 1 44, 46 base_at _left below_midway_workspace_length
45 minimize_link_lengths_summation
Structural 2 | 44, 45, 46 steel_stainless_AISI 302 _annealed
Structural 3 | 44, 45, 46 safety_factor_3
Structural 4 | 44, 45, 46 hollow_round
Kinematic 2 | 44, 45, 44 link_lengths_ratio_0.5
Kinematic 3 44, 46 thetal is_alphal minus_alpha2
45 thetal_is_alphal_ plus_alpha2
Structural 1 | 44, 45, 46 dimension_min_ratio_2

Trace 1926 that is followed by Project 45 is clustered with eight other traces into
Cluster 1-0 which due to its small population of projects and traces will be dropped from

consideration for generating methodologies at this level.

241

Projects that followed traces of cluster 1-0

T T T T T T T

10% : ' |

20% -

40% - i
50% i
1 sec o @ @0 6we0 o000 .- o) - - . oo

ZSec e e 0o oo cnoneesecsns - -®ooo-s . -e e - e ee oo --e - o]

3 SEC [reecesececcmecccsescs meeeoele .- - - e . ee®ee - . o
5kg Fom - - -
4kg b . - - -
3 kg - - - - - .ee - - -

2 kg | o— - - -— . -e. . . — .- - - -
1 kg e — - -e — . - — - - -]
large-L - me—— .
large-M - — . : m——— ‘ .
small-L o ——— . - =
small-M [: ———— : -_— - .

small gain - —————— el . — o

large gain w— - [, |

small deflection e - [p— p—

large deflectior .o .- |

| | | | | | | | | | | | |

0 60 120 180 240 300 360 420 480 540 600 660 720 780
project id

Figure 10-7.Distribution of Constraints and Requirements for Projects of Cluster 1-0

242

Projects that did not follow traces of cluster 1-0
T T T T T T T T T T

10% o
20% o
40% -
50% =
1 sec - - ¢vececnccsmdsscndscondnncndonncstonned ecdesccdesccdecncdoncndssnadaccndane -
2 sec - 40 scs- se0scsmem ssscsmoonsensnneenes esecsecemsssscmanmntsnne cosacssnnsss e
3 sec - te 6 - - . csesse - sscomemmtencseneses emescmsmiiccsmEcne seemsimcenocnnsane -
5 kg - . - - - - - - - - - - - - - - -
4 kg - e - - - - - - - - - - - - - -
3 kg - e - - - - - - - - - - - - - -
2 kg - . o les - - - - - - - - - -
1kg - . . - . - - - - tem - - o - -
large-L = wesemmm— s— — —
large-M = s Pe— seme— — -
small-L - sevssacent — m—— o om— f

small-M L. : o cnemenss — cve— -

small gain

large gain [-+ seeeererems oo ememmenomems 4

small deflection

3

large deflection - - -+« i

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
project id

Figure 10-8.Constraints and Requirements for Projects that did not follow Cluster 1-0

243

Distribution of requirements and constraints for projects that followed traces of cluster 1-0
T T T T T T T | T T T T T

2 1%
£ 8]
g 50% - B
%3] 1sec [eeeocsncece - 1
- 2 sec e oo eesennnes - ®e oo @@ -6 .- - e ee-se - - o]
o 3SEC |poccecseccccmeccssccs smsee e e eees-e - e - —
St b - - - - - i
R | I e .]
T e e e S = - Sl
© large-L - omcnce —
IS large-M - —————e oo et eseseseses -
] small-L — ————— - D
L small-M — ——ocm-ce — pa— =
'S smallgain —mosme-oe — onmns
o _large gain — - = eoes 0o co -
@ small deflectior- . — . eseseseess —— PR
« large deflectior : ” ! i | © | | | | | | .

0 60 120 180 240 300 360 420 480 540 600 660 720 780
project id
Distribution of design approaches for projects that followed traces of cluster 1-0
DS1-4fF e e = o e T . T T T T T T]
DS1-3| == e sememe co-e0 msnes come . — e - ceescece oo smmae]
DS1-2 = - o0 . e - - - - oo - -
B DSI-I- b
DK3-2 - .
£ DK3-1 —
O DK?-3 —
@© DK2-2 ﬁ .
RCt]
2 psa-1 — - S, — p——
DS3-41 B
© DS3-3 e
c DBS3-2r o —_— - eesemene — —
D2 psr-oF- R
0 DS2-1 — - e o0 0n oo oo — p—
O DK1-6 —
o DK1-5} . ssesmes memen [R—
DK1-4 i~ —
DKI-3 - ——— e : . : - 7
DKI-2 (- —
Dki-1 \ I | == il | — el ~— L]
0 60 120 180 240 300 360 420 480 540 600 660 720 780
project id

Figure 10-9.Comparing the trace of constraints and requirements with the trace of design
approaches for Projects that followed Cluster 1-0

Based on the correlation between the change of requirements and constraints with
the change of design approaches in Figure 10-9 the candidate methodology in Figure 10-

10 is extracted:

244

METHODOLOGY 1-0

IF

THEN

ELSE IF

THEN

 constraints on deflection and the gain are loose,

» workspace is of type “small-M”;

IF .
THEN .
ELSEIF
THEN .
ELSEIF °
THEN .

requirement on the workload is easy, i.e., less

than 1.0 kg;
for designers use their first or default

approaches.

requirement on the workload is in the range of
2.0 kg;

use a dimension for the cross section that is not
more than 3 times the minimum required dimen-

sion by stress criteria.

requirement on the workload is more than 2.0 kg;

use a dimension for the cross section that is not
more than 2 times the minimum required dimen-

sion by stress criteria.

 constraints on deflection and the gain are loose,

* but workspace is of type “small-L", and

« any workload requirement;.

* put the base of the robot at the right or above the length of

workspace-# it fails put it in a location that minimizes the

accessible region,

* use a dimension for the cross section that is not more than 3

times the minimum required dimension by stress critefié—

fails reduce the ratio to 2.

Figure 10-10.Methodology 1-0.

245

METHODOLOGY 1-0, continued

ELSE IF

THEN

ELSE IF

THEN

» constraints on deflection and the gain are loose;

IF

THEN

ELSE IF

THEN

workspace is of type “big-M”;

use a dimension ratio for the cross section equal
to 4—if it fails reduce the ratio to 3+t fails

reduce it to 2,

for all other designers use their first or default

approaches.

workspace is of type “big-L”, and

the workload requirement is not very tight (i.e.,
lass than 5.0 kg;
put the base of the robot in a location that mini-

mizes the accessible region,

use a dimension ratio for the cross section
equal to 4 it fails reduce the ratio to 3-+it

fails reduce it to 2,

for all other designers use their first or default

approaches.

constraints on deflection is loose, but on gain is tight,

» workspace is of type “small-M”;

use a dimension ratio for the cross section equal taf4tfails

reduce the ratio to 34t fails reduce it to 2,

 for designers use their first or default approaches.

Figure 10-10.Methodology 1-0, continued.

246

METHODOLOGY 1-0, continued

ELSE IF

THEN

ELSE IF

THEN

 constraint on deflection is tight,

IF

THEN

ELSE IF
THEN

constraint on the gain is loose,

workspace is not of type “big-L";

use a dimension ratio for the cross section equal taf4tfails

reduce the ratio to 3,

for workspace of type “small-L” put the base of the robot at the

right or above the length of workspace, for type “M” work-

spaces put the base of the robot at the left or below the length of

workspace,

for all other designers use their first or default approaches.

constraints on deflection and the gain are both tight, and

requirements on workload and settling time are rather “easy”;

workspace is of type “small-M”;

use a dimension ratio for the cross section equal

to 4—f it fails reduce the ratio to 3,

for all other designers use their first or default
approaches.
workspace is of type “small-L";

put the base of the robot in a location that mini-

mizes the accessible region,

use a dimension ratio for the cross section

equal to 3,

for all other designers use their first or default

approaches.

Figure 10-10.Methodology 1-0.

247

A part of Methodology 1-0 that might seem counter-intuitive is when the workload
increases the methodology suggests reducing the dimension ratio of the cross section of the
links. This is the ratio of the dimension of the cross section (RDCS) of the link to the min-

imum allowable dimension based on stress criteria.

The fact is that while the RDCS is reduced, the absolute value for the dimension of
the cross section is increased. The reason is that the minimum allowable dimension by
stress criteria is increased because of the increase in the workload. On the other hand, there
is a constraint on the maximum ratio of the dimension of the link to its length (e.g., 0.1).

Increase in the dimension of the link violates this constraint.

To recover from this constraint violation the system tries a smaller RDCS that
reduces the dimension of the link to a point that it satisfies all the relevant constraints on

dimension and maximum stress as well as the deflection of the links.

Figure 10-11 shows an example of the above situation that happens for Project 38
as it is reported by the system. The default path (index 0) that corresponds to RDCS equal
to 4 is rejected because it violates the constraint on the size of the dimension of the cross
section of both links. The second path that corresponds to RDCS equal to 3 is rejected too
because it violates the dimension constraint on the second link. The third path, however, is

successful in which RDCS is equal to 2 that satisfies all the constraints.

248

>> design state: 2 with parent ID: 1 at depth: 2 was created
- index of rejected path: 0

- unresolved constraints are:

constraint constraint_ 2 1 1
0.0 < link1_cross_section_dimension (0.1036) <= 0.0768

constraint constraint_ 2_1 2
0.0 < link2_cross_section_dimension (0.0585) <= 0.0384

- index of rejected path: 1
- unresolved constraints are:
constraint constraint_ 2_1 2
0.0 < link2_cross_section_dimension (0.0439) <= 0.0384

>> design state: 3 with parent ID: 2 at depth: 3 was created

0.0 < linkl_cross_section_dimension (0.0458) <= 0.0768
0.0 < link2_cross_section_dimension (0.0292) <= 0.0384

Figure 10-11.Failure Recovery by Reducing RDCS.

10.7.2 Cluster 1-8

Cluster 1-8 is the next cluster with the most population of projects that includes 4 traces

covering 81 projects, Table 10-21.

Table 10-21.Cluster 1-8. Total 4 traces covering 81 projects.

Designer Approach Approach
Index
Kinematic 1 0, base_at left below_midway_ workspace_length
4 minimize_accessible_region
Structural 2 0 steel_stainless_AISI_302_annealed
Structural 3 0 safety factor_3
Structural 4 0 hollow_round
Kinematic 2 1, link_lengths_ratio_0.75
2 link_lengths_ratio_1.0

249

Table 10-21.Cluster 1-8. Total 4 traces covering 81 projects.

Designer Approach Approach
Index
Kinematic 3 0 thetal is_alphal minus_alpha2
Structural 1 1, dimension_min_ratio_3
2 dimension_min_ratio_2

Distribution of requirements and constraints for projects that followed traces of cluster 1-8
T T T T T T T T T T T T T

cmer e o o

ccmenomeoe. . oo

small deflectio
« large deflectior

oo ————. oo - -

.

equirements & constraints
w
&

H
L)
[I A R A O A A A A A A

.

large gain | one
- i
- emei

i i I [I I 1 I I I i
180 420 480 540 600 660 720 780 840 900

project id

240

Distribution of design approaches for projects that followed traces of cluster 1-8
T T T T T T T T T T T T T

cmee ccmencmene . e o o - oo

ENWAUIORNRENWARNFENWEN NS

!
H
e

cmes semenomene e s o oo

design approaches
vttt bttt

[TTTTTT T TTT I TTITTTITTITT]

I I I I ° I I I I I I I I I
180 240 300 360 420 480 540 600 660 720 780 840 900

project id

Figure 10-12.Comparing the trace of constraints and requirements with the trace of design
approaches for Projects that followed Cluster 1-8.

Figure 10-12 shows that except two occasions (projects 150 and 388)
Designer_K_1 has put the base of the robot in a location that minimizes the accessible
region area. Also, exceptin one occasion (Project D&¥jgner_1 2 has used alength

for the second link that is 0.75 time of the first link.

This set of projects can be divided into two subsets based on the requirements on

the workload.Designer S 1 has used a dimension that is twice the minimum dimen-

250

sion required by stress criteria for projects that have requirements of workload larger than
2.0 kg, settling time less than 2.0 seconds (most of the time), and overshoot less than 40%
(most of the time). For this subset of projects the constraint on deflection is “loose”, i.e.,

equal to 0.01 of the sum of the link lengths.

For the second subset of projeddgsigner S 1 switches back to the approach
that requires the dimension of the cross section of the link to be 3 times the minimum
required by the stress criteria. This happens when the requirement on the workload reduces
to be not larger than 2.0 kg. For this subset of projects the constraint on deflection can be
either “loose”, i.e., equal to 0.01 of the sum of the link lengths or tight, i.e., equal to 0.001

of the sum of the link lengths.

The above observations leads to formulation of Methodology 1-8 as is shown in

Figure 10-13.

251

METHODOLOGY 1-8
IF » workspace is of type “L”,

THEN IF * constraint on deflection is “loose”,

* requirement on the workload is tough, i.e., 3.0

kg or more, and

» settling time less than 2.0 seconds, and over-

shoot less than 40%;

THEN * use a cross section that is 2 times of the dimen-
sion based on stress analysis

ELSE IF * requirement on the workload is loose, i.e., 2.0
kg or less;

THEN e use a cross section that is 3 times the dimension

based on stress analysis

» put the base of the robot at a location that minimizes the

accessible region area,

» selectthe length of link 2 to the length of link 1 to be 0. &5+

fails choose them to be equal in length,

« for all other designers use their first approach.

Figure 10-13.Methodology 1-8.

10.7.3 Cluster 1-16

Cluster 1-16 covers 38 projects and includes 3 traces, Table 10-22.:

252

Table 10-22.Cluster 1-16. Total 3 traces covering 38 projects.

Designer Approach Approach
Index

Kinematic 1 0 base_at_left below_midway_ workspace_length
Structural 2 0, steel_stainless_AISI_302_annealed

1 aluminum_alloy 5456 H116
Structural 3 1 safety factor_2
Structural 4 0 hollow_round
Kinematic 2 0 link_lengths_ratio_0.5
Kinematic 3 0 thetal is_alphal minus_alpha2
Structural 1 0, dimension_min_ratio_4

1 dimension_min_ratio_3

Distribution of requirements and constraints for projects that followed traces of cluster 1-16
T T T T T T

small deflectiol
large deflectio

TT T T T T T TT T T T T T T T TTTT
.
)
[]
s
]
s

requirements & constraints

1 1 1 1 1 1
540 600 660 720 780 840

project id

Distribution of design approaches for projects that followed traces of cluster 1-16

B . .- ¢ wme me

design approaches
TTTTTTTTTTTTTT T T T T T I I T

P . .- ¢ wme me

1 1 1 1 1 1
540 600 660 720 780 840

project id

Figure 10-14.Comparing the trace of constraints and requirements with the trace of design
approaches for Projects that followed Cluster 1-16.

253

Based on Figure 10-14 we can extract Methodology 1-16 that is shown in

Figure 10-15.

METHODOLOGY 1-16

IF constraint on deflection is “tight”, and

* requirement on the workload is between 3.0 to 4.0 kg;

THEN IF » type of workspace is “small-M”;
THEN * use across section that is 3 times the dimension
based on stress analysis,
ELSE IF » type of workspace is “big-M”;
THEN * use across section that is 4 times the dimension

based on stress analysis,

* use a safety factor of 2,

« for all other designers use their first approach.

Figure 10-15.Methodology 1-16.

10.7.4 Cluster 1-2

Cluster 1-2 covers 38 projects and includes 8 traces, Table 10-23.

254

Table 10-23.Cluster 1-2. Total 8 traces covering 38 projects.

Designer Approach Approach
Index
Kinematic 1 0, base_at_left below_midway workspace_lengthbase
2, at_right_above_midway_workspace_length
4 minimize_accessible_region
Structural 2 0, steel_stainless_AISI_302_annealed
1 aluminum_alloy 5456 H116
Structural 3 1, safety factor_2
2, safety factor_1.4
3 safety factor_1.1
Structural 4 0 hollow_round
Kinematic 2 0 link_lengths_ratio_0.5
Kinematic 3 0 thetal is_alphal minus_alpha2
Structural 1 0, dimension_min_ratio_4
1, dimension_min_ratio_3
2 dimension_min_ratio_2

255

1)

3

=X

T

<
T
.
1

large gain = [Fes cmeme e . -
small deflectio . .
large deflectior}=« + + @e=eme . - o e -

design approaches

Figure 10-16.Comparing the trace of constraints and requirements with the trace of design

Based on Figure 10-14 we can extract Methodology 1-16 that is shown

N

3

< o
T T T T T T T 1T T

requirements & constraints
N
&

Distribution of requirements and constraints for projects that followed traces of cluster 1-2
T T T T T T T T

T T o A

.
.
.
.
.
.
.
1

1

o eses oo

T

e e e e e

1 1 1 1 1 1 1 1 1
60 120 180 240 300 360 420 480 540 600

project id

Distribution of design approaches for projects that followed traces of cluster 1-2
T

I O O A O A O O I
. ..
.
I Y A o

o es msme

teememoms - e e e e e o es ms e

D
o
i
N
o
i
o]
o
N
5
o

300 360 420 480 540 600
project id

approaches for Projects that followed Cluster 1-2.

Figure 10-17.

256

METHODOLOGY 1-2

IF constraint on deflection is “tight”,

constraint on gain is loose,

» type of workspace is “small-L”,

» workload is 3.0 kg or higher,

 settling time is not less than 2.0 seconds, and

» overshoot is less than or equal to 20%;

THEN » put the base of the robot to the right or above the length of the

workspace,

* use a safety factor of 2,

ELSE IF constraints on deflection and gain both are “loose”,
» type of workspace is “small-L”,

THEN

put the base of the robot to left or below the length of the work-
space— it fails put it to the right or above the length of the
workspace— it fails put it in a location that minimizes the

accessible region area,

* use a safety factor of 2—if it fails reduce it to li#litfails

reduce itto 1.1,

¢ use a cross section that is 2 times of the dimension based on

stress analysis

 for the remaining designers use their first approach.

Figure 10-17.Methodology 1-2.

257

10.7.5 Cluster 1-5

The design approaches that traces in Cluster 1-5 picked in producing successful designs are
shown in Table 10-24. Notice that Designer K 1 , Designer S 3 ,
Designer_K_2 , andDesigner_S 1 in no case were able to achieve a successful
design by their first approaches. Especidlgsigner K _1 had to use its expensive iter-

ative approaches to minimize the accessible region or the link lengths.

Table 10-24.Cluster 1-5. Total 4 traces covering 26 projects.

Designer Approach Approach
Index

Kinematic 1 4, minimize_accessible_region

5 minimize_link_lengths_summation
Structural 2 0 steel_stainless_AISI_302_annealed
Structural 3 1 safety factor_2
Structural 4 0 hollow_round
Kinematic 2 1, link_lengths_ratio_0.75

2 link_lengths_ratio_1.0
Kinematic 3 0 thetal is_alphal minus_alpha2
Structural 1 1, dimension_min_ratio_3

2 dimension_min_ratio_2

Cluster 1-5 includes only projects that have “L” type of workspace in their require-
ments. Also, except for Project 427 in all the other projects the requirement on the workload
is rather tough—that is higher than 2.0 kg. Only for this projBesigner_K_1 has been
able to find a successful design by minimizing the accessible region (approach
minimize_accessible_region). For all other projects this designer had to use the
more expensive iterative approach for minimizing the sum of link lengths (approach

minimize_link_lengths_summation).

258

Another pattern that can be seen in Figure 10-18 is that as soon as the constraint on
the deflection becomes “tight’Designer S 1 switches its approach back to

dimension_min_ratio_3.

Distribution of requirements and constraints for projects that followed traces of cluster 1-5

small gain

large gain
@ small deflectio
= large deflectio

quirements & constraints
N
&

.
ptti ottt

T I T T T TTTTTT T TTITTTT
L]

! ! [[| | ! ! 1 | !
120 180 240 300 360 420 480 540 600 660 720 780 840 900

project id

Distribution of design approaches for projects that followed traces of cluster 1-5
T T T T T T T T T T T T T

AARARNNDNN

PR
l—\mwr—\m,l\,\‘,(ln';

v/vlvlvlvlv/vlv®vvvbv/v/v/v)

NNNNNNNYY;

design approaches
T TPPPEEERE
PNWAOIDLNRNWARN

jojvjv/v]v]w]

TTT T LT T T T I T T T T I TT]
]
: H
vttt ettty

AARAAAN

1 | 1 1 1 1 | 1 1 1 | 1 1 1
120 180 240 300 360 420 480 540 600 660 720 780 840 900

project id

Figure 10-18.Comparing the trace of constraints and requirements with the trace of design
approaches for Projects that followed Cluster 1-5.

Based on the above observations and Figure 10-18 we can extract Methodology 1-

5 that is shown in Figure 10-19.

259

METHODOLOGY 1-5

= » workspace is of type “L”,

* requirement on the workload is rather tough—that is higher
than 2.0 kg, and

* requirement on settling time is “not easy"—that is less than 3.0

seconds;

THEN » always minimize the sum of the link lengths,
» always use a safety factor of 2,

» select the length of link 2 to the length of link 1 to be 0.75—if it

fails choose them to be equal in length, and

I= « constraint on deflection is tight

THEN e USe a cross section that is 3 times the dimension

based on stress analysis;

ELSE * uSe a cross section that is 2 times the dimension

based on stress analysis;

« for all other designers use their first or default approaches.

Figure 10-19.Methodology 1-5.

10.7.6 Cluster 1-4

The approaches that were chosen for Cluster 1-4 are shown in Table 10-31. In Cluster 1-4
Designer_K_1 has used two of its basic approaches that puts the base of the robot along
the length of the workspace. AlsDesigner_S_2 has used aluminum for the material

instead of its first choice that is steel.

260

Table 10-25.Cluster 1-4. Total 4 traces covering 24 projects.

Designer Approach Approach
Index
Kinematic 1 0, base_at_left below_midway_ workspace_length
2 base_at_right above_midway_ workspace_length
Structural 2 1 aluminum_alloy 5456 H116
Structural 3 0 safety factor_3
Structural 4 0 hollow_round
Kinematic 2 0, link_lengths_ratio_0.5
1 link_lengths_ratio_0.75
Kinematic 3 0 thetal is_alphal minus_alpha2
Structural 1 0, dimension_min_ratio_4
2 dimension_min_ratio_2

Figure 10-20 shows that there is a sub-group of projects in Cluster 1-4 with the fol-

lowing constraints and requirements:
1. “tight” constraints on deflection,
2. “loose” constraint on the gain of controller,
3. “small-L" type of workspace, and

4. “easy” requirement on the workload.
For the projects of this group, all designers have used their first approach except
Designer_K_1 that has used its third approach (that is putting the base of the robot at
the above of the workspace length) ddesigner S_2 that has used aluminum instead

of steel.

261

Distribution of requirements and constraints for projects that followed traces of cluster 1-4
T

- -

0?0
333
P2
2=
|
S
5
T
T
.
.
:
| |

large gain |- LR
small deflectio
large deflection

requirements & constraints
D
&

I | | [[| I ! | | L
120 180 240 300 360 420 480 540 600 660 720 780
project id

1T

.
.
.
.
.
.
.
.

Distribution of design approaches for projects that followed traces of cluster 1-4

design approaches
|
|
!

I
.
.
.
.
.
.
.
1

o ee .. . -

1 1 1 1 1 1 1 1 1 1 1 1
120 180 240 300 360 420 480 540 600 660 720 780

project id

Figure 10-20.Comparing the trace of constraints and requirements with the trace of design
approaches for Projects that followed Cluster 1-4.

The candidate methodology based on Cluster 1-4 is shown in Figure 10-21:

262

METHODOLOGY 1-4

IF

THEN

2.0 sec).

10.7.7 Cluster 1-6

“tight” constraints on deflection,
“loose” constraint on the gain of controller,
“small-L” type of workspace, and

“easy” requirement on the workload.

first put the base of the robot at the top or to the right of work-
space length-it fails put the base below or to the left of the

length of the workspace;
always use aluminum;

first choose the length of the second link to be half of the first

link's length— it fails choose a length ratio of 0.75;

choose the dimension of the cross section to be either 2 or 4

times of the dimension based on stress analysis;

for all other designers use their first or default approaches.

Figure 10-21.Methodology 1-4.

The design approaches used in Cluster 1-6 are shown in Table 10-26. One common char-
acteristic of the projects that are included in Cluster 1-6 is that most of them have a “tough”
requirement on workload (most of them 5.0 kg). They also, only include type “M” work-

spaces in their requirements and their requirements on settling time are moderate (mostly

263

Table 10-26.Cluster 1-4. Total 4 traces covering 22 projects.

Designer Approach Approach
Index

Kinematic 1 0, base_at_left below_midway_ workspace_length

5 minimize_link_lengths_summation
Structural 2 0 steel_stainless_AISI_302_annealed
Structural 3 2, safety factor_1.4

3 safety factor_1.1
Structural 4 0 hollow_round
Kinematic 2 0 link_lengths_ratio_0.5
Kinematic 3 0 thetal is_alphal minus_alpha2
Structural 1 1, dimension_min_ratio_3

2 dimension_min_ratio_2

Figure 10-23 reveals that Designer_K 1 has used its expensive approach of mini-
mizing the sum of link lengths only once. Also, Designer_S_3 has used the safety factor of
1.1 only for two projects. Considering these three projects as exceptions, we can formulate
a design methodology based on the common characteristics of the projects and traces of

Cluster 1-6 as is shown in Figure 10-22:

264

METHODOLOGY 1-6

IF

THEN

the requirement on workload is “tough”,
the type of workspace is “M”, and

the requirement on settling time is moderate (i.e., 2.0 or 3.0

seconds;

first put the base of the robot below or to the left of the length
of the workspace-Hit fails put the base in a location that min-

imizes the length of the links;
first use a safety factor of 1.4 fails use a factor of 1.1;

use a dimension for the cross section that is either 2 or 3 times

the dimension based on stress analysis;

for all other designers use their first or default approaches.

Figure 10-22.Methodology 1-6.

265

Distribution of requirements and constraints for projects that followed traces of cluster 1-6
T T T T T T T T T T

I

|
i

- -
small gain
large gain

small deflectior)
= large deflectio

equirements & constraints
wh
B&

H

S S |

TT T T T T T T T T T T T T T T TITTT
o . . .

. e

I I I I I I I I I I
180 240 300 360 420 480 540 600 660 720 780
project id

Distribution of design approaches for projects that followed traces of cluster 1-6
T T T T T T T T T T

Ds1-4F L
DS1-3|- B
DSI1-2t- -
N DSI-1|- B
D DR3-2 |- -
< DK3-1 -
© DK2-3 p
© DK2-2 |- B
ginte]
Q pS4-1}-- - -
Q DS3-4|- -
@© DS3-3f- - - o]
S Bt]
2 psr-71- 7
o DS2-1- - -
@ DKI-6 -
© DKI-5 B
DKI-4 - -
DKI-3 - -
DKI-2 - B
DRI-1fe -~ ¢ i i i i | =1 i i | -
180 240 300 360 420 480 540 600 660 720 780

project id

Figure 10-23.Comparing the trace of constraints and requirements with the trace of design
approaches for Projects that followed Cluster 1-6.

10.8 Goodness of Methodologies

In “Formulating Methodologies” on page 228 we mentioned how the goodness of clusters
can be used to compare different methodologies with each other. That is, based on how
many different design situations a methodology is covering (coverage) and how many vari-
ations in the use of design approaches are needed (uniformity) the goodness of a method-

ology relative to other methodologies can be measured.

Another criteria, besides coverage and uniformity, that can be used to compare the
goodness of methodologies is based on the desirability of the design approaches included

in the methodologies. Design approaches are ordered in each designer based on their desir-

266

ability such as their cost in the design process. For instance, iterative methods that do some
sort of optimization are given less preference because they are time consuming. These
types of approaches are tried only if other types of approaches (e.qg., table lookup) that are

faster do not produce successful designs.

By introducing a cost function that assigns higher cost to less desirable approaches
we can compare different methodologies with respect to the desirability of their
approaches. Choosing different weight factors for different approaches makes it possible to
find methodologies that are biased toward some specific approaches. For instance, we may
give more weight to approaches that produce more environmentally friendly products, e.g.,
optimize for fuel consumption. This places methodologies that include fuel optimization

approaches at the top of the list.

Yet, another factor that affects the goodness of a methodology is the degree of par-
allelism in the methodology. This parallelism is directly related to the concurrency between
designer agents as it is seen in the dependency graph, Figure 10-1. In general, the set of
designer agents that participate in the design process might change from one project to
another. As a result, the dependency graph and the degree of concurrency may change in
different projects that will be reflected in the methodologies generated based on those

projects.

267

10.9 Evaluation of Methodologies

The ultimate method for evaluation of the methodologies generated is to do a field test.
That s, to introduce them to real design teams so that they could follow the methodologies

in their design projects and report any improvement in:

reducing the design time cycle,
 reducing conflicts,

 integrating different points-of-view,

* enhancing the parallelism between tasks,

* increasing information exchange, etc.
Testing the methodologies using real design teams, however, is very difficult. It is similar
to, for instance, testing new techniques for seismic isolation on a full-scale multi-story
building. Or, testing a new airfoil on an airplane before doing wind tunnel experimenta-
tions. In these two examples, like all other new technologies, the final approval comes from

real life use of those technologies.

Field or real life tests of new approaches and techniques are very difficult, expen-
sive, and highly risky. This is why these types of test are always done in the last stages. The
approach proposed in this dissertation, generating design methodologies by simulation, and
the design methodologies produced are not an exception to these rules. More research is
required before the approach proposed in this dissertation can be field tested. The next

chapter discusses the areas that this research should be investigated further.

268

The next evaluation method is to compare the methodologies generated with the
current practice of design in a related company. However, access to information, with the
right level of detail, on how a company conducts its design process is very difficult because
of the proprietary issues. Resolving the practical issues of accessing proprietary informa-
tion in a company that designs robots takes a long time and is not within the scope of a

Ph.D. dissertation.

Yet another method to evaluate a new design methodology is to present it to an
expert in the field and ask for his or her judgement. For multi-disciplinary type of design
problems such an expert should be a generalist who can evaluate the methodology from a
non-disciplinary point-of-view. Finding such people, however, is very difficult because
they are usually in high demand, thus the amount of help that one might be able to receive

from them is very limited.

In summary, similar to many other new approaches, more research needs to be done
in extending and expanding the approach proposed in this dissertation before any of the

above evaluation methods can be used (see “Extending to Other Domains” on page 291).

One important point is that the issue of evaluating design methodologies is not
equivalent to the evaluation of this research work. The problem that we are tacking in this
dissertation is that there am® systematic approaches to building design methodologies.
Thus, the evaluation of this work would be evaluating the approach that we are proposing

for generating methodologies. We discuss this issue in the next chapter.

269

1 1 Conclusions

In this final chapter we first review the problem, the proposed approach, and the
results obtained. Next we revisit the goal that was set at the beginning of this dissertation.
We then summarize the contributions of this dissertation and make some final conclusions.
At the end we propose the directions in which this work can be extended and finally pro-
pose some other areas of research and practice that might benefit from the results of this

dissertation.

11.1 Review of the Problem

In this section we review the problem that initiated the research and led to this dissertation.
We then summarize the reasons that make the problem hard to solve and finally discuss the

significance of solving it.
In Chapter 1 we stated the problem as the following:

“There are no systematic approaches to building design
methodologies for integrating different disciplines in multi-
disciplinary design so that they collaborate in both contrib-
uting to the common goals of the design and sharing

resources”.

270

Multi-disciplinary design processes have three characteristics that make them very hard to
integrate, Figure 11-1. Multi-disciplinary design processes are a type of distributed system
(as opposed to centralized system) due to compartmentalization of the disciplines. Distrib-
uted systems are hard to integrate because of the problems of accessing information, the

difficulty of communications, etc.

With respect to the representation of knowledge, multi-disciplinary design pro-
cesses use heterogeneous knowledge sources. Heterogeneity can also be due to different
level of abstraction and granularity of the knowledge. Integrating heterogeneous knowl-
edge is difficult because of the lack of common languages and lack of common goals.
Multi-disciplinary design processes are also very difficult to anticipate because the process
emerges from the interactions of many components in the system. Being unpredictable is
also a barrier to integration as the strategies for integration based on incremental or ad-hoc

methods may not hold for all situations.

Multi-disciplinary
Design Processes

Distributed
Systems

Complex Emergent
Behavior

Heterogeneous
Knowledge Sources

Figure 11-1.Multi-disciplinary Design Processes in Intersection of Three Hard Areas.

In Chapter 1 we gave an extensive list of motivations for the development of an

approach that systematically discovers methodologies for multi-disciplinary design pro-

271

cesses. In summary, the problem is worth solving because it has tremendous potential for
enabling manufacturing companies to speed up their design processes. Another motivation
is that, the recent advances in the area of artificial intelligence in design have provided pow-

erful techniques and tools for solving the problem.

11.2 Reuvisiting the Goal

In Chapter 1 we stated the goal of this dissertation as the following:

“To synthesize design methodologies for rapid product

development, thus reducing time-to-market”

We then formed a hypothesis that we can improve multi-disciplinary design processes by
simulation. That is, we can develop an approach based on simulation of the design process
that systematically generates design methodologies. The design methodologies generated

are superior because they breaking the boundaries between disciplines.

We proposed that the goal can be reached by a simulation of the design process
based on a knowledge-based model of the design process. The idea is similar to the concept
of analysis-by-simulation in engineering systems. Analyzing the behavior of physical sys-
tems in engineering applications by computer simulation using mathematical models has
been a powerful tool in engineering, reducing costs and time in comparison to physical pro-

totyping and experimentation.

Simulation of design processes is very difficult because of their complexity. How-
ever, to extract design methodologies we do not need to simulate the design process in full

detail. Similar to the simulation of physical systems in the engineering analysis domain,

272

appropriate simplification methods might be used to abstract the process and prune less
important details. The key characteristics of the multi-disciplinary design process are cap-
tured in the knowledge-based model and are implemented in the simulation. The key char-
acteristics of multi-disciplinary design processes that should be captured are shown in

Figure 11-1 and include: distributed, heterogeneous knowledge, and emergent behavior.

Developing a system that actually implements the simulation has by no means been
less challenging than the other parts of this dissertation. Recent advances in the area of
multi-agent design systems helped us to overcome part of the difficulty of implementing a

system that simulates the design process.

We implemented a multi-agent system for designing 2-DOF robots dalledRD
simulates a simplified knowledge-based model of the design process while preserving the
characteristics of multi-disciplinary design processes as shown in Figure 11-1. The results
from the system that were presented in chapters 9 and 10 sho®[BEhit simulating the

design process with quite a good accuracy.

11.3 Summary of the Results

In this section we summarize the results RBtproduced.

1. Sensitivity Analysis. The system was used to study the effect of subsets of design
parameters (i.e., requirements) on other design parameters. It was also used to investi-
gate the effect of different design approaches on the design parameters generated. The
sensitivity analysis let us to fine tune the system in terms of evaluating design

approaches and/or re-ordering them.

273

2. Dependency Graph.The system builds the dependency graph on the fly. The depen-
dency graph can reveal very important facts about the design process. It shows integra-
tion among designers from different disciplines, the degree of concurrency between

designers, the bottlenecks in the design process, and many more facts.

3. Traces.The system produced a wide range of information regarding what steps it has
taken in the design process and what resources have been used. These results can be
used in many different ways to learn about how to improve the practice of design in
real world. Our focus in this dissertation was to track the system’s use off different
design approaches in order to generate methodologies. Other types of conclusions can
be made using the other types of traces. For instance, one can use traces of the system
to study the effect of the design requirements, constraints, and approaches on the qual-

ity of the design.

4. Methodologies.Some design methodologies were generated based on first level clus-
ters of the traces of the system. The higher the level of clusters the more abstract the
methodologies will be. Therefore, there is a trade-off between containing enough

details and covering a wide range of situations.

11.4 Evaluation of the Results

In this section we evaluate the results of the system to see if they conform with what we
expected. We concentrate on the design methodologies generated and compare them with
what we called better design methodologies in Chapter 4 (see “Better Design Methodol-

ogy” on page 60). The following is the list of the features that better design methodologies

274

should have. Each feature is followed by a brief discussion regarding whether the method-

ologies generated posses them or not.

» Takes Less Time:The methodologies generated are based on successful traces. There-
fore there is a high chance that following those methodologies takes us directly to a
solution that satisfies all the constraints along the way. That is, less iteration is needed
and thus time is saved. Giving more priority to design approaches that takes less time
makes the methodologies even more time effective. This is because the system first fol-

lows the traces which have higher priority design approaches.

» Causes Fewer FailuresThe methodologies generated are based on traces of the sys-
tem that have succeeded in producing a successful design and thus have less chance of

encountering constraint violations.

» Produces Better DesignsBetter designs are those with better quality or those that are
simpler. We did not consider the quality of the product in producing traces. The reason
is that this is an area of research that has been investigated thoroughly and many good
approaches have been developed for optimizing design products, e.g., the methods from
multi-disciplinary design optimization (MDO). However, one can incorporate the effect
of the quality of the design product into traces generated by introducing global con-
straints that define the boundaries of near-optimal designs. This forces the system to
find the design that satisfy those global constraints, hence producing better quality. For
instance, introducing constraints that put limits on the maximum weight, cost, power

consumption, etc. will produce designs that will have just those features (if there are

any).

275

* Works for a Wide Range of Design RequirementsThis feature has been incorpo-
rated into the mechanism that produces design methodologies. In “Goodness of a Clus-
ter of Traces” on page 217 we described how the effect of the coverage of the traces are
taken into account. In producing methodologies we picked the cluster of traces whose
coverage combined with their uniformity was higher than others. This leads to method-

ologies that are applicable to a wide range of different situations.

* Integrates Different Disciplines: Figure 10-1 on page 214 clearly shows that different
disciplines are integrated in the design process. In the first and third round, designers
from kinematics and structural design and in the last round designers from all three dis-
ciplines have patrticipated in the process of design. Integration of the disciplines is evi-
dent also from the methodologies generated. For instance, the mixture of design
approaches from kinematic and structural design in the ‘Methodology 1-0’ (see

Figure 10-10 on page 245) is an evidence of integration of disciplines.

» Conducts Design Concurrently: The dependency tree of Figure 10-1 on page 214
shows how multiple designers can design simultaneously. In Chapter 4 we discussed
the strategies that are incorporated into the knowledge-based model of design (see
“Strategies for a Knowledge-based Design System” on page 66). One of these strate-
gies was to conduct the design process concurrently. Implementation of ‘concurrency
strategy’ plus the ‘opportunistic strategy’ conducts the design process among different

designers concurrently.

» Consumes Less Resource&ess resources, e.g., time and money, are expended in the
design process due to less failure, integration, concurrency, etc., features that are incor-
porated into the design methodologies. Having access to design methodologies that are

276

built systematically based on the latest available technology reduces the load on design-
ers, especially the generalists that can now spend more time on more creative parts of

the design process.

* Requires Less Requirements and Information:The methodologies generated are
based on correlation between clusters of traces of the system and the requirements.

Whenever possible we have pruned the less important features of the requirement set.

11.5 Outcome of the Research

The outcome of this research is an approach and a design system that can be used to gen-
erate design methodologies for non-routine parametric design problems. The summary of

the approach is as follows:

1. Type of Design.Determine the type of the design process under consideration. If the

type of the design process is parametric this approach can be used.

2. Knowledge Acquisition. Identify the design parameters that define the design prod-
uct. Make a list of different disciplines involved in the design. Extract the design
knowledge in each discipline including design methods, design constraints, domain

preferences for using particular methods, etc.

3. Small Design MethodsBreak the design knowledge into small segments. The rule is
to break a method at the decision-making points. In parametric design, a decision point
is when a value is assigned to a design parameter. For instance, when an equation is

used, a table is looked up, a catalog is searched, an optimization procedure is con-

277

ducted, or a heuristic rule is used to find the value of a design parameter. Please note
that the design parameter can be numeric, symbolic, scalar, vector, matrix or any other

type as defined in the domain.

. Design Approaches.Reorganize the design knowledge in small segments to form
groups of related design approaches. Related design approaches are those that have
similar inputs and outputs. Each group of related design approaches can be bundled
together in the form of new design methods. Order the design approaches in each
method so that those with higher preference are used first. The ordering of the design
approaches can be based on the quality of the approach itself (e.g., fast, accurate, etc.)

or based on its outcome (e.g., manufacturable, environmentally friendly, etc.).

. Designer Agentsinsert each design method (i.e., group of reorganized related design

approaches) in one designer agent.

. Multi-agent Design System.nsert designer agents in the multi-agent design system.
The multi-agent system that we have developed can be used as a shell into which
designer agents can be added or removed. However, should a system be developed
from scratch, the framework and the set of techniques and tools that was proposed in

this dissertation can be used.

. Design Experiments.Design of Experiment techniques enable one to gain a maxi-
mum amount of information in a minimum number of runs. Trade-offs as to the

amount of information gained for the number of runs, are known before running the

278

9.

experiments. Conducting sensitivity analyses such as those presented in Chapter 9
should be used to determine the appropriate range of variation for requirements as well

as the sensitivity of the results to different constraints.

Experiments. Conduct the experiments by running the system for all combinations of
requirements and constraints determined in ‘Design of Experiments’ stage. We
referred to each unique combination of requirements and constraintdessga prob-
lemand to the problem plus its solution and other information about the traces of the
system as aesign projectCollect the information about how the system conducted

the design process in the form of traces in order to be analyzed.

Analysis of Traces.Analyze the traces of the system in terms of the number of suc-
cessful and unsuccessful projects, distribution of traces with respect to projects, dis-
covering patterns among project that followed the same or similar traces, discovering
correlation between clusters of projects and particular combination of design
approaches, etc. This step can be automated using machine learning techniques such

as concept formation using unsupervised learning techniques presented in Chapter 6.

10.Generate Methodologies.Generate the methodologies by finding the correlation

between subsets of projects and subsets of traces. Methodologies can be represented in

the form of rules, decision trees, or any other appropriate representation scheme.

11.6 Evaluation of the Outcome

In this section we evaluate the outcome of this research work by looking at some important

aspects of using the approach proposed.

279

11.6.1 Return in Investment

There is a trade-off between resources saved due to using methodologies and the resources
used to generate them. That is, on one hand we have to spend more resources (e.g., time,
money, expertise, etc.) to generate methodologies with better quality. On the other hand,
design methodologies with better quality save more resources (e.g., speed up the design).
The return on the investment for generating methodologies increases by reducing the costs

while increasing their use (Figure 11-2).
The factors that contribute to the use of the methodologies are as follow:

» The Quality of the Methodologies.Good quality methodologies get used more, hence
they save more resources by guiding the design process. The quality of the methodolo-
gies generated can be enhanced by increasing their coverage, uniformity, desirability,

and parallelism (see “Goodness of Methodologies” on page 266).

» Existence of Current MethodologiesIn the domains that design methodologies with
good quality do not exist, the use of the methodologies generated by our proposed
approach will be higher. Multi-disciplinary design is an example of a situation in which
the quality of the existing methodologies is poor. This is because the incremental and
ad-hoc approach to improving the current methodologies is severely limited by the
complexity of the design process. As a result, the methodologies that are embedding
techniques for integrating different disciplines are superior and will get used more.

The factors that affect the cost of generating methodologies are the following:

280

* Knowledge Acquisition and Knowledge Engineering.Existence of methods and
techniques for extracting the domain knowledge from the experts, published literature,
etc., can dramatically reduce the cost of knowledge acquisition. Converting the
acquired knowledge to the right form so that it can be used in the multi-agent design
system can be time consuming and costly. Developing methods and tools that would
assist in or automate this process is a step toward reducing the cost of generating meth-
odologies. For instance, we proposed a rule for how to break the design knowledge into
smaller pieces that can be used by the knowledge engineer to speed up the process (see

“Small Design Methods” on page 277).

* Building Multi-agent Design System (MADS). The burden of building the multi-
agent system that simulates the design process can be greatly reduced by developing
multi-agent shells for design. We proposed a framework and set of techniques for
building MADS that can be a starting point in developing such shell systems. Building
the MADS using the shell will then be only the matter of pluging in the design knowl-

edge.

281

target cost-to-use
ratio

cost of generating methodologies
minimum use
- maximumuse . - -

methodology use

Figure 11-2.Return in Investment in Generating Methodologies.

11.6.2 Type of Design

The approach that we have proposed in this dissertation has been developed for non-rou-
tine, parametric types of design problems (obviously the approach is applicable to routine-
parametric designs). Non-parametric types of design (e.g., configuration design, concep-
tual design, etc.) remain to be investigated. This limits the use of the approach. However,

parametric designs cover a large portion of the design activities in practice.

11.6.3 Scalable

The methodology generation requires a lot of detailed investigation (in terms of knowledge
acquisition) even for relatively simple problem/domain. One unanswered question is how
this effort increases when the complexity/size of the problem scales up? We discussed that

for extracting design methodologies we do not necessarily need a detailed model of the

282

design process. However, to find the right level of detail and the required ingredients might

not be straightforward.

11.6.4 Automated Extraction of Methodologies

In this dissertation we were able to automate the methodology generation to a high degree.
We provided the reference to methods that can be used to automate the whole process (e.g.,
conception formation methods based on unsupervised learning techniques). Itis not evident
that these techniques scale up to real and more complex problems. There is clearly a need
for a change of representation of the results from such automated techniques so that they
can easily be understood by human users of the methodologies. Further investigation is

needed to see whether this stage can be automated or not.

11.6.5 Quality of the Methodologies

The quality of methodologies has been verified only to the extent that they conform with
the first principles of physics. For real-size problems such an evaluation approach may not
be helpful because of the complexity of the problem. Formal methods of evaluation for
methodologies are needed before the approach proposed in this dissertation can be used for

real applications.

11.6.6 Quality of the Design

In the approach proposed the system accepts the first design that satisfies all the constraints.
The methodologies are then generated based on the corresponding traces. The approach
should be modified so that the system finds a near optimal design and methodologies are

generated based on such results.

283

11.7 Contributions of the Research

The overall contribution of this work to engineering design research is to propose an
approach and a tool for constructing better methodologies in parametric design. As a result
of this research we are able to generate superior design methodologies that facilitate inte-
gration and collaboration between different disciplines, conduct design tasks concurrently,
apply to a wide range of design problems, consume fewer resources at design time, and pro-

vide better quality for the product.

We divide the contributions of this research into the following categories: theoreti-

cal, experimental, implementation, and domain dependent.

11.7.1 Theoretical Contributions

Investigating and developing computational and knowledge-based models for the design
process has provided us with some better insight into how a real design process might be

conducted more efficiently.

For instance, how the design tasks should be delegated to the members of a design
team so that little overlap happens in carrying out the tasks. Or, that to reduce the number
of conflicts reorganize the teams so that all decisions about one design parameter are taken
in one place, that is no two different designer decide about the same parameter. Also, by
discovering the dependencies between designers, dependency-directed backtracking pre-
vents the designers that won’'t have any effect on violated constraints from having to re-do

their work.

A summary of the other theoretical contributions follows:

284

Extending the technique of analysis by simulation to the area of analyzing design meth-

odologies and in general to synthesizing the emergent behavior of complex systems.

Decomposing the design process into small designers, coordinators, databases, and
other utility agents (e.gExceptionHandler), as is done foRD, can be used in

real design processes.

Approximating the continuous design process with a discrete process comprising of

cycles of run-analysis-update.

The idea that conflict resolution between different participants in design can be aided
by breaking the design knowledge into small pieces at the decision points (i.e., a deci-
sion about assigning values to design parameters). In these situations we will have a set
of (atomic) design methods where some of them decide about the same parameter. Col-
lect and bundle the design methods that are about the same design parameters into one
design agent. In each agent, order and prioritize each method and let the agent decide
what method it should use for assigning a value to the associated parameter. In this sit-
uation there is no conflict between designer agents in assigning values to design param-
eters. The same approach can be used for the control knowledge in which designer

agents might not agree on what the order of the design tasks should be.

Another contribution is to provide an approach for analyzing current methodologies for
flaws and bottlenecks, and suggesting necessary refinements. New methodologies can
be customized so that they are biased toward specific objectives such as manufactura-

bility or “green design”. By applying this approach the response time for the incorpora-

285

tion of new technologies or new design methods into design processes will be reduced.
Methodologies can be refined as soon as a change occurs in the market or in the organi-

zation of the company.

» The algorithms we developed for backtracking lead us to an approach for how to break
the design knowledge into pieces: We should break the design knowledge in a way that
the most expensive methods are located in the shallower depths of the dependency

graph (see page 169).

11.7.2 Experimental Contributions

The experiments conducted in this dissertation revealed some interesting results. The fol-

lowing is a summary of these results:

* An approach for discovering the dependency relations between design parameters is to

use a multi-agent design system.

* The experimental studies reveal some valuable information regarding the sensitivity of
the design to the design approaches as well as to various subsets of design parameters.
The design process simulation approach can be used as an analysis tool, and for sensi-
tivity studies in which quantitative and qualitative measurements are formed to show
the effect of inputs (requirements/constraints) on outputs (the product attributes). This
type of sensitivity analysis is very valuable when analytical or computational models

cannot be built for the physics of the problem.

286

11.7.3 Implementation Contributions

Developing multi-agent design systems is very difficult and time consuming. The frame-

work that we have proposed for implementation as well as the implementation decisions
that we have made might be helpful in the future in developing new systems. The frame-
work and other implementation decisions that we proposed are results of many iterations

and failures in the process of developing the system.

Besides simulating the design process for the purpose of generating methodologies,
the lessons learned during implementation of the system can be used to build design assist-

ing tools that automate the whole or part of the design process.

The fact that the system has generated nearly 1000 projects and been running con-
tinuously for a long period proves the credibility of the proposed framework and implemen-
tation strategies. Besides, it shows that the system is quite robust and fault tolerant. These
are very desirable features in design system especially if they are intended for real world as
opposed to research purposes. The results from the implementation phase contributes to

how to build such design systems.

The implementation of backtracking algorithms by introducing concepts such as
backtracking session, backtracking agenda, etc. can be used in other systems other than

design systems that need dependency backtracking mechanisms.

11.7.4 Contributions to Robot Design

The robot design area can benefit from the methodologies generated. Although the robot
design problem that we chose in this dissertation is a simplified one, the complexity of the

interaction between disciplines is preserved. Also, the results on how to break the design

287

knowledge into pieces in each discipline involved might be used in real design situations

for robot design.

11.8 Final Conclusion

The final conclusion is that the following hypothesis has been proved to be true:

Computers can provide us with better ways of doing design
by discovering superior design methodologies that integrate
different points-of-view of multiple disciplines in the design

process.

In this dissertation we showed that it is possible to use the computers to simulate the design
process. We can then analyze the results of the simulation to synthesize design methodol-
ogies that have superior features. The approach that we have proposed has been developed
based on parametric design problems. Applicability of the approach to other types of prob-

lems can be investigated.

11.9 Future Work

There are directions in which this research should be extended to increase the chance for
the success of the proposed approach in real design practices. There are also ways in which
this research can be extended to increase its scope. The following is a list of the areas we

think this research should or can be extended to:

288

» Applying the approach to other types of design problems other than non-routine para-
metric design such as configuration design. This is a direction that increases the scope
of the proposed approach. Obviously one important feature that should exist in the new
types of design problems is that they should be able to be automated via a multi-agent

system, even in a simplified version.

» Applying the approach to other multi-disciplinary domains such as automotive design,
electronics packaging design, or building design. This would help to get better insight

into the problem and enhance the generality of the approach.

» Discovering the rules for simplification of the process. We discussed that for being able
to discover design methodologies based on simulation of the design process it is not
necessary to model the design process in full detail. Similar to the simulation of physi-
cal phenomenon in engineering analysis we can simulate a simplified version of the
design process and still get the design methodologies that are helpful for the real situa-
tions. The rules for these simplifications and approaches and tools should be developed

for this purpose.

» Evaluation of the methodologies in real situations. The design methodologies devel-
oped by the approach proposed should be evaluated in the real design situations in
which human designers use those methodologies and report on any enhancement in the
design process. Also, the lesson we have learned in organizational side of the design
process via agents can be implemented in design processes by human designers to see

whether any improvements happen.

289

The effect of scaling up the approach should be investigated. Larger design processes
with more disciplines and design parameters must be considered for this approach to be

implemented.

Enrich the design methodologies. Design methodologies can contain more knowledge
about not only the design approaches but also about control aspects of the design pro-

cess too.

Biased methodologies could be generated using this approach. Design methodologies
that are biased toward manufacturability for example can be another area of further

research.

Change the order of approaches. It would be useful to investigate the effect of order of

the design approaches in traces produced.

Convert the tool to a sensitivity analysis tool or even an optimization tool. As we used
the multi-agent design system in discovering sensitive parameters as well as their
boundaries, more research can be done to convert the system to an optimization tool.
Such an approach to optimization is especially attractive for domains that do not con-
form to a completely mathematical form allowing classical optimization tools to be

used.

Introduce new types of design approaches into the design process such as heuristic, sta-

tistical, and probabilistic approaches.

290

» Close the feedback loop around the system in which the methodologies generated by
the system are fed back into it to further refine the methodology. That is, to force the
system to use the methodologies generated for similar problems and measure the

improvement.

* Investigate the effect of changing the resolution of the set of constraints and require-
ments. Using a concept similar to adaptive mesh generation in FEM (Finite Element
Method) to find the best grid and/or find the areas of high gradient. Enhance the resolu-

tion of the constraint-requirement grid so that the system covers more design problems.

* Investigating the effect of the design knowledge used to produce correct designs on
generating the right methodologies. That is, finding the answer to the following ques-
tions: What is the trade-off between the design quality, as generated by RD, and correct
traces, hence correct methodologies? Can we remove some of the design knowledge
from the system (knowing that it will produce inferior designs) but still obtain correct
design methodologies? If the answer to the last question is positive, the knowledge

engineering and implementation stages can be substantially simplified.

11.10 Extending to Other Domains

In this section we describe the research directions that examines the applicability of the pro-

posed approach to problems other than discovering design methodologies.

Simulation of complex systems using agents can be a powerful tool in analyzing
why those systems behave in a certain way. Especially, using simulation via multi-agent
systems the complex systems can be designed to have some desired emergent behavior.
Multi-disciplinary design processes are one example of complex systems whose emergent

201

behavior is hard to anticipate. Other areas that are similar to the multi-disciplinary design
process in having an emergent behavior are: ‘supply chains in manufacturing enterprises’

and ‘shop floor job scheduling’.

This approach is directly adaptable to the problem of ‘Supply Chain Optimization’
in manufacturing enterprises. Suppliers and consumers can be modeled as agents that are
negotiating with each other to sell and buy goods or services based on their needs as well
as on their resource constraints. A multi-agent system that simulates this process can find
the best supply chain for a company. The same approach can be applied to multi-enterprise

supply chain management problems.

Shop Floor Job Scheduling problems in manufacturing industries is another area
that can be attacked by this approach. Different machine tools and manufacturing activities
will be modeled by different agents. A multi-agent system simulates the manufacturing
process in the shop. The system generates different schedules for different jobs based on
the requirements as well as the constraints on time, budget, and priority of the jobs. Gener-

alizing the generated schedules guides how the future jobs should be scheduled.

292

Andeen 88

Arciszewlski 87

Badhrinath 96

Breuker 94

Brown 89

Brown 93

Brown 96-a

Bibliography

G. B. Andeen.Robot Design HandbookMcGraw-Hill Book
Company, 1988.

T. Arciszewlski, M. Mustafa, and W. Ziarko. “A Methodology
of Design Knowledge Acquisition for Use in Learning Expert
Systems”,International Journal of Man-Machine Studie®7,
1987, pp. 23-32.

K. Badhrinath and J. R. Jagannatha Rao. “Modeling for Con-
current Design Using Game Theory FormulatiorGdncurrent
Engineering: Research and Applicatigngol. 4, Number 4,
December 1996, pp. 389-399.

J. Breuker and W. Van de Velde (Ed§ommonKADS Library
for Expertise ModelinglOS Press, 1994.

D. C. Brown and B. Chandrasekaradesign Problem Solving:
Knowledge Structures and Control StrategiBesearch Notes
in Artificial Intelligence Series, Morgan Kaufmann Publishers,
Inc., 19809.

D. C. Brown & R. Douglas. “Concurrent Accumulation of
knowledge: A View of CE”, The Handbook of Concurrent
Design and ManufacturingEds.) H. R. Parsaei & W. G. Sulli-
van, Chapman & Hall, 1993, pp. 402-412.

D. C. Brown. “Modeling Conflicts Between Agents in a Design
Context”, ECAI'96 Workshop on Modeling Conflicts in Al

293

Brown 96-b

Brown 96-c

Brown 97

Clearwater 92

Coyne 90

Craig 86

Cross 89

European Conference on Atrtificial Intelligence, Budapest, Hun-

gary.

D. C. Brown, S. E. Lander and C. J. Petrie. “The Application of
Multi-agent Systems to Concurrent Engineering”, Editorial.
Concurrent Engineering: Research and ApplicatioSpecial
Issue on Multi-agent Systems in Concurrent Engineering, Tech-
nomic Publ., Vol. 4, No. 1, March 1996, pp.2-5.

D. C. Brown. Routineness Revisitedechanical Design: The-
ory and Methodology (Eds.) M. Waldron & K. Waldron,
Springer-Verlag, 1996, pp. 195-208.

D. C. Brown and W. P. Birmingham. “Understanding the Nature
of Design”, IEEE Expert: Intelligent Systems & their Applica-
tions, March-April 1997, pp. 14-16.

S. H. Clearwater, B. A. Huberman, and T. Hogg. “Cooperative
Problem Solving”, inComputation: The Micro and the Macro
View B. Huberman (Ed.), World Scientific, 1992, pp. 33-70.

R. D. Coyne, M. A. Rosenman, A. D. Radford, M. Balachan-
dran, and J. S. Ger&Knowledge-based Design Systeddi-
son-Wesley Publishing Company, 1990.

J. J. Craig.Introduction to Robotics, Mechanics & Contyol

Addison-Wesley Publishing Company, 1986.

N. Cross.Engineering Design Methodgohn Wiley & Sons
Ltd., 1989.

294

Dasgupta 89

Depkovich 89

Dixon 87

Dixon 95

Dowlatshahi 97

Duffy 97

Durfee 89

Eppinger 90

S. Dasgupta. “The structure of Design ProcessesAdmances
in Computers\Vol. 28, M. C. Yovits (Ed.), Academic Press Inc.
1989, pp. 1-67.

T. M. Depkovich and R. M. Stoughton. “A General Approach
for Manipulator System Specification, Design, and Validation”,
IEEE International Conference on Robotics & Automatival.

3, 1989, pp. 1402-1407.

J. R. Dixon. “On Research Methodology towards a Scientific
Theory of Engineering DesignAl EDAM, 1987, 1(3), pp. 145-
157.

J. R. Dixon. Knowledge-based Systems for Desigpyrnal of
Mechanical Designvol. 117, June 1995, pp. 11-16.

S. Dowlatshahi. “Design Optimization in Concurrent Engineer-
ing: A Team Approach”,Concurrent Engineering: Research

and Applications Volume 5, Number 2, June 1997, pp. 145-
154.

A. H. B. Duffy. “The ‘What’ and ‘How’ of Learning in Design”,
IEEE Expert: Intelligent Systems & Their ApplicatioMel. 12,
No. 3, May-June 1997, pp. 71-76.

E. H. Durfee, V. R. Lesser, and D. D. Corkill. “Trends in Coop-
erative Distributed Problem SolvinglEEE Transactions on

Knowledge and Data Engineering989, 1(1).

S. D. Eppinger, D. E. Whitney, R. P. Smith, and D. A. “Gebala.
Organizing the Tasks in Complex Design Projec®foceed-
ings of Design Theory and Methodology Conferei2€M-90,
Chicago, ASME 1990, pp. 39-46.

295

Finin 93

Fisher 91

Forrester 69

Franklin 96

Gebala 91

Haddadi 96

Hale 96

Hazelrigg 96

T. Finin, J. Weber, G. Wiederhold, M. Genesereth, R. Fritzson,
D. McKay, J. McGuire, S. Shapiro, and C. Beck. “Specification
of the KQML: Agent-Communication Language”, June 1993,

http://www.csee.umbc.edu/kgml/kgmispec.ps

D. H. Fisher, M. J. Pazzani, and P. Langley (E@)ncept For-
mation: Knowledge and Experience in Unsupervised Learning

Morgan Kaufmann Publishers, Inc., 1991.

J. W. Forresteitdrban DynamicsMIT Press, 1969.

S. Franklin and A. Graesser. “Is it an Agent, or just a Program?:
A Taxonomy for Autonomous Agents'Proceedings of the
Third International Workshop on Agent Theories, Architectures,

and LanguagesSpringer-Verlag, 1996.

D. G. Gebala & S. D. Eppinger. “Methods for Analyzing
Design ProceduresRroc. ASME Design Theory and Method-
ology ConferenceDTM’91, ASME DE-Vol. 31, 1991, pp. 227-
233.

A. Haddadi.Communication and Cooperation in Agent Sys-
tems, A Pragmatic Thearyecture Notes in Artificial Intelli-

gence, Springer Verlag, 1996.

M. A. Hale, J. I. Craig, F. Mistree and D. P. Schrage.
“DREAMS and IMAGE: A Model and Computer Implementa-
tion for Concurrent, Life-Cycle Design of Complex Systems”,
Concurrent Engineering: Research and Applicationsl. 4,
No. 2, June 1996, pp. 171-186.

G. A. Hazelrigg.Systems Engineering: An Approach to Infor-

mation-Based DesigriPrentice-Hall, Inc., 1996.

296

Holzbock 86

Huang 93

Iglesias 96

Jackson 90

Kannapan 92

Kauffman 80

Klein 91

Kroo 88

W. G. Holzbock.Robotic Technology, Principles and Practjce
Van Nostrand Reinhold Company Inc., 1986.

G. Q. Huang and J. A. Brando@ooperating Expert Systems in
Mechanical Systemdohn Wiley & Sons Inc., 1993.

C. A. Iglesias, M. Garijo, J. C. Gonzalez, and J. R. Velasco. “A
Methodological Proposal for Multiagent Systems Development
extending CommonKADS”Proceedings of Tenth Knowledge
Acquisition for Knowledge-Based Systems WorksBbpreable
and reusable problem-solving methods, Banff, Alberta, Canada
November 9-14, 1996, also: http://ksi.cpsc.ucalgary.ca:80/
KAW/KAW96/iglesias/Iglesias.html.

P. JacksonIntroduction to Expert System#ddison-Wesley,
Inc., 1990.

S. M. Kannapan and K. M. Marshek. “Engineering Design
Methodologies: A new Perspective”, Intelligent Design and
Manufacturing A. Kusiak (Ed.), 1992 John Wiley & Sons, Inc.
pp. 3-38.

D. L. Kauffman Jr.Systems One: An Introduction to Systems

Thinking Future Systems, Inc. 1980.

M. Klein. “Supporting Conflict Resolution in Cooperative
Design Systems”]JEEE Transactions on Systems, Man, and
Cybernetics\Vol. 21, No. 6, Nov./Dec. 1991, pp. 1379-1389.

I. Kroo, M. Takai. “A Quasi-Procedural, Knowledge-Based
System for Aircraft Design”AIAA/AHS/ASEE Aircraft Design,
Systems and Operations Meetiddlanta, GA, AIAA-88-4428,
September 1988.

297

Kroo 90

Kusiak 93

L'Hote 83

Lander 92

Lander 94

Lander 97

Langley 96

Levitt 91

Liu 94

I. Kroo and M. Takai. “Aircraft Design Optimization Using a
Quasi-Procedural Method and Expert Systervultidisci-
plinary Design and Optimization Symposjudov. 1990.

A. Kusiak. “Decomposition of the Design Proces3gurnal of
Mechanical DesignDecember 1993, Vol. 115, pp. 687-695.

F. L'Hote, J. M. Kauffmann, P. Andre, and J. P. TaillaRbbot
Technology: Robot Components and SysteRrintice-Hall,
Inc., 1983.

S. E. Lander and V. R. Lesser; “Customizing Distributed Search
Among Agents with Heterogeneous KnowledgBrbceedings
5th International Symposium on Al Applications in Manufac-
turing and RoboticsCancun, Mex., Dec. 1992.

S. E. Lander.Distributed Search and Conflict Management
Among Reusable Heterogeneous AgefRts.D. Dissertation,

University of Massachusetts at Amherst, May 1994.

S. E. Lander. “Issues in Multi-agent Design SystemMEEE
Expert: Intelligent Systems and their ApplicatipMarch-April
1997, Vol. 12, No. 2, pp. 18-26.

P. LangleyElements of Machine Learninylorgan Kaufmann,
Inc., 1996.

R. E. Levitt, Y. Jin, and C. L. Dym. “Knowledge-Based Support
for Management of Concurrent, Multidisciplinary Desigil,
EDAM, Academic Press Ltd., Vol. 5, No. 2, 1991, pp. 77-95.

J. Liu and D. C. Brown. “Generating Design Decomposition

Knowledge for Parametric Design Problem8|D-94: Atrtifi-

298

MacCallum 89

Maher 95

Marcus 92

McLaughlin 87

Mitchell 97

Mittal 92

Muller 96.

cial Intelligence in Design’94(Eds.) J. S. Gero and F. Sud-
weeks, Kluwer Academic Publ., 1994, pp. 661-678.

K. MacCallum and Sue Green. “THESYS - Implementation of
a Knowledge-Based Design System with Multiple Viewpoints,”
Intelligent CAD Systems Il: Implementation IssuégsAkman,

P. J. W. ten Hagen, and P. J. Veerkamp (Eds.), Springer-Verlag,
1989, pp. 228-244.

M. L. Maher, M. B. Balachandran and D. M. ZhanGase-

Based Reasoning in Desigrawrence Erlbaum Assoc., 1995.

S. Marcus, J. Stout, and J. McDermott. “VT:. An Expert Eleva-
tor Designer that Uses Knowledge-Based Backtracking”, in
Artificial Intelligence in Engineering Desigiicademic Press,
Inc., 1992, edited by: C. Tong and D. Sriram, Vol. |, pp. 317-
355.

S. McLaughlin and J. S. Gero. “Acquiring Expert Knowledge
from Characterized DesignsArtificial Intelligence in Engi-
neering Design, Analysis, and Manufacturjrig 1987, pp. 73-
87.

Tom M. Mitchell. Machine Learning McGraw-Hill Compa-

nies, Inc., 1997.

S. Mittal and A. Araya. “A Knowledge-based Framework for
Design”, inArtificial Intelligence in Design(eds) C. Tong and
R.D. Sriram, Academic Press, Inc., 1992, pp. 273-293.

H. J. Muller. “Multi-agent systems engineering”, iBecond

Knowledge Engineering ForurKarlsruhe 1996, page 213.

299

NSF 96

Oaks 97

Ogata 97

Pahl 88

Pena-Mora 95

Press 89

Quinlan 93

Reich 91

Rich 91

Rivin 88

Research Opportunities in Engineering Desigi6F Strategic
Planning Workshop Final Report, (ed.) J. Shah April 1996.

S. Oaks and H. Wonglava ThreadsO’Reilly & Associates,
Inc., 1997.

K. Ogata. Modern Control EngineeringPrentice-Hall, Inc.,
1997.

G. Pahl and W Beitz.Engineering Design: A Systematic
Approach Springer-Verlag 1988.

F. Pena-Mora, R.D. Sriram, and R. Logcher. “Conflict Mitiga-
tion System for Collaborative EngineeringAllEDAM (1995),
9, pp. 101-124.

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
Numerical Recipeambridge University Press, 1989.

J.R. Quinlan.Programs for Machine LearningMorgan Kauf-

mann Publishers, Inc., 1993.

Y. Reich and S.J. Fenves. “The Formation and Use of Abstract
Concepts in Design”, irConcept Formation: Knowledge and
Experience in Unsupervised Learnirgdited by D. H. Fisher,

M. J. Pazzani, and P. Langley. Morgan Kaufmann Publishers,
Inc., 1991, pp. 323-353.

E. Rich and K. Knight.Artificial Intelligence McGraw-Hill,

Inc., 1991, second edition.

E. I. Rivin. Mechanical Design of Robqgt#cGraw-Hill Book
Company, 1988.

300

Rogers 96

Rudolph 96

Senge 94

Serrano 92

Shoham 93

Sieger 95

Smith 80

Sobieszczanski-
Sobieski 96

J. L. Rogers, C. M. McCulley & C. L. Bloebaum. “Integrating a
Genetic Algorithm Into a Knowledge-Based System for Order-
ing Complex Design Processedpurth Int. Conf. on Al in
Design ‘96 Stanford, CA, June 24-27, 1996.

E. G. Rudolph, J. Grabowski, and P. Graubmann. “Tutorial on
message sequence charts” (MS®yoceedings of FORTE/
PSTV’'96 Conferencealso: ftp://ftp.win.tue.nl/pub/techreports/

sjouke/msc/msc96tutorial.ps.Z

P. Senge, A. Kleiner, C. Roberts, R. Ross, and B. Sniitte
Fifth Discipline Fieldbook: Strategies for Building a Learning
Organization Currency Publishing, 1994.

Serrano, D., and Gossard, D., 1992. “Tools and Techniques for
Conceptual Design”, idrtificial Intelligence in Designedited

by C. Tong and D. Sriram, Vol |, Academic Press, 1992, page
71-116.

Y. Shoham. “Agent-oriented Programmingrtificial Intelli-
gence \Vol. 60, 1993, pp. 51-92.

D. B. Sieger and A. B. Badiru. “A Performance Parameter
Model for Design Integration,Engineering Design and Auto-
mation Volume 1, Number 3, Fall 1995, pp. 137-148.

R. G. Smith. “The Contract Net Protocol: High-Level Commu-
nication and Control in a Distributed Problem SolvelZEE
Transaction on Computer€-29(12), 1980, pp. 1104-1113.

J. Sobieszczanski-Sobieski and R. T. Haftka, “Multidisciplinary
Aerospace Design Optimization: Survey of Recent Develop-

ments”, 34th AIAA Aerospace Sciences Meeting and Exhibit

301

Sobolewski 96

Sriram 98

Suh 95

Sycara 90

Torsun 95

Tsai 81

Tsai 89

Wellman 95

Reno, Nevada, AIAA Paper No. 96-0711, January 15-18, 1996,
pp. 32.

M. Sobolewski. “Multiagent Knowledge-Based Environment
for Concurrent Engineering ApplicationsConcurrent Engi-
neering: Research and Applicatigngil. 4, No. 1, March 1996,
pp. 89-97.

R.D. Sriram. “Information Technology in Engineering Design”,
Invited editorial, ASCE Journal of Computing in Civil Engi-
neering July 1998, vol. 12, issue 3, pp. 123-125,

N.P. Suh. “Axiomatic Design of Mechanical System3durnal
of Mechanical Designvol. 117, June 1995, pp. 2-10.

K. Sycara. “Cooperative Negotiation in Concurrent Engineering
Design”, Cooperative Engineering DesigrSpringer Verlag
Publications, 1990.

I. S. Torsun.Foundations of Intelligent Knowledge-based Sys-

tems Academic Press, August 1995.

Y. C. Tsai and A. H. Soni. “Accessible Region and Synthesis of
Robot Arms”, Journal of Mechanical DesignOctober 1981,
Vol. 103, pp. 803-811.

M. J. Tsai, T. G. Wu, and L. Hong. “Expert System for Design
of Industrial Robots - ESDIR”Advances in Design Automa-
tion, Vol. 1, ASME 1989, pp. 315-324.

M.P. Wellman. “A Computational Market Model for Distributed
Configuration Design”’AIEDAM (1995), 9, pp. 125-133.

302

Wooldridge 95

Wooldridge 97

Wooldridge 98

Woyak 95

Wujek 96

M. Wooldridge and N.R. Jennings. “Intelligent agents: Theory
and practice”,The Knowledge Engineering Revijel®(2):115-
152, 1995.

M. Wooldridge. “Agent-based software engineerindEEE
Transactions on Software Engineerjrigi4(1): 26-37, 1997.

M. Wooldridge and N. R. Jennings. “Pitfalls of Agent-Oriented
Development”, inProceedings of the Second International
Conference on Autonomous Ageri385-390. Minneapolis/St.
Paul, MN. USA, May 9-13, 1998.

S. Woyak, B. Malone and A. Myklebust, “An Architecture for
Creating Engineering Applications: The Dynamic Integration
System”,Proc. ASME Computers in Engineering CorBos-
ton, MA, September 1995.

B. A. Wujek, J. E. Renaud, S. M. Batill, and J. B. Brockman.
“Concurrent Subspace Optimization Using Design Variable
Sharing in a Distributed Computing Environmer§bdncurrent
Engineering: Research and Applicatign®lume 4, Number 4,
December 1996, pp. 361-377.

303

Appendix A. Extention of the
Kinematics Equations

A.1 Modification of Equations

In this appendix we modify the kinematic equations in order to make them applicable to

points in all the four quadrants.

Calculation of the joint angles is based on #msfunction. There are always two
angles in the range of zero tatehat have the same cosine value. As a result, in calculating
the arc cosine of a number (between -1 and 1) we should have extra information to know
which one of the two angles has produced that cosine value. In computer programming lan-
guages (e.g., Java) theosfunction returns the arc cosine of an angle in the range of zero
to 1t Therefore, the problem arises when the angle is in fact betwaen 2tand the pro-

gram returns a value between zero and

To solve this ambiguity we find the quadrant to which the angle belongs and adjust
the value produced by acos function if necessary. Referring to Figure A-2-3 we find the
quadrant ofx; angle by checking the location of;(;) point relative to (, yp,). Knowing
that thea, angle will always be within the zero torange (because it belongs to a triangle)
and whether the first solution (i.e, - a,) or the second solution (i.ex; + a5) is desired,

we can adjusd,; accordingly so that its value is always betwaeanrdrt

304

The absolute value &,; angle is always between zero am(hecause it is an exter-
nal angle of a triangle). It is positive for the first solution (iey,- a,) and negative for the

second solution (i.eqq + 05).

Figure A-1 shows how the value 6f; may be adjusted after determining the quad-

rant to whicho; belongs.

305

First Solution:

Assumptions:

Second Solution:

Figure A-1. Adjustment of®,; Angle.

306

clockwise: positive
a
! I 0, counterclockwise: negative
I
0y : —M<0;<T
a, 2 i
4 O<a,sm |
. 2
d —M<By <™
<6, <™ 8yi
8,; First Quadrant
o1
a
8, = oy -a, I
a2
8, >0
Second Quadrant
8y, = oy —a, 8y = H2m—(ay +ay)]
92i>0 : 91' ql e2i<o
o
8, = [21+ (0y —ay)] Third Quadrant
62i>0 q(5 eli:al+a2
X 1i \R B, <0
0.,
ay
0. 02i
7 Fourth Quadrant
B1i
0, = r:
1 T U0 0. = q.+
6, >0 ag v =
. >
2i 0,,<0
0y [y
J—

A.1.1 Calculation of Accessible Region Area

The accessible region of a 2-DOF planar robot is a function of link lengths, the angle swept

by the first link @,; angles), and the maximum and minimum of@gpangles:

A =26, cpeefle—12)

271, swee

r
1 2,2 2,2
A= 591’ sweepl1 T 12+ 21315(cosBy) =17 +15 +2115(cosByy)

<« ———>

3
s

.\e‘l, sweep
A = |1|291, SWee[£(CO£2i)max_(Cowzi)min] Em——— -

Figure A-2. Calculating the Accessible Region of A 2-DOF Robot.

While the above equations are general (i.e., they are applicable to any configuration
that the robot may take), the equations that are derived in [Tsai 81] are only valid if the
points in the workspace are located in the first and/or second quadrants. In [Tsai 81],
01 sweeplS found by calculatind; max- 81 min As it is shown in Figure A-31 mayand
01 min define two totally different accessible areas for the robot, Wl 5y~ 01 min Pro-
duces the same sweep angle for both of those areas. Therefore, using the e@uafjos);
= 01 max- 91,min May produce the wrong answer for the area of accessible region of the

robot.

307

Ay is the area produced by

esteep: 81, max- 01,min

e1 min
) 91 m
,max

Figure A-3. Different Covered Areas for the Sa®gmax- 01 min

To find the correct sweep angle for the first link of the robot we have to take,the
angles that participate in creating the workspace. That is, we have to find the sum of the
sweep angle for each quadrant that has been covered in the workspace and then add the
result to the sum of gap angles between participating quadrants. However, the fact that
there is a discontinuity in measuring angles when they pass from the second quadrant to the
third quadrant, introduces an exception into the calculation of the sweep angle. Moreover,
in calculating the gap angles between quadrants, there can be two answers for the sweep

angle. These two issues are illustrated in Figure A-4:

308

exception in calculating two answers for

61 max

the sweep angle: the sweep angle:
‘ el,min
o Va
»min 1,max
€1
sweep angleg = 21— (6; 401 min) §1>&;

Figure A-4. Calculation of Sweep Angle.

As a result of the above issues we need to adjust the algorithm for calculating the
sweep angle. To solve the first problem we first find in which quadrants the angles are dis-
tributed. We calculate the sweep angle for each quadrant separately and then add the gap
angle between each pair of angles in two adjacent quadrants (or two non-adjacent quadrants
if the two participating quadrants are not neighbors). Fifteen different situations may

happen as it is shown in Figure A-5. As a convention we assume:

angles ending on positive part of y axis belong to the First Quadrant

angles ending on positive part of x axis belong to the Second Quadrant

angles ending on negative part of y axis belong to the Third Quadrant

angles ending on negative part of x axis belong to the Fourth Quadrant

309

i

Case 1: 1st Quadrant Case 2: 2nd Quadrant Case 3: 3rd Quadrant Case 4: 4th Quadrant

§ &1 %/
|

&2

Case 5: 1st & 2nd Quadrants Case 6: 1st & 3rd QuadrantsCase 7: 1st & 4th Quadrants Case 8: 2nd & 3rd Quadrants

& & ;
£, ¢

Case 9: 2nd & 4thQuadrantsCase 10: 3rd & 4th QuadrantCase 11: 1st, 2nd & 3rd Quad:Case 12: 1st, 2nd & 4th Quads.

€3
3
£ & —
3
]
Case 13: 1st, 3rd & 4th Quads. Case 14: 2nd, 3rd & 4th Quads. Case 15: All Four Quadrants

Figure A-5. Different Cases for Calculating Sweep Angle.

310

In cases 6, 9, and 15, in which there is more than one solution for the sweep angle,
we pick the smallest angle assuming that the robot’s path planner chooses the shortest path.
As it was explained above, to find the sweep angle we first calculate the sum of the sweep
angles for each participating quadrants. We calculate the sweep angle for each quadrant by
subtracting the minimum angle from the maximum angle in that quadrant. Note that this
algorithm produces the right sweep angle (i.e., positive) even for the third and the fourth
guadrants with negative angles. Next we calculate the gap angle between the participating
guadrants and add their sum to the sum of sweep angles in each quadrant. To calculate the

gap angles six different situations may happen as it is shown in Figure A-6:

Y= Bimin, 2nd— Bmax 1st Y= 211 Bmax,2nd~ Omin.ard Y = Bmin,ath~ Bmax,3rd
emin,4th
6,
emin,3rd \ max,2nd
o [v
ema\><,3rd
Y
Case 1: 1st & 2nd Quadrants Case 2: 2nd & 3rd Quadrants Case 3: 3rd & 4th Quadrants
Y1 = 21~ (Omax, 15t Omin,3rd Y2 = 21— (Bmax 2nd™ Bmin,4th
Y Y2 = Bimin 15t Oma. ara 1= emin,an_ Bmax,4th
y =min(yy ,Y,) // Y =min(y; ,Y2) Y1
B Y2
BOmax,ath min,1st Bmin, 15t Brmin.ath Bma 4th\
6 31 9max,lst emin,2nd
\ N\
B Y1
Y = Bmin, 15t~ Omax 4th min,3rd y2 Bmax,2nd
Case 4: 4th & 1st Quadrants Case 5: 1st & 3rd Quadrants Case 6: 2nd & 4th Quadrants

Figure A-6. Different Cases for Calculating Gap Angle.

311

In [Tsai 81] the last term in the equation for calculating area is expressed as
(cosB, mi—cosd, ..) based on the assumption ttgf angles are always within the zero and
Tirange. This may produce a negative answer whgrangles vary between zero amd -
(for the second solution). For instancePif i, = -180 andd, 5= -60 degrees, we will
have [cos(-180)-cos(-60Q] = -1-0.5= -1.5 . TO solve this problem we first calculate the

cosine ofd,; angles and then find the maximum and minimum values among them.

Also, in equation (13) of [Tsai 81] there is a typographical error that causes the area
to be calculated larger than its real value (as long &slkess than4)). This error was dis-
covered when we compared the results for the area of the accessible region to the measured
value based on the geometry of the robot (this typo can be guessed by comparing equations
5 and 13 in the paper). The following is the derivation of the equations in order to correct

the mistake.

312

I2
. . _(Cosez,min_coseZmax)
Equations (13) from Tsai’s paper: ar = ,:'(91’max_elqmm)(|l+|2)2 o= ly _

i (1+ d_zgz\\]
the mistake\,,ElE/

min)

|
é((cosem)max—(cosem)

I2
%*qg

Adjusted and corrected equations: A’ = F'o, swee;(|1+|2)2 F =

Proving the adjusted equations:

I, 20, _ _ _ O
F = E((COSBZi)maX—(cosem)mm) _ Il%—l((cosea)max (COSGZI)mm)E _ 141p((c0885:) 5 = (COSB) i)
- I - - 2
e e e
1 o hto

I1I2((c0562i)max— (cosBZi)mm)

2
0 gli+15)
2 1, sweep'l 2
(|1+|2)

L — U 2 -
A" = Fel,swee[('l"'lz) -

A" = 111507 sweef(C0By) . —(cosBy)) [as was derived above

313

Appendix B. Clusters of Traces

This appendix contains the cluster tree of traces. The attributes of each cluster node
in the tree is represented as a row in Table B-1. A brief explanation of each attribute is as

follows:

1. Cluster: the name of the cluster following the naming convention in “Naming Conven-

tion for the Clusters” on page 222;
2. Number of Traces: the number of the traces accumulated in this cluster:;

3. Number of Projects: the number of projects that followed the traces accumulated in this

cluster;
4. Traces: the indices of the traces accumulated in this cluster;
5. Projects: the indices of the projects that followed the traces accumulated in this cluster;

6. DK1to DS1: the index of the design approach used by Designer_K_1to Designer_S_2,

respectively;

7. Children: the names of the clusters that are the children of this node in the cluster tree,

i.e., the clusters that were re-clustered to build this cluster;

8. Parent: the name of the parent node of this cluster in the cluster tree.
The group of sibling clusters that have the same depth in the cluster tree are sepa-

rated from each other by a blank and shaded row in Table B-1.

314

Table B-1.Clusters

Children Parenﬂ

Cluster | Number | Number | Traces Projects DD| D| D| D| D | D|
of Traces| of K| S|S|S[K K|S
Projects 112(3[4]2|3]|1
0_0 1 52 0 1,2,3,4,5,6,7,8,9,10, 11, 12, 122, 123,1240| 0| O O| 0 O| d none 1.0
127,128, 135, 136, 140, 241, 242, 243, 244, 247,
248, 481, 482, 483, 484, 485, 486, 487, 488, 499,
490, 491, 492, 602, 603, 604, 607, 608, 615, 616,
620, 721, 722, 723, 724, 727, 728
0.1 1 72 1 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 1pD,| 0| 0| O O O| Y none 1.0
126, 132, 134, 139, 146, 147, 148, 151, 152, 159,
160, 163, 164, 171, 172, 175, 176, 246, 252, 254,
255, 256, 259, 260, 364, 493, 494, 495, 496, 497,
498, 499, 500, 501, 502, 503, 504, 614, 619, 636,
627, 628, 631, 632, 639, 640, 643, 644, 651, 652,
655, 656, 726, 732, 734, 735, 736, 739, 740
0_2 1 64 2 25, 26,27, 28, 29, 30, 31, 32, 33,34, 35,36,37,38{ 0| O O 0 Of 2 none 1.0
39,40, 41, 42,43, 44, 46, 47,48, 49, 50, 51, 52, $3,
54, 55, 56, 58, 59, 60, 125, 131, 133, 138, 144,
145, 156, 157, 158, 170, 245, 251, 253, 264, 246,
267, 268, 271, 272, 278, 279, 280, 283, 284, 291,
292, 295, 296, 363, 376
0.3 1 1 1926 45 L 0 1 [2 none 1.1
0_4 1 20 770 61, 66, 72, 73, 74, 86, 87, 88, 91, 92, 98, 99, 102, 0| O O Q O 2 none 10
103, 104, 111, 112, 115, 116, 304
0_5 1 13 769 62, 63, 64, 67, 68, 75, 76, 79, 80, 555, 556, 5392 0| O O 9 O 1 none 1.0
560
0_6 1 11 818 65, 71, 78, 84, 85, 90, 96, 97, 303, 316, 328 0 |1 (0 |00 2 nope L2
0_7 1 28 1537 69, 81, 82, 185, 186, 191, 193, 198, 204, 205, 266, O O| O] O Of 1 none 1.0
211, 218, 781, 782, 785, 786, 787, 788, 791, 792,
793, 794, 795, 798, 799, 800, 804
0.8 1 2 1105 70, 219 P B 0|0 P [1 none 1 3
0.9 1 2 970 77,315 p D 1 D |2 none 1.4
0_10 1 3 866 83, 108, 109 210200 [0]2 none 1_2
0_11 1 15 1538 89, 93, 94, 101, 105, 106, 107, 113, 118, 119, 197, 0| 0| O Q4 O| 2 none 1.0
203, 210, 216, 217
0_12 1 3 1010 95, 114, 352 211 |1(0|0]|0|2 none 1.
0_13 1 2 914 102, 340 P 3 [0 |0 [0 |2 none 1 2
0_14 1 1 817 110 L 0 p |1 none 12
0_15 1 6 1978 117, 221, 227, 337, 440, 459 5 O 1 Q 2 none 15
0_16 1 4 962 120, 208, 220, 232 2(1]0]|0| 0|]0| 2 none 1p
0_17 1 6 194 130, 155, 174, 367, 380, 412 of 11 O d d 2 nong 1[4
0_18 1 5 98 137, 162, 290, 375, 400 0| 0f 2] 0f O 0] 2 none 116
0_19 1 5 50 143, 168, 169, 258, 368 0| 0f 1] 0of Of O] 2 none 12
0_20 1 2 254 149, 387 0 1 (0|1 L |2 none 1.7
0_21 1 2 10 150, 388 D o 1 D |2 none 1§
0_22 1 3 2118 161, 392, 399 5|1(0|0[0f1]2 none 11
0_23 1 3 2022 167, 263, 362 510 (2|0[0f1]2 none 11
0_24 1 1 2186 179 b L 0 P |2 none 19
0_25 1 2 146 180, 265 o 3 [0 |0 [0 |2 none 16
0_26 1 5 1536 181, 182, 192, 194, 199 41 0({ 0/ 4 O O] O nong 1)0
0_27 1 3 1009 183, 188, 195 2|1(1]|0(0f0]| 1 none 1

315

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parenﬂ
of Traces| of K| S|S|S[K K|S
Projects 112(3[4]2|3]|1
0_28 1 1 1681 184 i 0 B P |0ODP [1 none 11p
0_29 1 1 1065 187 P L P P |1 P |1 none 11p
0_30 1 3 1586 190, 209, 215 410 (1|10/0]|0|2 none 12
0_31 1 1 961 196 P 1 D P[0 O |1 none 13
0_32 1 2 1057 200, 207 2 |1 [2 0|0 |0 [1 none 1_3
0_33 1 1 1137 212 P L B L |1 P |1 none 11p
0_34 1 24 1546 222, 228, 229, 230, 231, 235, 236, 240, 325,326 0| 0| Of 3 O| 2 none 1.8
331, 332, 336, 338, 339, 343, 344, 350, 351, 355,
356, 428, 435, 460
0_35 1 54 1545 223, 224, 301, 302, 305, 306, 311, 312, 313,314/ 0| O O 4 Of 1 none 1.8
318, 319, 324, 423, 424, 436, 549, 550, 557, 561,
562, 563, 661, 662, 663, 664, 665, 666, 667, 668,
671, 672, 673, 674, 675, 676, 678, 679, 680, 644,
685, 686, 687, 688, 691, 692, 698, 699, 700, 703,
704, 903, 904, 916
0_36 1 5 1986 234, 317, 323, 330, 472 510l 1 4 2[0] 2 nong 1]
0_37 1 1 2018 270 5 0 R P[0 P |2 none 16
0_38 1 1 1922 276 5 0 D P[0 P |2 none 10
0_39 1 1 1974 277 5 P L P[0 L |2 none 11
0_40 1 1 1113 307 P L B P |1 P |1 none 13
0_41 1 1 874 308 p P P |1 0 |2 none 118
0_42 1 1 994 320 P 1 P L |1 O |2 none 114
0_43 1 1 1018 327 P L L P |1 P |2 none 11p
0_44 1 1 1594 427 t DL pP[L P |2 none 15
0_45 1 1 1554 448 it 0D P2 P |2 none 138
0_46 1 33 49 505, 506, 507, 508, 509, 510, 511, 512, 514,516, 0| 1| O Q Of 1 none 116
516, 517, 518, 519, 520, 521, 522, 523, 524, 526,
527,528, 733, 746, 747, 748, 751, 752, 758, 749,
760, 763, 764
0_47 1 1 205 513 1 O P |1 L [1 none 11y
0_48 1 1 2021 525 5 P R P[0 L |1 none 118
0_49 1 14 97 529, 530, 531, 532, 533, 534, 535, 536, 539, 340, 0| 2(0 9 O 1 none 1.6
771,772,775, 776
0_50 1 1 153 538 B P |1 0 |1 none 119
0_51 1 12 960 541, 542, 543, 544, 545, 546, 547, 548,551,452 1| 0| 0| 94 O| Q none 1.4
783,784
0_52 1 1 1761 553 1 D L1 P [1 none 12p
0_53 1 10 816 554, 567, 568, 572, 579, 580, 584, 591, 592, §96 2(0|1[{0[0|0 O ndne
0_54 1 3 984 558, 564, 796 2 1|1]|0(1[{0|0]|0 none 1
0_55 1 2 1040 565, 576 2 1 |1 |1|{11]0 |0 none 1_7
0_56 1 2 864 566, 571 P 0D [2|0|0 0[O0 none 12
0_57 1 14 1977 569, 570, 573, 574, 575, 690, 696, 702, 708, 108 0| 1| O 24 O 14 none 1.5
720, 816, 928, 940
0_58 1 1 1032 577 P L L L |0 P |0 none 12
0_59 1 1 1785 578 t 1L L p1 D (1 none 12
0_60 1 1 872 583 P P |1 0 [0 none 11

316

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parentl
of Traces| of K| S|S|S[K K|S
Projects 1{2|3[4]2(3(1
0_61 1 1 2097 590 b B L |1 1 none 12p
0_62 1 1 825 595 L p (1 1 none 1.26
0_63 1 1 48 601 1 p [0 0 none 1_1i
0_64 1 12 192 605, 606, 611, 612, 613, 618, 624, 625, 731,448 1| 0| 0| 9 O| @ none 127
844, 856
0_65 1 4 2116 617, 623, 848, 855 5(1(0|0f O[1] O none 1.8
0_66 1 2 2220 629, 867 5 [|2 |10[1]1L |0 none 149
0_67 1 4 240 630, 636, 637, 868 0(1]1)0| 0|O| O none 106
0_68 1 1 2164 635 b L p |0 0 none 128
0_69 1 1 9 638 ¢ 1 none 11
0_70 1 2 2125 642, 880 5 (1 |0 |0[1]1L]|1 none 1 17
0_71 1 1 304 648 P P |2 0 none 130
0_72 1 2 209 649, 725 0 0 |02 |0 |1 none 131
0_73 1 1 57 650 1 P 1 1 none 119
0_74 1 3 2117 654, 660, 892 5|1 (0|0[0f1]1 none 117
0_75 1 6 1593 697,710, 711, 712, 715, 716 4 O 1 Q 1 non 1) 19
0_76 1 2 193 738, 744 DL 0J0o]0O0 |1 none 127
0_77 1 1 1969 745 b L p |0 1 none 13p
0_78 1 1 2141 750 b D L |0 1 none 138
0_79 1 1 2268 756 b B P |1 0 none 12p
0_80 1 1 2173 757 b L p 1 1 none 11y
0_81 1 1 249 770 L p |1 1 none 119
0_82 1 6 1585 805, 806, 807, 808, 811, 812 4 0 1 Q 1 non 1) 10
0_83 1 1 2192 860 b (R S 0 none 12p
10 9 270 1,0,2,770,| 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,1210 0| O O| Of O 1 O_1, 21
769, 1537, 126, 132, 134, 139, 146, 147, 148, 151, 152, 159, , 0.0,
1538, 1536, | 160, 163, 164, 171, 172, 175, 176, 246, 252, 2442 0| 0_2,
1922 255, 256, 259, 260, 364, 493, 494, 495, 496, 497, , 0.4,
498, 499, 500, 501, 502, 503, 504, 614, 619, 6364 2| 0_5,
627, 628, 631, 632, 639, 640, 643, 644, 651, 652, 0_7,
655, 656, 726, 732, 734, 735, 736, 739, 740, 1,|125 0_11,
3,4,5,6,7,8,9,10, 11, 12, 122, 123, 124, 127, 0_26,
128, 135, 136, 140, 241, 242, 243, 244, 247, 248, 0_38
481, 482, 483, 484, 485, 486, 487, 488, 489, 490,
491, 492, 602, 603, 604, 607, 608, 615, 616, 640,
721, 722,723,724, 727,728, 25, 26, 27, 28, 2!
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44,46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59,
60, 125, 131, 133, 138, 144, 145, 156, 157, 154,
170, 245, 251, 253, 264, 266, 267, 268, 271, 272,
278, 279, 280, 283, 284, 291, 292, 295, 296, 363,
376, 61, 66, 72, 73, 74, 86, 87, 88, 91, 92, 98, 99,
100, 103, 104, 111, 112, 115, 116, 304, 62, 63, 64,
67, 68, 75, 76, 79, 80, 555, 556, 559, 560, 69, g1,
82, 185, 186, 191, 193, 198, 204, 205, 206, 211,
218, 781, 782, 785, 786, 787, 788, 791, 792, 793,
794, 795, 798, 799, 800, 804, 89, 93, 94, 101, 105,
106, 107, 113, 118, 119, 197, 203, 210, 216, 217,
181, 182, 192, 194, 199, 276

317

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parenﬂ
of Traces| of K| S|S|S[K K|S
Projects 112(3[4]2|3]|1
11 4 8 1926, 2118, | 45, 161, 392, 399, 167, 263, 362, 277 5(@ 0|0 1|2 0.3 2.2
2022, 1974 v 0_22,
1{2 0_23,
) 0_39
1
12 8 38 818, 866, 65, 71, 78, 84, 85, 90, 96, 97, 303, 316, 328,83,2|(0| 1| 0f O] O 2| 0_6, 2.0
1010, 914, 108, 109, 95, 114, 352, 102, 340, 110, 143, 164,, |, |, , | 0_10,
817, 50, 169, 258, 368, 190, 209, 215, 554, 567, 568, 5720 | 1| 2 1| 0_12,
1586, 816 579, 580, 584, 591, 592, 596 , , , 1013,
4 3 0| 0_14,
0_19,
0_30,
0_53
13 5 9 1105, 1009, | 70, 219, 183, 188, 195, 196, 200, 207, 307 2l 1030[0]1| 08, 2.0
961, 1057, , , 0_27,
1113 1 0_31,
, 1 0_32,
0 0_40
2
14 4 24 970, 962, 77, 315, 120, 208, 220, 232, 130, 155, 174, 367,2| 1| 0| Of 1} 0 [2{ 0_9, 2.3
194, 960 380, 412, 541, 542, 543, 544, 545, 546, 547, 548, , , | 0_16,
551, 552, 783, 784 0 0| 0_17,
0 0_51
15 4 26 1978, 1986, | 117, 221, 227, 337, 440, 459, 234, 317,323,3305(0| 1| Of 1 0 | 2| 0_15, 2.4
1594, 1977 | 472, 427, 569, 570, 573, 574, 575, 690, 696, 7042, , , | 0_36,
708, 709, 720, 816, 928, 940 4 1| 0_44,
2 0_57
16 4 22 98, 146, 137, 162, 290, 375, 400, 180, 265, 270, 529,5300| 0| 2| 0| 0] 0| 2[0_18, 2.5
2018, 97 531, 532, 533, 534, 535, 536, 539, 540, 771, 712, , , | 0_25,
775,776 5 3 1| 0_37,
0_49
17 1 2 254 149, 387 P L[|l |2 020 2.6
18 4 81 10, 1546, 150, 388, 222, 228, 229, 230, 231, 235, 236,2400| 0 0| 0| 1) 0| 2[0_21, 2.7
1545, 1554 | 325, 326, 331, 332, 336, 338, 339, 343, 344, 350, , , | 0_34,
351, 355, 356, 428, 435, 460, 223, 224, 301, 3424 1| 0_35,
305, 306, 311, 312, 313, 314, 318, 319, 324, 423, 2 0_45
424, 436, 549, 550, 557, 561, 562, 563, 661, 662,
663, 664, 665, 666, 667, 668, 671, 672, 673, 6714,
675, 676, 678, 679, 680, 684, 685, 686, 687, 648,
691, 692, 698, 699, 700, 703, 704, 903, 904, 916,
448
19 1 1 2186 179] L L |0 ¢ [2 024 2.8
110 2 7 1681, 1585 184, 805, 806, 807, 808, 811, 812 f# popo| 0| 1 0_28, 2.9
) 0_82
1
111 1 1 1065 187 P 1L P p1p (1 029 2_1
112 1 1 1137 212 P L B L |1 P |1 033 21
113 2 2 874, 872 308, 583 2 |02 (0[1]|0] @41, 2_12
, | 0_60
0
114 1 1 994 320 P 1 0Ll 2 042 21
115 1 1 1018 327 P L L p[1 P |2 043 21
116 3 38 49, 48, 240 505, 506, 507, 508, 509, 510, 511, 512,514,505, 0(1| O| O] O 1| 0_46, 2_15
516, 517, 518, 519, 520, 521, 522, 523, 524, 536, | , , | 0.63,
527, 528, 733, 746, 747, 748, 751, 752, 758, 749, | 1 0| 0_67
760, 763, 764, 601, 630, 636, 637, 868

318

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parentl
of Traces| of K| S| S[S| K| K|S
Projects 1{2|3[4]2(3(1
117 4 7 205, 2125, | 513, 642, 880, 654, 660, 892, 757 Q(0|0]| 111 0_47, 2_16
2117, 2173 ,)) 0_70,
5 0_74,
0 0_80
118 1 1 2021 525 D P 0 1 048 2_1y
119 5 10 153,9,57, | 538, 638, 650, 697, 710, 711, 712, 715,716,740 | 00 3| O 1f O| 1| 0_50, 2.7
1593, 249 e 0_69,
4110 0_73,
, 0_75,
0_81
120 1 1 1761 553 L p 1 1 052 2_18
121 2 4 984, 1032 558, 564, 796, 577 2| 1| D[O] 0| O] 0O_54, 2_19
) 0_58
1
122 2 3 1040, 2192 565, 576, 860 2(1]1| 1 0| 0 055, 2_20
) 0_83
5
123 1 2 864 566, 571 O |2 0|0 0|0 056 2_21
124 1 1 1785 578 1 L 1 1 059 2_2p
125 1 1 2097 590 D B 1 1 061 2_28
126 1 1 825 595 L 1 1 062 2_24
127 2 14 192,193 605, 606, 611, 612, 613, 618, 624, 625, 731, $48, 1| 0| 0| 9 0| Q 0_64, 2_25
844, 856, 738, 744 ,|0_76
1
128 2 5 2116, 2164 617, 623, 848, 855, 635 5 109 0f 1| 0] 0_65, 2_26
) 0_68
1
129 2 3 2220, 2268 629, 867, 756 5/1(@| 1 1| o 0_66, 227
) 0_79
3
130 1 1 304 648 1 2 2 0 071 2.2
131 1 2 209 649, 725 L 0of]2(0 |1 072 2_2
132 1 1 1969 745 D L 0 1 077 2.3
133 1 1 2141 750 L p 0 1 078 2.3
2.0 13 47 1105, 1009, | 70, 219, 183, 188, 195, 196, 200, 207, 307,65, 2| 1| 3[0| 0[O0 | 1| 1.3,1 2| 3_0
961, 1057, 78, 84, 85, 90, 96, 97, 303, 316, 328, 83, 108, 109, | , | . , ,
1113, 818, 95, 114, 352, 102, 340, 110, 143, 168, 169, 258,0(0| 1 2
866, 1010, 368, 190, 209, 215, 554, 567, 568, 572, 579, 540, , 1 ,
914, 817, 50, | 584, 591, 592, 596 4 0 0
1586, 816)
2

319

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parenﬂ
of Traces| of K| S|S|S[K K|S
Projects 1{2|3[4]2(3(1
2.1 9 270 1,0,2,770,| 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,24,1210| 0| 0| O Of O| J 1.0 3.0
769, 1537, 126, 132, 134, 139, 146, 147, 148, 151, 152, 159, ,
1538, 1536, | 160, 163, 164, 171, 172, 175, 176, 246, 252, 2942 0
1922 255, 256, 259, 260, 364, 493, 494, 495, 496, 497, ,
498, 499, 500, 501, 502, 503, 504, 614, 619, 6264 2
627, 628, 631, 632, 639, 640, 643, 644, 651, 652,
655, 656, 726, 732, 734, 735, 736, 739, 740, 1,(25
3,4,5,6,7,8,9,6 10,11, 12, 122, 123, 124, 127,
128, 135, 136, 140, 241, 242, 243, 244, 247, 248,
481, 482, 483, 484, 485, 486, 487, 488, 489, 490,
491, 492, 602, 603, 604, 607, 608, 615, 616, 640,
721,722,723,724,727,728, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44,46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, $9,
60, 125, 131, 133, 138, 144, 145, 156, 157, 15§,
170, 245, 251, 253, 264, 266, 267, 268, 271, 212,
278, 279, 280, 283, 284, 291, 292, 295, 296, 363,
376, 61, 66, 72, 73, 74, 86, 87, 88, 91, 92, 98, 99,
100, 103, 104, 111, 112, 115, 116, 304, 62, 63, $4,
67, 68, 75, 76, 79, 80, 555, 556, 559, 560, 69, g1,
82, 185, 186, 191, 193, 198, 204, 205, 206, 211,
218, 781, 782, 785, 786, 787, 788, 791, 792, 793,
794, 795, 798, 799, 800, 804, 89, 93, 94, 101, 105,
106, 107, 113, 118, 119, 197, 203, 210, 216, 217,
181, 182, 192, 194, 199, 276
2.2 4 8 1926, 2118, | 45, 161, 392, 399, 167, 263, 362, 277 5/@{0|0f 1|2 11 3.1
2022, 1974 E
1{2
1
2.3 4 24 970, 962, 77, 315, 120, 208, 220, 232, 130, 155, 174,367%,2| 1| 0| 0| 4 0| 2| 1_4 3.2
194, 960 380, 412, 541, 542, 543, 544, 545, 546, 547, 548, , ,
551, 552, 783, 784 0 0
0
2.4 4 26 1978, 1986, | 117, 221, 227, 337, 440, 459, 234, 317,323,3305| 0| 1| Of 1y 0| 2[1.5 3.3
1594, 1977 | 472, 427, 569, 570, 573, 574, 575, 690, 696, 7742, , ,
708, 709, 720, 816, 928, 940 4 1
2
2.5 4 22 98, 146, 137, 162, 290, 375, 400, 180, 265, 270,529,5300| 0 2| 0| 0| 0| 2/ 1.6 3.4
2018, 97 531, 532, 533, 534, 535, 536, 539, 540, 771, 712, , ,
775,776 5 3 1
2.6 1 2 254 149, 387 b pp@ipl1p|2 17 3.5
2.7 9 91 10, 1546, 150, 388, 222, 228, 229, 230, 231, 235, 236,2400| 0(0| 0| 1] 0 | 2| 1_8, 3.6
1545, 1554, | 325, 326, 331, 332, 336, 338, 339, 343, 344, 390, |, |, , , 1 1.19
153, 9, 57, 351, 355, 356, 428, 435, 460, 223, 224, 301,3024| 1| 3 1
1593, 249 305, 306, 311, 312, 313, 314, 318, 319, 324, 433, , 2
424, 436, 549, 550, 557, 561, 562, 563, 661, 662,
663, 664, 665, 666, 667, 668, 671, 672, 673, 614,
675, 676, 678, 679, 680, 684, 685, 686, 687, 648,
691, 692, 698, 699, 700, 703, 704, 903, 904, 916,
448, 538, 638, 650, 697, 710, 711, 712, 715, 716,
770
2.8 1 1 2186 179 1 L L |0 2 19 3.7
2.9 2 7 1681, 1585 184, 805, 806, 807, 808, 811, 812 i poBO|Of 1] 1_10 3.8
1
2_10 1 1 1065 187 P L R PP |1 111 3.9
211 1 1 1137 212 P L B LT P |1 112 3.1
212 2 2 874, 872 308, 583 2102 (0|10 213 3_11
0
2_13 1 1 994 320 1 P L1 2 114 3.1
2_14 1 1 1018 327 P L L PP |2 115 3.1

320

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parentl
of Traces| of K| S| S[S| K| K|S
Projects 112(3[4]2|3]|1
2_15 3 38 49, 48, 240 505, 506, 507, 508, 509, 510, 511, 512,514, p04,0(1| 0| O] Of 1 1_16 3_14
516, 517, 518, 519, 520, 521, 522, 523, 524, 536, | , ,
527,528, 733, 746, 747, 748, 751, 752, 758, 799, | 1 0
760, 763, 764, 601, 630, 636, 637, 868
2_16 4 7 205, 2125, | 513, 642, 880, 654, 660, 892, 757 Qfofo|1{1]|1| 117 3_15
2117, 2173 , , ,
5 1
0
2_17 1 1 2021 525 P oL (1 1.18 3_1
2_18 1 1 1761 553 D 1p (1 120 3.1
2_19 2 4 984, 1032 558, 564, 796, 577 2| 1| D[fofo| O 1_21 318
1
2_20 2 3 1040, 2192 565, 576, 860 2(1]11 0| 0 1_22 3_19
5
221 1 2 864 566, 571 O |2 0|00 |0 123 3_2
222 1 1 1785 578 L 1p 1 124 3.6
223 1 1 2097 590 B 1p (1 125 3.2
224 1 1 825 595 L 10 (1 1.26 3.2
225 2 14 192,193 605, 606, 611, 612, 613, 618, 624, 625, 731, $48{ 1| 0| O| Q O Q 1_27 3_23
844, 856, 738, 744)
1
2_26 2 5 2116, 2164 617, 623, 848, 855, 635 5 1090f1]|0 128 3_24
1
2_27 2 3 2220, 2268 629, 867, 756 5(1]@|1] 1|0 1_29 3_25
3
2_28 1 1 304 648 p 2 p |0 1.30 3.2
2_29 1 2 209 649, 725 L of]2 0|1 131 3_2
2_30 1 1 1969 745 L 0p |1 1.32 3.2
231 1 1 2141 750 D O |1 1.33 3.2

321

Table B-1.Clusters

Children Parenﬂ

Cluster | Number | Number | Traces Projects DD| D| D| D| D | D|
of Traces| of K| S|S|S[K K|S
Projects 112(3[4]2|3]|1
3.0 22 317 1,0,2,770,| 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,1210(0(0| 0| O] O [1| 2_1,2 O| 4.0
769, 1537, 126, 132, 134, 139, 146, 147, 148, 151, 152, 149, | , |, , ,
1538, 1536, | 160, 163, 164, 171, 172, 175, 176, 246, 252, 2942 1| 3 0
1922, 1105, | 255, 256, 259, 260, 364, 493, 494, 495, 496, 497, , 1 ,
1009, 961, 498, 499, 500, 501, 502, 503, 504, 614, 619, 6364 1 2
1057, 1113, | 627, 628, 631, 632, 639, 640, 643, 644, 651, 652, ,
818, 866, 655, 656, 726, 732, 734, 735, 736, 739, 740, 1,(25
1010, 914, 3,4,5,6,7,8,9, 10, 11, 12, 122, 123, 124, 127,
817, 50, 128, 135, 136, 140, 241, 242, 243, 244, 247, 248,
1586, 816 481, 482, 483, 484, 485, 486, 487, 488, 489, 490,
491, 492, 602, 603, 604, 607, 608, 615, 616, 640,
721,722,723,724, 727,728, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44,46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, $9,
60, 125, 131, 133, 138, 144, 145, 156, 157, 15§,
170, 245, 251, 253, 264, 266, 267, 268, 271, 212,
278, 279, 280, 283, 284, 291, 292, 295, 296, 363,
376, 61, 66, 72, 73, 74, 86, 87, 88, 91, 92, 98, 99,
100, 103, 104, 111, 112, 115, 116, 304, 62, 63, $4,
67, 68, 75, 76, 79, 80, 555, 556, 559, 560, 69, g1,
82, 185, 186, 191, 193, 198, 204, 205, 206, 211,
218, 781, 782, 785, 786, 787, 788, 791, 792, 793,
794, 795, 798, 799, 800, 804, 89, 93, 94, 101, 105,
106, 107, 113, 118, 119, 197, 203, 210, 216, 217,
181, 182, 192, 194, 199, 276, 70, 219, 183, 184,
195, 196, 200, 207, 307, 65, 71, 78, 84, 85, 90, 96,
97, 303, 316, 328, 83, 108, 109, 95, 114, 352, 102,
340, 110, 143, 168, 169, 258, 368, 190, 209, 215,
554, 567, 568, 572, 579, 580, 584, 591, 592, 596
3.1 4 8 1926, 2118, | 45, 161, 392, 399, 167, 263, 362, 277 5|@{0|0[1|2 22 4.1
2022, 1974 E
1{2
1
3.2 4 24 970, 962, 77,315, 120, 208, 220, 232, 130, 155, 174,367,2| 1| 0| O 1 0| 2 2_3 4.0
194, 960 380, 412, 541, 542, 543, 544, 545, 546, 547, 548, , ,
551, 552, 783, 784 0 0
0
3.3 4 26 1978, 1986, | 117, 221, 227, 337, 440, 459, 234, 317,323,3305| 0| 1| O 11 0| 2(2_4 4.2
1594, 1977 | 472, 427, 569, 570, 573, 574, 575, 690, 696, 702, , ,
708, 709, 720, 816, 928, 940 4 1
2
3.4 4 22 98, 146, 137, 162, 290, 375, 400, 180, 265, 270,529,5300| 0 2| 0| 0| 0| 2| 2.5 4.3
2018, 97 531, 532, 533, 534, 535, 536, 539, 540, 771, 772, , ,
775,776 5 3 1
3.5 1 2 254 149, 387 b L [LoOl1L]|2 26 4_4
3.6 10 92 10, 1546, 150, 388, 222, 228, 229, 230, 231, 235, 236,2400| 0| 0 0| 1| 0 | 2| 2_7, 4.5
1545, 1554, | 325, 326, 331, 332, 336, 338, 339, 343, 344, 390, |, |, , .| 2_22
153, 9, 57, 351, 355, 356, 428, 435, 460, 223, 224,301,3024| 1| 3 1
1593, 249, 305, 306, 311, 312, 313, 314, 318, 319, 324, 433, , 2
1785 424, 436, 549, 550, 557, 561, 562, 563, 661, 662,
663, 664, 665, 666, 667, 668, 671, 672, 673, 674,
675, 676, 678, 679, 680, 684, 685, 686, 687, 648,
691, 692, 698, 699, 700, 703, 704, 903, 904, 916,
448, 538, 638, 650, 697, 710, 711, 712, 715, 716,
770,578
3.7 1 1 2186 179] L LoD [2 2.8 4.6
3.8 2 7 1681, 1585 184, 805, 806, 807, 808, 811, 812 i poBOlO| 1 2.9 4.7
1
3.9 1 1 1065 187 P 1 2 Pl O |1 210 4.8
3_10 1 1 1137 212 P 1 B 1P (1211 49
311 2 2 874, 872 308, 583 210|2(0|1|0(2.12 4_10
0

322

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parentl
of Traces| of K| S| S[S| K| K|S
Projects 112(3[4]2|3]|1
3_12 1 1 994 320 2 213 4.1
313 1 1 1018 327 p 2 214 4_1p
3_14 3 38 49, 48, 240 505, 506, 507, 508, 509, 510, 511, 512, 514, b 2_15 413
516, 517, 518, 519, 520, 521, 522, 523, 524, 526,
527,528, 733, 746, 747, 748, 751, 752, 758, 799,
760, 763, 764, 601, 630, 636, 637, 868
3_15 4 7 205, 2125, | 513, 642, 880, 654, 660, 892, 757 2_16 4_14
2117, 2173))
3_16 1 1 2021 525 P 1 217 4 1
3_17 1 1 1761 553 1 218 4 1
3_18 2 4 984, 1032 558, 564, 796, 577 2_19 4 17
3_19 2 3 1040, 2192 565, 576, 860 2_20 418
3_20 1 2 864 566, 571 0 221 4_1
321 1 1 2097 590 1 223 4 2
3_22 1 1 825 595 1 224 4.2
3.23 2 14 192,193 605, 606, 611, 612, 613, 618, 624, 625, 731, 225 4_22
844, 856, 738, 744
3_24 2 5 2116, 2164 617, 623, 848, 855, 635 2_26 4 23
325 2 3 2220, 2268 629, 867, 756 2_27 424
3_26 1 1 304 648 p 0 228 4_2%
3_27 1 2 209 649, 725 1 229 4 5
3_28 1 1 1969 745 1 230 4_2
3_29 1 1 2141 750 1 231 4.2

323

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parenﬂ
of Traces| of K| S|S|S[K K|S
Projects 123142131
40 26 341 970, 962, 77, 315, 120, 208, 220, 232, 130, 155, 174, 367,2| 1| 0| 0| 1{ 0| 2| 3.2,3_0| 50
194,960, 1, | 380, 412, 541, 542, 543, 544, 545, 546, 547,548, | , | , , ,
0, 2, 770, 551, 552, 783, 784, 13, 14, 15, 16, 17,18,19,300| 0| 3 0
769, 1537, 21, 22, 23, 24,121, 126, 132, 134, 139, 146, 147, , 0 ,
1538, 1536, | 148, 151, 152, 159, 160, 163, 164, 171, 172, 1154 1 1
1922, 1105, | 176, 246, 252, 254, 255, 256, 259, 260, 364, 493, ,
1009, 961, 494, 495, 496, 497, 498, 499, 500, 501, 502, 5435
1057, 1113, | 504, 614, 619, 626, 627, 628, 631, 632, 639, 640,
818, 866, 643, 644, 651, 652, 655, 656, 726, 732, 734, 735,
1010, 914, 736, 739,740,1,2,3,4,5,6,7,8,9, 10, 11, 17,
817, 50, 122,123, 124,127, 128, 135, 136, 140, 241, 242,
1586, 816 243, 244, 247, 248, 481, 482, 483, 484, 485, 496,
487, 488, 489, 490, 491, 492, 602, 603, 604, 647,
608, 615, 616, 620, 721, 722, 723, 724, 727, 738,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, B8,
39,40, 41, 42,43, 44, 46, 47, 48, 49, 50, 51, 52, §3,
54, 55, 56, 58, 59, 60, 125, 131, 133, 138, 144,
145, 156, 157, 158, 170, 245, 251, 253, 264, 246,
267, 268, 271, 272, 278, 279, 280, 283, 284, 291,
292, 295, 296, 363, 376, 61, 66, 72, 73, 74, 86, $7,
88, 91, 92, 98, 99, 100, 103, 104, 111, 112, 115,
116, 304, 62, 63, 64, 67, 68, 75, 76, 79, 80, 554,
556, 559, 560, 69, 81, 82, 185, 186, 191, 193, 198,
204, 205, 206, 211, 218, 781, 782, 785, 786, 7947,
788, 791, 792, 793, 794, 795, 798, 799, 800, 804,
89, 93, 94, 101, 105, 106, 107, 113, 118, 119, 197,
203, 210, 216, 217, 181, 182, 192, 194, 199, 276,
70, 219, 183, 188, 195, 196, 200, 207, 307, 65, 11,
78, 84, 85, 90, 96, 97, 303, 316, 328, 83, 108, 109,
95, 114, 352, 102, 340, 110, 143, 168, 169, 25§,
368, 190, 209, 215, 554, 567, 568, 572, 579, 540,
584, 591, 592, 596
4.1 4 8 1926, 2118, | 45, 161, 392, 399, 167, 263, 362, 277 5|@{0|0f 1|2 31 51
2022, 1974 s
1{2
1
4.2 4 26 1978, 1986, | 117, 221, 227, 337, 440, 459, 234, 317,323,3305| 0| 1| O 10| 2(3_3 5.2
1594, 1977 | 472, 427, 569, 570, 573, 574, 575, 690, 696, 7742, , ,
708, 709, 720, 816, 928, 940 4 1
2
43 4 22 98, 146, 137, 162, 290, 375, 400, 180, 265, 270, 529,5300| 0 2| 0| 0| 0| 2| 3_4 50
2018, 97 531, 532, 533, 534, 535, 536, 539, 540, 771, 712, , ,
775,776 5 3 1
4. 4 1 2 254 149, 387 D 1 010 |2 35 53
4.5 11 94 10, 1546, 150, 388, 222, 228, 229, 230, 231, 235, 236,2400| 0(0| 0| 1| 0 | 2| 3_6, 5_4
1545, 1554, | 325, 326, 331, 332, 336, 338, 339, 343, 344, 340, |, |, , , | 3.27
153, 9, 57, 351, 355, 356, 428, 435, 460, 223, 224,301, 3024 1| 3 1
1593, 249, 305, 306, 311, 312, 313, 314, 318, 319, 324, 433, , 2
1785, 209 424, 436, 549, 550, 557, 561, 562, 563, 661, 662,
663, 664, 665, 666, 667, 668, 671, 672, 673, 614,
675, 676, 678, 679, 680, 684, 685, 686, 687, 648,
691, 692, 698, 699, 700, 703, 704, 903, 904, 916,
448, 538, 638, 650, 697, 710, 711, 712, 715, 716,
770, 578, 649, 725
4.6 1 1 2186 179 L L |0 2 37 55
4.7 2 7 1681, 1585 184, 805, 806, 807, 808, 811, 812 popoj 0| 1| 3_8 56
1
4.8 1 1 1065 187 P D1 9 |1 3.9 57
4.9 1 1 1137 212 B L |1 9 (1 3_10 58
410 2 2 874, 872 308, 583 2 |0]2|0f1]|0]311 59
0
4 11 1 1 994 320 D L [1 § |2 3_12 5_1

324

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parentl
of Traces| of K| S| S[S| K| K|S
Projects 112(3[4]2|3]|1
4 12 1 1 1018 327 p 2 313 5 11
413 3 38 49, 48, 240 505, 506, 507, 508, 509, 510, 511, 512, 514, b 3_14 5_12
516, 517, 518, 519, 520, 521, 522, 523, 524, 526, ,
527,528, 733, 746, 747, 748, 751, 752, 758, 799,
760, 763, 764, 601, 630, 636, 637, 868
414 4 7 205, 2125, | 513, 642, 880, 654, 660, 892, 757 3_15 513
2117, 2173))
4_15 1 1 2021 525 P 1 3.16 5_14
416 1 1 1761 553 1 317 5_1%
4_17 2 4 984, 1032 558, 564, 796, 577 3_18 5_16
418 2 3 1040, 2192 565, 576, 860 3_19 5_17
419 1 2 864 566, 571 0 3.20 5_18
4_20 1 1 2097 590 1 321 5_19
421 1 1 825 595 1 3.22 5.2
4_22 2 14 192,193 605, 606, 611, 612, 613, 618, 624, 625, 731, 3_23 521
844, 856, 738, 744
423 2 5 2116, 2164 617, 623, 848, 855, 635 3_24 5_22
424 2 3 2220, 2268 629, 867, 756 3_25 5_23
4 25 1 1 304 648 p 0 326 5_24
4_26 1 1 1969 745 1 328 5_2p
427 1 1 2141 750 1 3.29 5_2p

325

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parenﬂ
of Traces| of K| S|S|S[K K|S
Projects 112(3[4]2|3]|1
50 30 363 98, 146, 137, 162, 290, 375, 400, 180, 265, 270, 529,5300| 0(2| 0| 0| 0 | 2| 4.3,4 0| 6_0
2018, 97, 531, 532, 533, 534, 535, 536, 539, 540, 771, 772, | , | . ,)
970, 962, 775, 776, 77, 315, 120, 208, 220, 232, 130, 159,5| 1| 3 1
194, 960, 1, | 174, 367, 380, 412, 541, 542, 543, 544, 545, 546, , 1 ,
0, 2, 770, 547,548, 551, 552, 783, 784, 13, 14, 15, 16, 17,2 0 0
769, 1537, 18,19, 20, 21, 22, 23, 24, 121, 126, 132, 134, 139, ,
1538, 1536, | 146, 147, 148, 151, 152, 159, 160, 163, 164, 17114
1922, 1105, | 172, 175, 176, 246, 252, 254, 255, 256, 259, 240,
1009, 961, 364, 493, 494, 495, 496, 497, 498, 499, 500, 501,
1057, 1113, | 502, 503, 504, 614, 619, 626, 627, 628, 631, 632,
818, 866, 639, 640, 643, 644, 651, 652, 655, 656, 726, 732,
1010, 914, 734,735,736,739,740,1,2,3,4,5,6,7,8,9, 10,
817, 50, 11,12, 122, 123, 124, 127, 128, 135, 136, 140,
1586, 816 241, 242, 243, 244, 247, 248, 481, 482, 483, 444,
485, 486, 487, 488, 489, 490, 491, 492, 602, 603,
604, 607, 608, 615, 616, 620, 721, 722, 723, 744,
727,728, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37,38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 58, 59, 60, 125, 131, 133,
138, 144, 145, 156, 157, 158, 170, 245, 251, 253,
264, 266, 267, 268, 271, 272, 278, 279, 280, 293,
284, 291, 292, 295, 296, 363, 376, 61, 66, 72, 13,
74,86, 87, 88, 91, 92, 98, 99, 100, 103, 104, 111,
112, 115, 116, 304, 62, 63, 64, 67, 68, 75, 76, 79,
80, 555, 556, 559, 560, 69, 81, 82, 185, 186, 191,
193, 198, 204, 205, 206, 211, 218, 781, 782, 785,
786, 787, 788, 791, 792, 793, 794, 795, 798, 799,
800, 804, 89, 93, 94, 101, 105, 106, 107, 113, 118,
119, 197, 203, 210, 216, 217, 181, 182, 192, 194,
199, 276, 70, 219, 183, 188, 195, 196, 200, 207,
307, 65, 71, 78, 84, 85, 90, 96, 97, 303, 316, 338,
83, 108, 109, 95, 114, 352, 102, 340, 110, 143,
168, 169, 258, 368, 190, 209, 215, 554, 567, 568,
572, 579, 580, 584, 591, 592, 596
51 4 8 1926, 2118, | 45, 161, 392, 399, 167, 263, 362, 277 5|@0|0] 1|2 4.1 6_1
2022, 1974 e
1{2
1
5.2 4 26 1978, 1986, | 117, 221, 227, 337, 440, 459, 234, 317,323,3305| 0| 1| O 1) 0| 2 4_2 6_2
1594, 1977 | 472, 427, 569, 570, 573, 574, 575, 690, 696, 702, , ,
708, 709, 720, 816, 928, 940 4 1
2
53 1 2 254 149, 387 b L [LoO[1f |2 44 6_3
54 11 94 10, 1546, 150, 388, 222, 228, 229, 230, 231, 235, 236,2400| 0| 0(0| 1/ 0| 2[4.5 6_4
1545, 1554, | 325, 326, 331, 332, 336, 338, 339, 343, 344, 390, |, |, , ,
153, 9, 57, 351, 355, 356, 428, 435, 460, 223, 224,301,3024| 1| 3 1
1593, 249, 305, 306, 311, 312, 313, 314, 318, 319, 324, 433, , 2
1785, 209 424, 436, 549, 550, 557, 561, 562, 563, 661, 662,
663, 664, 665, 666, 667, 668, 671, 672, 673, 674,
675, 676, 678, 679, 680, 684, 685, 686, 687, 648,
691, 692, 698, 699, 700, 703, 704, 903, 904, 916,
448, 538, 638, 650, 697, 710, 711, 712, 715, 716,
770, 578, 649, 725
55 1 1 2186 179] L L |0 D [2 46 6_5
56 2 7 1681, 1585 184, 805, 806, 807, 808, 811, 812 i poBO|lO| 1 4.7 6_0
1
57 1 1 1065 187 P 1 2 Pl D |1 48 6_6
5.8 1 1 1137 212 P 1 B L1 D [1 409 6_7
59 2 2 874,872 308, 583 2 |10(2|0f10]|2_10 6_8
0
5_10 1 1 994 320 P 1 p L1 O |2 411 6_9
5 11 1 1 1018 327 P 1L L P11 D (2 412 6_1i

326

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parentl
of Traces| of K| S| S[S| K| K|S
Projects 112(3[4]2|3]|1
512 3 38 49, 48, 240 505, 506, 507, 508, 509, 510, 511, 512,514, 04, 0(1| O| O] O 1| 4_13 6_11
516, 517, 518, 519, 520, 521, 522, 523, 524, 536, | , ,
527,528, 733, 746, 747, 748, 751, 752, 758, 799, | 1 0
760, 763, 764, 601, 630, 636, 637, 868
5_13 4 7 205, 2125, | 513, 642, 880, 654, 660, 892, 757 Q00| 1{1]1] 414 6_12
2117, 2173 , , ,
5 1
0
5_14 1 1 2021 525 b P 0 1 415 6_18
5_15 1 1 1761 553 ft D 1 1 416 6_14
5_16 2 4 984, 1032 558, 564, 796, 577 2| 1| D[ofo| O 4_17 6_15
1
5_17 2 3 1040, 2192 565, 576, 860 2(1)1| 1 0| o 4_18 6_16
5
5_18 1 2 864 566, 571 P 2 (0|0 [0 |0 419 6_17
5_19 1 1 2097 590 b B 1 1 420 6_18
5_20 1 1 825 595 L 1 1 421 6_19
521 2 14 192,193 605, 606, 611, 612, 613, 618, 624, 625, 731, 848, 1| 0| 0| Q 0| Q 4_22 6_20
844, 856, 738, 744)
1
5_22 2 5 2116, 2164 617, 623, 848, 855, 635 5 1 0d0f 1|0 423 6_21
1
5_23 2 3 2220, 2268 629, 867, 756 5(1]@| 1] 1| 0| 4_24 6_22
3
5_24 1 1 304 648 p 2 0 4.25 6_2
5_25 1 1 1969 745 b L 0 1 426 6_24
5_26 1 1 2141 750 b D 0 1 427 6_2p

327

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parenﬂ
of Traces| of K| S|S|S[K K|S
Projects 112(3[4]2|3]|1
6_0 32 370 1681, 1585, | 184, 805, 806, 807, 808, 811, 812, 137, 162,2904| 03| 0| 0| 0| 1| 5.6,5 0| 7_0
98, 146, 375, 400, 180, 265, 270, 529, 530, 531, 532, 533, | , |, , ,
2018, 97, 534, 535, 536, 539, 540, 771, 772, 775,776,77,0| 1| 1 2
970, 962, 315, 120, 208, 220, 232, 130, 155, 174, 367, 340, , 1 ,
194,960, 1, | 412, 541, 542, 543, 544, 545, 546, 547, 548, 5915 2 0
0, 2, 770, 552,783, 784,13, 14, 15, 16, 17, 18, 19, 20, 21, P2, ,
769, 1537, 23, 24,121, 126, 132, 134, 139, 146, 147, 148,| 2 0
1538, 1536, | 151, 152, 159, 160, 163, 164, 171, 172, 175, 116,
1922, 1105, | 246, 252, 254, 255, 256, 259, 260, 364, 493, 494,
1009, 961, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504,
1057, 1113, | 614, 619, 626, 627, 628, 631, 632, 639, 640, 643,
818, 866, 644, 651, 652, 655, 656, 726, 732, 734, 735, 736,
1010, 914, 739,740,1,2,3,4,5,6,7,8,9, 10, 11, 12, 127,
817, 50, 123, 124,127, 128, 135, 136, 140, 241, 242, 243,
1586, 816 244, 247, 248, 481, 482, 483, 484, 485, 486, 497,
488, 489, 490, 491, 492, 602, 603, 604, 607, 608,
615, 616, 620, 721, 722, 723, 724, 727, 728, 25,
26, 27,28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, B9,
40,41, 42,43,44, 46,47, 48, 49,50, 51, 52, 53, b4,
55, 56, 58, 59, 60, 125, 131, 133, 138, 144, 145,
156, 157, 158, 170, 245, 251, 253, 264, 266, 2§7,
268, 271, 272, 278, 279, 280, 283, 284, 291, 292,
295, 296, 363, 376, 61, 66, 72, 73, 74, 86, 87, §8,
91, 92, 98, 99, 100, 103, 104, 111, 112, 115, 116,
304, 62, 63, 64, 67, 68, 75, 76, 79, 80, 555, 554,
559, 560, 69, 81, 82, 185, 186, 191, 193, 198, 204,
205, 206, 211, 218, 781, 782, 785, 786, 787, 798,
791, 792, 793, 794, 795, 798, 799, 800, 804, 89,
93, 94, 101, 105, 106, 107, 113, 118, 119, 197,
203, 210, 216, 217, 181, 182, 192, 194, 199, 276,
70, 219, 183, 188, 195, 196, 200, 207, 307, 65, 11,
78, 84, 85, 90, 96, 97, 303, 316, 328, 83, 108, 109,
95, 114, 352, 102, 340, 110, 143, 168, 169, 25§,
368, 190, 209, 215, 554, 567, 568, 572, 579, 540,
584, 591, 592, 596
6_1 4 8 1926, 2118, | 45, 161, 392, 399, 167, 263, 362, 277 5|@{0]|0[1|2 51 71
2022, 1974 s
1{2
1
6_2 4 26 1978, 1986, | 117, 221, 227, 337, 440, 459, 234, 317,323,3305| 0| 1| O 10| 2 5_2 7.2
1594, 1977 | 472, 427, 569, 570, 573, 574, 575, 690, 696, 772, , ,
708, 709, 720, 816, 928, 940 4 1
2
6_3 1 2 254 149, 387 b L fipo|1p(|2 53 7_3
6_4 11 94 10, 1546, 150, 388, 222, 228, 229, 230, 231, 235,236,2400| 0(0| 0| 1| 0| 2| 5_4 7_4
1545, 1554, | 325, 326, 331, 332, 336, 338, 339, 343, 344, 390, | , |, ,)
153, 9, 57, 351, 355, 356, 428, 435, 460, 223, 224,301, 3024 1| 3 1
1593, 249, 305, 306, 311, 312, 313, 314, 318, 319, 324, 4233, , 2
1785, 209 424, 436, 549, 550, 557, 561, 562, 563, 661, 662,
663, 664, 665, 666, 667, 668, 671, 672, 673, 614,
675, 676, 678, 679, 680, 684, 685, 686, 687, 648,
691, 692, 698, 699, 700, 703, 704, 903, 904, 916,
448, 538, 638, 650, 697, 710, 711, 712, 715, 716,
770, 578, 649, 725
6_5 1 1 2186 179] L L |0 0D [2 55 7.5
6_6 1 1 1065 187 P 1 2 pP1 O |1 57 70
6_7 1 1 1137 212 » 1 B L1 D [1 58 7_6
6_8 2 2 874,872 308, 583 2 |10f2|of1|0]89 7.7
0
6_9 1 1 994 320 y L 1 2 5_10 7.8
6_10 1 1 1018 327 P L L pf1Pp |2 511 79

328

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parentl
of Traces| of K| S| S[S| K| K|S
Projects 112(3[4]2|3]|1
6_11 3 38 49, 48, 240 505, 506, 507, 508, 509, 510, 511, 512,514, 04, 0(1| O| O] O 1| 5_12 7_10
516, 517, 518, 519, 520, 521, 522, 523, 524, 536, | , ,
527,528, 733, 746, 747, 748, 751, 752, 758, 799, | 1 0
760, 763, 764, 601, 630, 636, 637, 868
6_12 4 7 205, 2125, | 513, 642, 880, 654, 660, 892, 757 @fof0|1{1]1] 513 711
2117, 2173 , , ,
5 1
0
6_13 1 1 2021 525 b P 0 1 514 7_1p
6_14 1 1 1761 553 ft D 1 1 515 7_18
6_15 2 4 984, 1032 558, 564, 796, 577 2| 1| D[o[O| O] 5_16 7_14
1
6_16 2 3 1040, 2192 565, 576, 860 2(1)11 0| o 5.17 7_15
5
6_17 1 2 864 566, 571 P 2 [0|0 [0 |0 518 7_16
6_18 1 1 2097 590 b B 1 1 519 7_1y
6_19 1 1 825 595 L 1 1 520 71
6_20 2 14 192,193 605, 606, 611, 612, 613, 618, 624, 625, 731, 48, 1| 0 0| 0 0| 9 5_21 7_19
844, 856, 738, 744)
1
6_21 2 5 2116, 2164 617, 623, 848, 855, 635 5 12090 1|0 522 7_20
1
6_22 2 3 2220, 2268 629, 867, 756 5(1]@| 1] 1| o 5_23 721
3
6_23 1 1 304 648 p 2 0 524 722
6_24 1 1 1969 745 b L 0 1 525 7_28
6_25 1 1 2141 750 b D 0 1 526 7_24

329

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parenﬂ
of Traces| of K| S|S|S[K K|S
Projects 112(3[4]2|3]|1
70 33 371 1065, 1681, | 187, 184, 805, 806, 807, 808, 811, 812, 137,122 12| 0| 1/ 0| 1| 6_6,6_0| 8_0
1585, 98, 290, 375, 400, 180, 265, 270, 529, 530, 531,532, | , |, , ,
146, 2018, 533, 534, 535, 536, 539, 540, 771, 772, 775, 77164 | 0| 3 2
97,970, 962, | 77, 315, 120, 208, 220, 232, 130, 155, 174, 361,, , 0 ,
194,960, 1, | 380, 412, 541, 542, 543, 544, 545, 546, 547, 5480 1 0
0, 2, 770, 551, 552, 783, 784, 13, 14, 15, 16, 17, 18, 19, 20, ,
769, 1537, 21, 22, 23, 24,121, 126, 132, 134, 139, 146, 1475
1538, 1536, | 148, 151, 152, 159, 160, 163, 164, 171, 172, 115,
1922, 1105, | 176, 246, 252, 254, 255, 256, 259, 260, 364, 493,
1009, 961, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503,
1057, 1113, | 504, 614, 619, 626, 627, 628, 631, 632, 639, 640,
818, 866, 643, 644, 651, 652, 655, 656, 726, 732, 734, 735,
1010, 914, 736,739,740,1,2,3,4,5,6,7,8,9, 10, 11, 17,
817, 50, 122,123, 124,127, 128, 135, 136, 140, 241, 242,
1586, 816 243, 244, 247, 248, 481, 482, 483, 484, 485, 496,
487, 488, 489, 490, 491, 492, 602, 603, 604, 647,
608, 615, 616, 620, 721, 722, 723, 724, 727, 738,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, B8,
39, 40,41, 42,43, 44, 46, 47, 48, 49, 50, 51, 52, §3,
54, 55, 56, 58, 59, 60, 125, 131, 133, 138, 144,
145, 156, 157, 158, 170, 245, 251, 253, 264, 246,
267, 268, 271, 272, 278, 279, 280, 283, 284, 291,
292, 295, 296, 363, 376, 61, 66, 72, 73, 74, 86, $7,
88, 91, 92, 98, 99, 100, 103, 104, 111, 112, 115,
116, 304, 62, 63, 64, 67, 68, 75, 76, 79, 80, 555,
556, 559, 560, 69, 81, 82, 185, 186, 191, 193, 198,
204, 205, 206, 211, 218, 781, 782, 785, 786, 7947,
788, 791, 792, 793, 794, 795, 798, 799, 800, 804,
89, 93, 94, 101, 105, 106, 107, 113, 118, 119, 197,
203, 210, 216, 217, 181, 182, 192, 194, 199, 276,
70, 219, 183, 188, 195, 196, 200, 207, 307, 65, 11,
78, 84, 85, 90, 96, 97, 303, 316, 328, 83, 108, 109,
95, 114, 352, 102, 340, 110, 143, 168, 169, 25§,
368, 190, 209, 215, 554, 567, 568, 572, 579, 540,
584, 591, 592, 596
71 4 8 1926, 2118, | 45, 161, 392, 399, 167, 263, 362, 277 5|@{0]|0[1|2 6.1 8_1
2022, 1974 s
1{2
1
7.2 4 26 1978, 1986, | 117, 221, 227, 337, 440, 459, 234, 317,323,3305| 0| 1| O 10 | 2 6_2 8.2
1594, 1977 | 472, 427, 569, 570, 573, 574, 575, 690, 696, 772, , ,
708, 709, 720, 816, 928, 940 4 1
2
7_3 1 2 254 149, 387 b L fpo|1p (|2 63 8.3
7_4 11 94 10, 1546, 150, 388, 222, 228, 229, 230, 231, 235,236,2400| 0(0| 0| 1| 0| 2| 6_4 8_4
1545, 1554, | 325, 326, 331, 332, 336, 338, 339, 343, 344, 390, | , |, ,)
153, 9, 57, 351, 355, 356, 428, 435, 460, 223, 224,301, 3024 1| 3 1
1593, 249, 305, 306, 311, 312, 313, 314, 318, 319, 324, 4233, , 2
1785, 209 424, 436, 549, 550, 557, 561, 562, 563, 661, 662,
663, 664, 665, 666, 667, 668, 671, 672, 673, 614,
675, 676, 678, 679, 680, 684, 685, 686, 687, 648,
691, 692, 698, 699, 700, 703, 704, 903, 904, 916,
448, 538, 638, 650, 697, 710, 711, 712, 715, 716,
770, 578, 649, 725
75 1 1 2186 179] L L |0 9p [2 65 8.5
7_6 1 1 1137 212 P 1 B LT O |1 6.7 8_6
77 2 2 874, 872 308, 583 2 |10(2|0(1|0]|B_8 8.0
0
7.8 1 1 994 320 2 L [1 2 6.9 8_7
7.9 1 1 1018 327 P 1 L pPJ|1 O |2 6.10 8_8
7_10 3 38 49, 48, 240 505, 506, 507, 508, 509, 510, 511, 512, 514, 04, 0(1| 0| Of O| 1| 6_11 8.9
516, 517, 518, 519, 520, 521, 522, 523, 524, 536, | , ,
527,528, 733, 746, 747, 748, 751, 752, 758, 749, | 1 0
760, 763, 764, 601, 630, 636, 637, 868

330

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parentl
of Traces| of K| S| S[S| K| K|S
Projects 112(3[4]2|3]|1
711 4 7 205, 2125, | 513, 642, 880, 654, 660, 892, 757 Q(0|0]|1/1(1 6_12 8_10
2117, 2173 ,))
5
0
7_12 1 1 2021 525 b P p |0 1 613 8_1
7_13 1 1 1761 553 i D o1 1 6_14 8_1
7_14 2 4 984, 1032 558, 564, 796, 577 2| 1| D[oJOf O] 6_15 8_13
1
7_15 2 3 1040, 2192 565, 576, 860 2(1)1| 1 0| o 6_16 8_14
5
7_16 1 2 864 566, 571 P p[2 0|00 |0 617 8_1
7_17 1 1 2097 590 b B IL |1 1 618 8 1
7_18 1 1 825 595 L p |1 1 619 8_1
7_19 2 14 192,193 605, 606, 611, 612, 613, 618, 624, 625, 731, $48{ 1| 0| O| Q O J 6_20 8_18
844, 856, 738, 744)
1
7_20 2 5 2116, 2164 617, 623, 848, 855, 635 5 1 090f1|0 621 8_19
1
721 2 3 2220, 2268 629, 867, 756 5(1]@|1] 1| of 6_22 8_20
3
7_22 1 1 304 648 p 2 0 6_23 8.2
7_23 1 1 1969 745 b L 0 1 624 8.2
7_24 1 1 2141 750 b D 0 1 6.25 8.2

331

Table B-1.Clusters

Children Parenﬂ

Cluster | Number | Number | Traces Projects DD| D| D| D| D | D|
of Traces| of K| S|S|S[K K|S
Projects 112(3[4]2|3]|1
8.0 35 373 874,872, 308, 583, 187, 184, 805, 806, 807, 808, 811,8122| 0| 2| 0| 1{ 0| 2| 7_7,7_0| 9.0
1065, 1681, | 137, 162, 290, 375, 400, 180, 265, 270, 529, 540, | , |, , ,
1585, 98, 531, 532, 533, 534, 535, 536, 539, 540, 771, 77124 | 1| 3 0
146, 2018, 775, 776, 77, 315, 120, 208, 220, 232, 130, 15§,, , 0 ,
97,970, 962,| 174, 367, 380, 412, 541, 542, 543, 544, 545, 5460 1 1
194,960, 1, | 547, 548, 551, 552, 783, 784, 13, 14, 15, 16, 17, , ,
0, 2, 770, 18, 19, 20, 21, 22, 23, 24, 121, 126, 132, 134, 13%
769, 1537, 146, 147, 148, 151, 152, 159, 160, 163, 164, 171,
1538, 1536, | 172, 175, 176, 246, 252, 254, 255, 256, 259, 240,
1922, 1105, | 364, 493, 494, 495, 496, 497, 498, 499, 500, 541,
1009, 961, 502, 503, 504, 614, 619, 626, 627, 628, 631, 632,
1057, 1113, | 639, 640, 643, 644, 651, 652, 655, 656, 726, 732,
818, 866, 734,735,736,739,740,1,2,3,4,5,6,7,8,9, 10,
1010, 914, 11, 12, 122, 123, 124, 127, 128, 135, 136, 140,
817, 50, 241, 242, 243, 244, 247, 248, 481, 482, 483, 444,
1586, 816 485, 486, 487, 488, 489, 490, 491, 492, 602, 603,
604, 607, 608, 615, 616, 620, 721, 722, 723, 734,
727,728, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37,38, 39,40, 41, 42,43, 44, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 58, 59, 60, 125, 131, 133,
138, 144, 145, 156, 157, 158, 170, 245, 251, 253,
264, 266, 267, 268, 271, 272, 278, 279, 280, 243,
284, 291, 292, 295, 296, 363, 376, 61, 66, 72, 13,
74,86, 87, 88, 91, 92, 98, 99, 100, 103, 104, 111,
112, 115, 116, 304, 62, 63, 64, 67, 68, 75, 76, 19,
80, 555, 556, 559, 560, 69, 81, 82, 185, 186, 191,
193, 198, 204, 205, 206, 211, 218, 781, 782, 785,
786, 787, 788, 791, 792, 793, 794, 795, 798, 799,
800, 804, 89, 93, 94, 101, 105, 106, 107, 113, 118,
119, 197, 203, 210, 216, 217, 181, 182, 192, 194,
199, 276, 70, 219, 183, 188, 195, 196, 200, 207,
307, 65, 71, 78, 84, 85, 90, 96, 97, 303, 316, 338,
83, 108, 109, 95, 114, 352, 102, 340, 110, 143,
168, 169, 258, 368, 190, 209, 215, 554, 567, 568,
572, 579, 580, 584, 591, 592, 596
8_1 4 8 1926, 2118, | 45, 161, 392, 399, 167, 263, 362, 277 5/|@{0|0f 1|2 7.1 91
2022, 1974 E
1{2
1
8_2 4 26 1978, 1986, | 117, 221, 227, 337, 440, 459, 234, 317,323,3305| 0| 1| Of 10| 2 7_2 9.2
1594, 1977 | 472, 427, 569, 570, 573, 574, 575, 690, 696, 702, , ,
708, 709, 720, 816, 928, 940 4 1
2
8_3 1 2 254 149, 387 b fipol|1p(|2 73 9_3
8_4 11 94 10, 1546, 150, 388, 222, 228, 229, 230, 231, 235,236,2400| 0(0| 0| 1| 0| 2| 7_4 9.4
1545, 1554, | 325, 326, 331, 332, 336, 338, 339, 343, 344, 390, |, |, ,)
153, 9, 57, 351, 355, 356, 428, 435, 460, 223, 224,301, 3024 1| 3 1
1593, 249, 305, 306, 311, 312, 313, 314, 318, 319, 324, 433, , 2
1785, 209 424, 436, 549, 550, 557, 561, 562, 563, 661, 662,
663, 664, 665, 666, 667, 668, 671, 672, 673, 614,
675, 676, 678, 679, 680, 684, 685, 686, 687, 648,
691, 692, 698, 699, 700, 703, 704, 903, 904, 916,
448, 538, 638, 650, 697, 710, 711, 712, 715, 716,
770, 578, 649, 725
8.5 1 1 2186 179]l L L |00 [2 7.5 95
8_6 1 1 1137 212 P 1 B LD |1 76 9.6
8.7 1 1 994 320 2 L |1 2 7.8 97
8.8 1 1 1018 327 P 1 L PO |2 709 9.0
8.9 3 38 49, 48, 240 505, 506, 507, 508, 509, 510, 511, 512, 514, 516, 0| 1| 0| 0] O| 1f 7_10 9.8
516, 517, 518, 519, 520, 521, 522, 523, 524, 536, | , ,
527,528, 733, 746, 747, 748, 751, 752, 758, 799, | 1 0
760, 763, 764, 601, 630, 636, 637, 868

332

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parentl
of Traces| of K| S| S[S| K| K|S
Projects 112(3[4]2|3]|1
8_10 4 7 205, 2125, | 513, 642, 880, 654, 660, 892, 757 Q(o|o0|1/1(1 711 9.9
2117, 2173 ,))
5
0
8_11 1 1 2021 525 b P p |0 1 712 9_1p
8_12 1 1 1761 553 i D o1 1 713 9. 11
8_13 2 4 984, 1032 558, 564, 796, 577 2| 1| Dfojof of 7_14 9_12
1
8_14 2 3 1040, 2192 565, 576, 860 2(1)11 0| 0 7_15 9 13
5
8_15 1 2 864 566, 571 P pD[20o]jofo|0 7_16 9_1
8_16 1 1 2097 590 b B 1 1 717 9_1b
8_17 1 1 825 595 L 1 1 718 9_1i
8_18 2 14 192,193 605, 606, 611, 612, 613, 618, 624, 625, 731, $48{ 1(0| O| Q O Q 7_19 9 17
844, 856, 738, 744)
1
8_19 2 5 2116, 2164 617, 623, 848, 855, 635 5 1090 1|0 7_20 9_18
1
8_20 2 3 2220, 2268 629, 867, 756 5(1]@|1] 1|0 7_21 9_19
3
8_21 1 1 304 648 p 2 0 722 92
8_22 1 1 1969 745 b L 0 1 723 9 21
8_23 1 1 2141 750 b D 0 1 724 9_2p

333

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parenﬂ
of Traces| of K| S|S|S[K K|S
Projects 112(3[4]2|3]|1
9.0 36 374 1018, 874, | 327, 308, 583, 187, 184, 805, 806, 807, 808,8112| 11| 0| 1/ 0| 2(8.8,8_0| 10_0
872, 1065, 812, 137, 162, 290, 375, 400, 180, 265, 270, 539, | , | . , ,
1681, 1585, | 530, 531, 532, 533, 534, 535, 536, 539, 540, 77114 | 0| 2 0
98, 146, 772,775,776, 77, 315, 120, 208, 220, 232, 134, , , 0 ,
2018, 97, 155, 174, 367, 380, 412, 541, 542, 543, 544, 5450 3 1
970, 962, 546, 547, 548, 551, 552, 783, 784, 13, 14, 15, 16, ,
194, 960, 1, | 17,18, 19, 20, 21, 22, 23, 24, 121, 126, 132, 1345
0, 2, 770, 139, 146, 147, 148, 151, 152, 159, 160, 163, 164,
769, 1537, 171, 172, 175, 176, 246, 252, 254, 255, 256, 259,
1538, 1536, | 260, 364, 493, 494, 495, 496, 497, 498, 499, 500,
1922, 1105, | 501, 502, 503, 504, 614, 619, 626, 627, 628, 631,
1009, 961, 632, 639, 640, 643, 644, 651, 652, 655, 656, 726,
1057, 1113, | 732,734,735,736,739,740,1,2,3,4,5,6,7,8/9,
818, 866, 10, 11, 12, 122, 123, 124, 127, 128, 135, 136, 140,
1010, 914, 241, 242, 243, 244, 247, 248, 481, 482, 483, 444,
817, 50, 485, 486, 487, 488, 489, 490, 491, 492, 602, 603,
1586, 816 604, 607, 608, 615, 616, 620, 721, 722, 723, 734,
727,728, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37,38, 39,40, 41, 42,43, 44, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 58, 59, 60, 125, 131, 133,
138, 144, 145, 156, 157, 158, 170, 245, 251, 253,
264, 266, 267, 268, 271, 272, 278, 279, 280, 243,
284, 291, 292, 295, 296, 363, 376, 61, 66, 72, 13,
74,86, 87, 88, 91, 92, 98, 99, 100, 103, 104, 111,
112, 115, 116, 304, 62, 63, 64, 67, 68, 75, 76, 19,
80, 555, 556, 559, 560, 69, 81, 82, 185, 186, 191,
193, 198, 204, 205, 206, 211, 218, 781, 782, 785,
786, 787, 788, 791, 792, 793, 794, 795, 798, 799,
800, 804, 89, 93, 94, 101, 105, 106, 107, 113, 118,
119, 197, 203, 210, 216, 217, 181, 182, 192, 194,
199, 276, 70, 219, 183, 188, 195, 196, 200, 207,
307, 65, 71, 78, 84, 85, 90, 96, 97, 303, 316, 338,
83, 108, 109, 95, 114, 352, 102, 340, 110, 143,
168, 169, 258, 368, 190, 209, 215, 554, 567, 568,
572, 579, 580, 584, 591, 592, 596
9.1 4 8 1926, 2118, | 45, 161, 392, 399, 167, 263, 362, 277 5|@(0|0f 1|2 81 10_1
2022, 1974 E
1{2
1
9.2 4 26 1978, 1986, | 117, 221, 227, 337, 440, 459, 234, 317,323,3305| 0| 1| O 1 0| 2 8_2 10_2
1594, 1977 | 472, 427, 569, 570, 573, 574, 575, 690, 696, 702, , ,
708, 709, 720, 816, 928, 940 4 1
2
9.3 1 2 254 149, 387 b o122 83 10_|
9.4 11 94 10, 1546, 150, 388, 222, 228, 229, 230, 231, 235,236,2400| 0(0| 0| 1| 0| 2| 8_4 10_4
1545, 1554, | 325, 326, 331, 332, 336, 338, 339, 343, 344, 390, |, |, ,)
153, 9, 57, 351, 355, 356, 428, 435, 460, 223, 224,301, 3024 1| 3 1
1593, 249, 305, 306, 311, 312, 313, 314, 318, 319, 324, 433, , 2
1785, 209 424, 436, 549, 550, 557, 561, 562, 563, 661, 662,
663, 664, 665, 666, 667, 668, 671, 672, 673, 614,
675, 676, 678, 679, 680, 684, 685, 686, 687, 648,
691, 692, 698, 699, 700, 703, 704, 903, 904, 916,
448, 538, 638, 650, 697, 710, 711, 712, 715, 716,
770, 578, 649, 725
9.5 1 1 2186 179] L L |00 [2 85 10_!
9.6 1 1 1137 212 P 1 B L1 D |1 86 10_¢
9.7 1 1 994 320 2 L |1 2 87 10_1
9.8 3 38 49, 48, 240 505, 506, 507, 508, 509, 510, 511, 512, 514, 515, 0| 1| 0| O] O| 1f 8_9 10_0
516, 517, 518, 519, 520, 521, 522, 523, 524, 526, | , ,
527,528, 733, 746, 747, 748, 751, 752, 758, 799, | 1 0
760, 763, 764, 601, 630, 636, 637, 868
9.9 4 7 205, 2125, | 513, 642, 880, 654, 660, 892, 757 Q(0|0]|1/1(1 8.10 10_8
2117, 2173 , , ,
5 1
0

334

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parentl

of Traces| of K| S| S[S| K| K|S

Projects 112(3[4]2|3]|1
9_10 1 1 2021 525 P 1 811 10_9
911 1 1 1761 553 1 812 10_J0
912 2 4 984, 1032 558, 564, 796, 577 8_13 10_11
9_13 2 3 1040, 2192 565, 576, 860 8_14 10_17
914 1 2 864 566, 571 0 8_15 10_13
9_15 1 1 2097 590 1 8.16 10_j4
9_16 1 1 825 595 1 817 10_15
9_17 2 14 192,193 605, 606, 611, 612, 613, 618, 624, 625, 731, 8_18 10_16
844, 856, 738, 744

918 2 5 2116, 2164 617, 623, 848, 855, 635 8_19 10_17
9_19 2 3 2220, 2268 629, 867, 756 8_20 10_18
9_20 1 1 304 648 p 0 821 10_19
9 21 1 1 1969 745 1 822 10_p0
9_22 1 1 2141 750 1 823 10_p1

335

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parenﬂ
of Traces| of K| S|S|S[K K|S
Projects 112(3[4]2|3]|1
10_0 39 412 49, 48, 240,| 505, 506, 507, 508, 509, 510, 511, 512, 514,5150(0(1|/ 0| 0/ O [1| 9.8,9 0| 11.0
1018, 874, 516, 517, 518, 519, 520, 521, 522, 523, 524, 536, | , | . , ,
872, 1065, 527,528, 733, 746, 747, 748, 751, 752, 758, 7992 | 1| 2 0
1681, 1585, | 760, 763, 764, 601, 630, 636, 637, 868, 327, 308, , 1 ,
98, 146, 583, 187, 184, 805, 806, 807, 808, 811, 812, 1374 3 2
2018, 97, 162, 290, 375, 400, 180, 265, 270, 529, 530, 531, ,
970, 962, 532, 533, 534, 535, 536, 539, 540, 771, 772, 7155
194, 960, 1, | 776, 77, 315, 120, 208, 220, 232, 130, 155, 174,
0, 2, 770, 367, 380, 412, 541, 542, 543, 544, 545, 546, 547,
769, 1537, 548, 551, 552, 783, 784, 13, 14, 15, 16, 17, 18, 19,
1538, 1536, | 20, 21, 22, 23, 24, 121, 126, 132, 134, 139, 144,
1922, 1105, | 147, 148, 151, 152, 159, 160, 163, 164, 171, 172,
1009, 961, 175, 176, 246, 252, 254, 255, 256, 259, 260, 344,
1057, 1113, | 493, 494, 495, 496, 497, 498, 499, 500, 501, 502,
818, 866, 503, 504, 614, 619, 626, 627, 628, 631, 632, 639,
1010, 914, 640, 643, 644, 651, 652, 655, 656, 726, 732, 734,
817, 50, 735, 736, 739, 740, 1, 2,3,4,5,6, 7, 8,9, 10, 11,
1586, 816 12,122, 123, 124, 127, 128, 135, 136, 140, 241,
242,243, 244, 247, 248, 481, 482, 483, 484, 495,
486, 487, 488, 489, 490, 491, 492, 602, 603, 604,
607, 608, 615, 616, 620, 721, 722, 723, 724, 737,
728, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37,38,39,40, 41, 42,43, 44, 46,47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 58, 59, 60, 125, 131, 133, 138,
144, 145, 156, 157, 158, 170, 245, 251, 253, 244,
266, 267, 268, 271, 272, 278, 279, 280, 283, 244,
291, 292, 295, 296, 363, 376, 61, 66, 72, 73, 74,
86, 87, 88, 91, 92, 98, 99, 100, 103, 104, 111, 112,
115, 116, 304, 62, 63, 64, 67, 68, 75, 76, 79, 8(,
555, 556, 559, 560, 69, 81, 82, 185, 186, 191, 193,
198, 204, 205, 206, 211, 218, 781, 782, 785, 796,
787,788, 791, 792, 793, 794, 795, 798, 799, 800,
804, 89, 93, 94, 101, 105, 106, 107, 113, 118, 119,
197, 203, 210, 216, 217, 181, 182, 192, 194, 199,
276, 70, 219, 183, 188, 195, 196, 200, 207, 307,
65, 71, 78, 84, 85, 90, 96, 97, 303, 316, 328, 83,
108, 109, 95, 114, 352, 102, 340, 110, 143, 164,
169, 258, 368, 190, 209, 215, 554, 567, 568, 572,
579, 580, 584, 591, 592, 596
10_1 4 8 1926, 2118, | 45, 161, 392, 399, 167, 263, 362, 277 5/@ 0|0 1|2 9.1 111
2022, 1974 e
1|2
1
10_2 4 26 1978, 1986, | 117, 221, 227, 337, 440, 459, 234, 317,323,3305| 0| 1| O 1{ 0| 2| 9_2 11 2
1594, 1977 | 472, 427, 569, 570, 573, 574, 575, 690, 696, 702, , ,
708, 709, 720, 816, 928, 940 4 1
2
10_3 1 2 254 149, 387 oppjof1p|2 93 11 |
10_4 11 94 10, 1546, 150, 388, 222, 228, 229, 230, 231, 235,236,2400| 0| 0(0| 1/ 0| 2(9 4 11_4
1545, 1554, | 325, 326, 331, 332, 336, 338, 339, 343, 344, 390, |, |, , ,
153, 9, 57, 351, 355, 356, 428, 435, 460, 223, 224,301, 3024 1| 3 1
1593, 249, 305, 306, 311, 312, 313, 314, 318, 319, 324, 443, , 2
1785, 209 424, 436, 549, 550, 557, 561, 562, 563, 661, 662,
663, 664, 665, 666, 667, 668, 671, 672, 673, 614,
675, 676, 678, 679, 680, 684, 685, 686, 687, 648,
691, 692, 698, 699, 700, 703, 704, 903, 904, 916,
448, 538, 638, 650, 697, 710, 711, 712, 715, 716,
770, 578, 649, 725
10_5 1 1 2186 179 b L L L |0D |2 95 1%
10_6 1 1 1137 212 P 1L B L1 D1 96 11_
10_7 1 1 994 320 P 1 P LD |2 97 11
10_8 4 7 205, 2125, | 513, 642, 880, 654, 660, 892, 757 Q(0|0] 111929 11_8
2117, 2173 , ,)
5 1
0

336

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parentl
of Traces| of K| S| S[S| K| K|S
Projects 112(3[4]2|3]|1
10_9 1 1 2021 525 b P 0 1 910 119
1010 | 1 1 1761 553 i D [L|1 1911 11_1l0
10_11 | 2 4 984, 1032 558, 564, 796, 577 2] 1) | Of Of Of 9_12 11 11
1
10_12 | 2 3 1040, 2192 565, 576, 860 201|112 of 9 913 11_14
5
10.13 | 1 2 864 566, 571 2 2 10|00 |0 9 14 11.[0
10_14 | 1 1 2097 590 b B [(1 1 915 11 13
1015 | 1 1 825 595 p il 1 1 916 11_]4
10_16 | 2 14 192, 193 605, 606, 611, 612, 613, 618, 624, 625, 731, 848 1| 0| O Q 0| Q 9_17 11_15
844, 856, 738, 744 ,
1
1017 | 2 5 2116, 2164 617, 623, 848, 855, 635 § 1090 1|o0f 9.18 11_16
1
10_18 | 2 3 2220, 2268 629, 867, 756 5(1|@f1] 1|0 9_19 11_17
3
10.19 | 1 1 304 648 P 2 0 920 11 18
10.20 | 1 1 1969 745 b L [0 (O 1 921 11 119
1021 | 1 1 2141 750 5 D [L]|o 1922 11_po

337

Table B-1.Clusters

Children Parenﬂ

Cluster | Number | Number | Traces Projects DD| D| D| D| D | D|
of Traces| of K| S|S|S[K K|S
Projects 112(3[4]2|3]|1
11.0 40 414 864, 49, 48,| 566, 571, 505, 506, 507, 508, 509, 510, 511,5122(02| 0| 0| O [O| 10_13, |12 0
240, 1018, 514, 515, 516, 517, 518, 519, 520, 521, 522, 533, | , |, , ,|10_0
874, 872, 524, 526, 527, 528, 733, 746, 747,748,751, 7920 | 1| 1 1
1065, 1681, | 758, 759, 760, 763, 764, 601, 630, 636, 637, 848, , 1 ,
1585, 98, 327, 308, 583, 187, 184, 805, 806, 807, 808, 8114 3 2
146, 2018, 812, 137, 162, 290, 375, 400, 180, 265, 270, 529, ,
97,970, 962,| 530, 531, 532, 533, 534, 535, 536, 539, 540, 7715 0
194,960, 1, | 772, 775, 776, 77, 315, 120, 208, 220, 232, 134,
0, 2, 770, 155, 174, 367, 380, 412, 541, 542, 543, 544, 545,
769, 1537, 546, 547, 548, 551, 552, 783, 784, 13, 14, 15, 16,
1538, 1536, | 17,18, 19, 20, 21, 22, 23, 24, 121, 126, 132, 134,
1922, 1105, | 139, 146, 147, 148, 151, 152, 159, 160, 163, 164,
1009, 961, 171, 172, 175, 176, 246, 252, 254, 255, 256, 259,
1057, 1113, | 260, 364, 493, 494, 495, 496, 497, 498, 499, 500,
818, 866, 501, 502, 503, 504, 614, 619, 626, 627, 628, 631,
1010, 914, 632, 639, 640, 643, 644, 651, 652, 655, 656, 746,
817, 50, 732,734,735,736,739,740,1,2,3,4,5,6,7,8]9,
1586, 816 10,11, 12, 122, 123, 124, 127, 128, 135, 136, 140,
241, 242, 243, 244, 247, 248, 481, 482, 483, 444,
485, 486, 487, 488, 489, 490, 491, 492, 602, 603,
604, 607, 608, 615, 616, 620, 721, 722, 723, 734,
727,728, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36,37, 38, 39, 40,41, 42, 43, 44, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 58, 59, 60, 125, 131, 133,
138, 144, 145, 156, 157, 158, 170, 245, 251, 253,
264, 266, 267, 268, 271, 272, 278, 279, 280, 293,
284, 291, 292, 295, 296, 363, 376, 61, 66, 72, 13,
74, 86, 87, 88, 91, 92, 98, 99, 100, 103, 104, 111,
112, 115, 116, 304, 62, 63, 64, 67, 68, 75, 76, 79,
80, 555, 556, 559, 560, 69, 81, 82, 185, 186, 191,
193, 198, 204, 205, 206, 211, 218, 781, 782, 795,
786, 787, 788, 791, 792, 793, 794, 795, 798, 799,
800, 804, 89, 93, 94, 101, 105, 106, 107, 113, 118,
119, 197, 203, 210, 216, 217, 181, 182, 192, 194,
199, 276, 70, 219, 183, 188, 195, 196, 200, 207,
307, 65, 71, 78, 84, 85, 90, 96, 97, 303, 316, 328,
83, 108, 109, 95, 114, 352, 102, 340, 110, 143,
168, 169, 258, 368, 190, 209, 215, 554, 567, 568,
572, 579, 580, 584, 591, 592, 596
111 4 8 1926, 2118, | 45, 161, 392, 399, 167, 263, 362, 277 5(@ 0|0 1|2 101 121
2022, 1974 e
1|2
1
11_2 4 26 1978, 1986, | 117, 221, 227, 337, 440, 459, 234, 317,323,3305| 0| 1| O 1f{ 0 | 2| 10_2 12_2
1594, 1977 | 472, 427, 569, 570, 573, 574, 575, 690, 696, 702, , ,
708, 709, 720, 816, 928, 940 4 1
2
1.3 1 2 254 149, 387 opploj1p|2 103 12 |
11_4 11 94 10, 1546, 150, 388, 222, 228, 229, 230, 231, 235, 236,2400| 0| 0(0| 1| 0 | 2| 10_4 12_4
1545, 1554, | 325, 326, 331, 332, 336, 338, 339, 343, 344, 390, |, |, , ,
153, 9, 57, 351, 355, 356, 428, 435, 460, 223, 224,301, 3024 1| 3 1
1593, 249, 305, 306, 311, 312, 313, 314, 318, 319, 324, 423, , 2
1785, 209 424, 436, 549, 550, 557, 561, 562, 563, 661, 662,
663, 664, 665, 666, 667, 668, 671, 672, 673, 614,
675, 676, 678, 679, 680, 684, 685, 686, 687, 648,
691, 692, 698, 699, 700, 703, 704, 903, 904, 916,
448, 538, 638, 650, 697, 710, 711, 712, 715, 716,
770, 578, 649, 725
115 1 1 2186 179 > L L L |0 P |2 105 12 |
11_6 1 1 1137 212 P 1 B L1 D (1 106 12_|
1.7 1 1 994 320 P 1 0D L1 O |2 107 12
11_8 4 7 205, 2125, | 513, 642, 880, 654, 660, 892, 757 Q(0|0]|1/1(|1| 10_8 12_8
2117, 2173 , ,)
5 1
0

338

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D| D| D | D| Parentl

of Traces| of K| S|S|S[K K|S

Projects 112(3[4]2|3]|1
11.9 1 1 2021 525 P P
11.10 | 1 1 1761 553 10
11.11 | 2 4 984, 1032 558, 564, 796, 577
11.12 | 2 3 1040, 2192 565, 576, 860
11.13 | 1 1 2097 590 b 3
1114 | 1 1 825 595 p P
11.15 | 2 14 192, 193 605, 606, 611, 612, 613, 618, 624, 625, 731, B45|
844, 856, 738, 744

11.16 | 2 5 2116, 2164 617, 623, 848, 855, 635
11.17 | 2 3 2220, 2268 629, 867, 756
11.18 | 1 1 304 648 P L7
11.19 | 1 1 1969 745 18
11.20 | 1 1 2141 750 b 19

12.0

41

415

825, 864, 49
48, 240
1018, 874,
872, 1065
1681, 1585
98, 146,
2018, 97
970, 962,
194, 960, 1
0, 2,770,
769, 1537
1538, 1536
1922, 1105
1009, 961
1057, 1113
818, 866
1010, 914,
817, 50,
1586, 816

595, 566, 571, 505, 506, 507, 508, 509, 510, 5]
512, 514, 515, 516, 517, 518, 519, 520, 521, 52
523, 524, 526, 527, 528, 733, 746, 747, 748, 75
752, 758, 759, 760, 763, 764, 601, 630, 636, 63
868, 327, 308, 583, 187, 184, 805, 806, 807, 8(
811, 812, 137, 162, 290, 375, 400, 180, 265, 27
529, 530, 531, 532, 533, 534, 535, 536, 539, 54
771,772,775, 776, 77, 315, 120, 208, 220, 232
130, 155, 174, 367, 380, 412, 541, 542, 543, 54
545, 546, 547, 548, 551, 552, 783, 784, 13, 14
16, 17, 18, 19, 20, 21, 22, 23, 24, 121, 126, 137
134, 139, 146, 147, 148, 151, 152, 159, 160, 14
164, 171, 172, 175, 176, 246, 252, 254, 255, 25
259, 260, 364, 493, 494, 495, 496, 497, 498, 49
500, 501, 502, 503, 504, 614, 619, 626, 627, 63
631, 632, 639, 640, 643, 644, 651, 652, 655, 64
726,732,734,735,736,739,740,1,2,3,4,5,6
8,9,10,11,12,122, 123, 124,127,128, 135, 1
140, 241, 242, 243, 244, 247, 248, 481, 482, 44
484, 485, 486, 487, 488, 489, 490, 491, 492, 6(
603, 604, 607, 608, 615, 616, 620, 721, 722, 72
724,727,728, 25, 26, 27, 28, 29, 30, 31, 32,33
35,36, 37, 38, 39, 40,41, 42, 43, 44, 46,47, 48
50, 51,52, 53, 54, 55, 56, 58, 59, 60, 125, 131, 1.
138, 144, 145, 156, 157, 158, 170, 245, 251, 25
264, 266, 267, 268, 271, 272, 278, 279, 280, 29
284, 291, 292, 295, 296, 363, 376, 61, 66, 72, 1
74, 86, 87, 88, 91, 92, 98, 99, 100, 103, 104, 11
112, 115, 116, 304, 62, 63, 64, 67, 68, 75, 76, 1
80, 555, 556, 559, 560, 69, 81, 82, 185, 186, 19
193, 198, 204, 205, 206, 211, 218, 781, 782, 74
786, 787, 788, 791, 792, 793, 794, 795, 798, 79
800, 804, 89, 93, 94, 101, 105, 106, 107, 113, 1
119, 197, 203, 210, 216, 217, 181, 182, 192, 19

199, 276, 70, 219, 183, 188, 195, 196, 200, 207

307, 65, 71, 78, 84, 85, 90, 96, 97, 303, 316, 37
83, 108, 109, 95, 114, 352, 102, 340, 110, 143
168, 169, 258, 368, 190, 209, 215, 554, 567, 54
572, 579, 580, 584, 591, 592, 596

=
=

N
W N
N O

o Y I

,_
[

TPOPOWROEORINNG OO W

OCARFRPOF,rWwW

e
[oc]

~

©

3

339

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parentl
of Traces| of K| S| S[S| K| K|S
Projects 112(3[4]2|3]|1
121 4 8 1926, 2118, | 45, 161, 392, 399, 167, 263, 362, 277 5@ 0|0l 1] 2 11_1 131
2022, 1974 e
1{2
1
122 4 26 1978, 1986, | 117, 221, 227, 337, 440, 459, 234, 317,323,3305| 0| 1 0| 1 0 | 2| 11_2 13_2
1594, 1977 | 472, 427, 569, 570, 573, 574, 575, 690, 696, 702, , ,
708, 709, 720, 816, 928, 940 4 1
2
123 1 2 254 149, 387 opploj1p|2 113 138
12 4 11 94 10, 1546, 150, 388, 222, 228, 229, 230, 231, 235, 236,2400| 0(0| 0| 1| 0 | 2| 11_4 13_4
1545, 1554, | 325, 326, 331, 332, 336, 338, 339, 343, 344, 390, |, |, , ,
153, 9, 57, 351, 355, 356, 428, 435, 460, 223, 224,301, 3024 1| 3 1
1593, 249, 305, 306, 311, 312, 313, 314, 318, 319, 324, 433, , 2
1785, 209 424, 436, 549, 550, 557, 561, 562, 563, 661, 642,
663, 664, 665, 666, 667, 668, 671, 672, 673, 614,
675, 676, 678, 679, 680, 684, 685, 686, 687, 648,
691, 692, 698, 699, 700, 703, 704, 903, 904, 916,
448, 538, 638, 650, 697, 710, 711, 712, 715, 716,
770, 578, 649, 725
12 5 1 1 2186 179 b L L 0 2 11.5 13_%
12_6 1 1 1137 212 P 1 B 1 1 116 13_6
127 1 1 994 320) 1 2 117 13_¢Y
12_8 4 7 205, 2125, | 513, 642, 880, 654, 660, 892, 757 Q(0|0|1/1(1| 118 138
2117, 2173 ,))
5 1
0
12 9 1 1 2021 525 b 0 P 0 1 119 13_
12.10 | 1 1 1761 553 i L p 1 1 11 10 13_{10
1211 | 2 4 984, 1032 558, 564, 796, 577 2 1| Oj o[O] O 11_11 13_11
1
1212 | 2 3 1040, 2192 565, 576, 860 2|11y o Q 1112 13_12
5
1213 | 1 1 2097 590 5 D B 1 1 11_13 13_[13
1214 | 2 14 192,193 605, 606, 611, 612, 613, 618, 624, 625, 731, 848, 1| 0| 0| Q O| ¢ 11_15 13_0
844, 856, 738, 744)
1
12.15 | 2 5 2116, 2164 617, 623, 848, 855, 635 5 1090/ 1|0 11_16 13_14
1
1216 | 2 3 2220, 2268 629, 867, 756 5|/1|@f1 1|0 1117 13_1§
3
1217 | 1 1 304 648 1 P 2 0 11_18 13_[16
12.18 | 1 1 1969 745 5 p 0 1 11_19 13 17
12.19 | 1 1 2141 750 b L p 0 1 11_20 13_/18

340

Table B-1.Clusters

Children Parenﬂ

Cluster | Number | Number | Traces Projects DD| D| D| D| D | D|
of Traces| of K[S[S|S|K K|S
Projects 123142131
13_0 43 429 192, 193, 605, 606, 611, 612, 613, 618, 624, 625, 731,8430| 1| 0| 0| O0[O | O] 12_14, | 14 0
825, 864, 49,| 844, 856, 738, 744, 595, 566, 571, 505, 506, 507, | , | . , ,112_0
48, 240, 508, 509, 510, 511, 512, 514, 515, 516, 517,5182 | 0| 1 1
1018, 874, 519, 520, 521, 522, 523, 524, 526, 527, 528, 733, , 1 ,
872, 1065, 746, 747, 748, 751, 752, 758, 759, 760, 763, 7644 2 2
1681, 1585, | 601, 630, 636, 637, 868, 327, 308, 583, 187, 144, ,
98, 146, 805, 806, 807, 808, 811, 812, 137, 162, 290, 375 3
2018, 97, 400, 180, 265, 270, 529, 530, 531, 532, 533, 534,
970, 962, 535, 536, 539, 540, 771, 772, 775, 776, 77, 315,
194, 960, 1, | 120, 208, 220, 232, 130, 155, 174, 367, 380, 412,
0, 2, 770, 541, 542, 543, 544, 545, 546, 547, 548, 551, 592,
769, 1537, 783,784, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
1538, 1536, | 24, 121, 126, 132, 134, 139, 146, 147, 148, 151,
1922, 1105, | 152, 159, 160, 163, 164, 171, 172, 175, 176, 246,
1009, 961, 252, 254, 255, 256, 259, 260, 364, 493, 494, 495,
1057, 1113, | 496, 497, 498, 499, 500, 501, 502, 503, 504, 614,
818, 866, 619, 626, 627, 628, 631, 632, 639, 640, 643, 644,
1010, 914, 651, 652, 655, 656, 726, 732, 734, 735, 736, 739,
817, 50, 740,1,2,3,4,5,6,7,8,9,10, 11, 12, 122, 123,
1586, 816 124,127,128, 135, 136, 140, 241, 242, 243, 244,
247, 248, 481, 482, 483, 484, 485, 486, 487, 498,
489, 490, 491, 492, 602, 603, 604, 607, 608, 615,
616, 620, 721, 722, 723, 724,727,728, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42,43,44, 46,47, 48, 49,50, 51, 52, 53, 54, 55, ¥6,
58, 59, 60, 125, 131, 133, 138, 144, 145, 156, 157,
158, 170, 245, 251, 253, 264, 266, 267, 268, 271,
272, 278, 279, 280, 283, 284, 291, 292, 295, 296,
363, 376, 61, 66, 72, 73, 74, 86, 87, 88, 91, 92, 98,
99, 100, 103, 104, 111, 112, 115, 116, 304, 62, $3,
64, 67, 68, 75, 76, 79, 80, 555, 556, 559, 560, §9,

81, 82, 185, 186, 191, 193, 198, 204, 205, 206,
211, 218, 781, 782, 785, 786, 787, 788, 791, 792,
793, 794, 795, 798, 799, 800, 804, 89, 93, 94, 101,
105, 106, 107, 113, 118, 119, 197, 203, 210, 216,
217,181, 182, 192, 194, 199, 276, 70, 219, 183,
188, 195, 196, 200, 207, 307, 65, 71, 78, 84, 89,

90, 96, 97, 303, 316, 328, 83, 108, 109, 95, 114,

352, 102, 340, 110, 143, 168, 169, 258, 368, 190,
209, 215, 554, 567, 568, 572, 579, 580, 584, 591

592, 596
131 | 4 8 1926, 2118, | 45, 161, 392, 399, 167, 263, 362, 277 5@ ofof 1|2 121 14_1
2022, 1974 ,
1|2
1
132 | 4 26 1978, 1986, | 117, 221, 227, 337, 440, 459, 234, 317,323,3405| 0| 1| 0| 1/ 0 | 2| 122 14_2
1594, 1977 | 472, 427, 569, 570, 573, 574, 575, 690, 696, 702, , .
708, 709, 720, 816, 928, 940 4 1
2
133 |1 2 254 149, 387 DofpLflofth|2 123 14 |
134 | 11 94 10, 1546, | 150, 388, 222, 228, 229, 230, 231, 235, 236,2400| 0| 0| 0| 1| 0 | 2| 12_4 14_4
1545, 1554, | 325, 326, 331, 332, 336, 338, 339, 343, 344, 350, | , | , , ,
153,9,57, | 351, 355, 356, 428, 435, 460, 223, 224, 301, 3424 | 1| 3 1
1593, 249, | 305, 306, 311, 312, 313, 314, 318, 319, 324, 433, . 2
1785,209 | 424, 436, 549, 550, 557, 561, 562, 563, 661, 662
663, 664, 665, 666, 667, 668, 671, 672, 673, 6714
675, 676, 678, 679, 680, 684, 685, 686, 687, 648
691, 692, 698, 699, 700, 703, 704, 903, 904, 916
448, 538, 638, 650, 697, 710, 711, 712, 715, 716
770, 578, 649, 725
135 |1 1 2186 179 5 L L pfop |2 125 14
136 |1 1 1137 212 > L B R [1p |1 126 14_
137 |1 1 994 320 > 1 p L1 o |2 127 14

341

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parentl
of Traces| of K| S|S|S[K K|S
Projects 112(3[4]2|3]|1
13 8 4 7 205, 2125, | 513, 642, 880, 654, 660, 892, 757 ofofo|1{1]1] 12_8 14_8
2117, 2173 , , ,
5
0

13 9 1 1 2021 525 5 0 P 0L |1 129 14 9
1310 | 1 1 1761 553 it L p 1 p |1 1210 14 00
1311 | 2 4 984, 1032 558, 564, 796, 577 2| 1| | Of Of Of 12_11 14_11

1
13_12 | 2 3 1040, 2192 565, 576, 860 2(1(1| 3y o] O 12_12 14_12

5

13.13 | 1 1 2097 590 5 D B 1 p |1 1213 14 13
13 14 | 2 5 2116, 2164 617, 623, 848, 855, 635 § 10Qo|1fof 12_15 14_14

1
1315 | 2 3 2220, 2268 629, 867, 756 5(1(@f1] 1| o] 12_16 14_1§

3
13.16 | 1 1 304 648 1 P 2 D |0 12_17 14 116
1317 | 1 1 1969 745 5 p 1L 0p (1 12 18 14 p
13.18 | 1 1 2141 750 b L P 0oL (1 12_19 14 07

44

430

1969, 192
193, 825,
864, 49, 48
240, 1018
874,872
1065, 1681
1585, 98
146, 2018
97,970, 962
194, 960, 1
0, 2,770,
769, 1537
1538, 1536
1922, 1105
1009, 961
1057, 1113
818, 866
1010, 914,
817, 50
1586, 816

745, 605, 606, 611, 612, 613, 618, 624, 625, 73
843, 844, 856, 738, 744, 595, 566, 571, 505, 5(
507, 508, 509, 510, 511, 512, 514, 515, 516, 5]
518, 519, 520, 521, 522, 523, 524, 526, 527, 57
733, 746, 747, 748, 751, 752, 758, 759, 760, 74
764, 601, 630, 636, 637, 868, 327, 308, 583, 14
184, 805, 806, 807, 808, 811, 812, 137, 162, 29
375, 400, 180, 265, 270, 529, 530, 531, 532, 53
534, 535, 536, 539, 540, 771, 772, 775, 776, 71
315, 120, 208, 220, 232, 130, 155, 174, 367, 3§
412, 541, 542, 543, 544, 545, 546, 547, 548, 54
552,783, 784,13, 14, 15, 16, 17, 18, 19, 20, 21
23, 24,121, 126, 132, 134, 139, 146, 147, 148
151, 152, 159, 160, 163, 164, 171, 172, 175, 17
246, 252, 254, 255, 256, 259, 260, 364, 493, 49
495, 496, 497, 498, 499, 500, 501, 502, 503, 5(
614, 619, 626, 627, 628, 631, 632, 639, 640, 64
644, 651, 652, 655, 656, 726, 732, 734, 735, 73
739,740,1,2,3,4,5,6,7,8,9, 10, 11, 12, 127
123, 124,127, 128, 135, 136, 140, 241, 242, 24
244, 247, 248, 481, 482, 483, 484, 485, 486, 49
488, 489, 490, 491, 492, 602, 603, 604, 607, 6(
615, 616, 620, 721, 722, 723, 724, 727, 728, 24
26, 27,28, 29, 30, 31, 32, 33, 34, 35, 36,37, 38
40,41, 42,43,44, 46, 47, 48, 49,50, 51, 52, 53
55, 56, 58, 59, 60, 125, 131, 133, 138, 144, 14§
156, 157, 158, 170, 245, 251, 253, 264, 266, 24
268, 271, 272, 278, 279, 280, 283, 284, 291, 29
295, 296, 363, 376, 61, 66, 72, 73, 74, 86, 87, §
91, 92, 98, 99, 100, 103, 104, 111, 112, 115, 11
304, 62, 63, 64, 67, 68, 75, 76, 79, 80, 555, 554
559, 560, 69, 81, 82, 185, 186, 191, 193, 198, 2
205, 206, 211, 218, 781, 782, 785, 786, 787, 79
791, 792, 793, 794, 795, 798, 799, 800, 804, 89
93, 94, 101, 105, 106, 107, 113, 118, 119, 197
203, 210, 216, 217, 181, 182, 192, 194, 199, 27
70, 219, 183, 188, 195, 196, 200, 207, 307, 65
78, 84, 85, 90, 96, 97, 303, 316, 328, 83, 108, 1

95, 114, 352, 102, 340, 110, 143, 168, 169, 25§,

368, 190, 209, 215, 554, 567, 568, 572, 579, 5§
584, 591, 592, 596

15

0 ~N O
o~

32

(TR

[

NS
n

OWs O

RO~ oONwT

SN N

25

© O

[y
N O

o-

NG

13 17
130

15_0

342

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parentl
of Traces| of K| S| S[S| K| K|S
Projects 112(3[4]2|3]|1
141 4 8 1926, 2118, | 45, 161, 392, 399, 167, 263, 362, 277 5/®@ 0|0l 1] 2[13_1 150
2022, 1974)
1{2
1
14 2 4 26 1978, 1986, | 117, 221, 227, 337, 440, 459, 234, 317,323,3305| 0| 1| 0| 1f 0 | 2| 13_2 15_0
1594, 1977 | 472, 427, 569, 570, 573, 574, 575, 690, 696, 702, , ,
708, 709, 720, 816, 928, 940 4 1
2
14 3 1 2 254 149, 387 ofploj1p|2 133 151
14 4 11 94 10, 1546, 150, 388, 222, 228, 229, 230, 231, 235, 236,2400| 0(0| 0| 1| 0 | 2| 13_4 15_1
1545, 1554, | 325, 326, 331, 332, 336, 338, 339, 343, 344, 350, , , ,
153, 9, 57, 351, 355, 356, 428, 435, 460, 223, 224,301, 3024 1| 3 1
1593, 249, 305, 306, 311, 312, 313, 314, 318, 319, 324, 433, , 2
1785, 209 424, 436, 549, 550, 557, 561, 562, 563, 661, 642,
663, 664, 665, 666, 667, 668, 671, 672, 673, 614,
675, 676, 678, 679, 680, 684, 685, 686, 687, 648,
691, 692, 698, 699, 700, 703, 704, 903, 904, 916,
448, 538, 638, 650, 697, 710, 711, 712, 715, 716,
770, 578, 649, 725
14 5 1 1 2186 179 b L L 0 2 135 15_p
14 6 1 1 1137 212 P 1 B 1 1 13 6 15_8
14 7 1 1 994 320) 1 2 137 15_4
14_8 4 7 205, 2125, | 513, 642, 880, 654, 660, 892, 757 Q(0|0]|1/1(1| 138 155
2117, 2173 ,))
5 1
0
14 9 1 1 2021 525 b 0 P 0 1 139 15_6
1410 | 1 1 1761 553 i L p 1 1 13 10 15 |7
14 11 | 2 4 984, 1032 558, 564, 796, 577 2 1| Oj of 0| O 13_11 15_8
1
1412 | 2 3 1040, 2192 565, 576, 860 2|11 3y o o 1312 15_8
5
1413 | 1 1 2097 590 5 D B 1 1 13_13 15_P
14 14 | 2 5 2116, 2164 617, 623, 848, 855, 635 5 10Q0| 1| 0| 13_14 155
1
14 .15 | 2 3 2220, 2268 629, 867, 756 5/1|@f1 1| 0f 13_15 15_1d
3
1416 | 1 1 304 648 1 P 2 0 13_16 15 1
14 17 | 1 1 2141 750 5 L D 0 1 13_18 15 p

343

Table B-1.Clusters

>

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parenﬂ
of Traces| of K| S|S|S[K K|S
Projects 123142131
150 52 464 1926, 2118, | 45, 161, 392, 399, 167, 263, 362, 277, 745,604,5| 0| 0| 0| O 1 | 2| 14_1, 16_0
2022, 1974, | 606, 611, 612, 613, 618, 624, 625, 731, 843,844, | , |, || 140,
1969, 192, 856, 738, 744, 595, 566, 571, 505, 506, 507,5080 | 1| 2 0]1|14.2
193, 825, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, , 1 ,
864, 49, 48, | 520, 521, 522, 523, 524, 526, 527, 528, 733, 7462 1)
240, 1018, 747,748, 751, 752, 758, 759, 760, 763, 764, 601, ,
874, 872, 630, 636, 637, 868, 327, 308, 583, 187, 184, 8054 2
1065, 1681, | 806, 807, 808, 811, 812, 137, 162, 290, 375, 440,
1585, 98, 180, 265, 270, 529, 530, 531, 532, 533, 534, 535,
146, 2018, 536, 539, 540, 771, 772, 775, 776, 77, 315, 124,
97,970, 962, | 208, 220, 232, 130, 155, 174, 367, 380, 412, 541,
194,960, 1, | 542, 543, 544, 545, 546, 547, 548, 551, 552, 743,
0, 2, 770, 784, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 44,
769, 1537, 121, 126, 132, 134, 139, 146, 147, 148, 151, 152,
1538, 1536, | 159, 160, 163, 164, 171, 172, 175, 176, 246, 252,
1922, 1105, | 254, 255, 256, 259, 260, 364, 493, 494, 495, 496,
1009, 961, 497, 498, 499, 500, 501, 502, 503, 504, 614, 619,
1057, 1113, | 626, 627, 628, 631, 632, 639, 640, 643, 644, 641,
818, 866, 652, 655, 656, 726, 732, 734, 735, 736, 739, 740,
1010, 914, 1,2,38,4,5,6,7,8,9,10, 11, 12, 122, 123, 124,
817, 50, 127,128, 135, 136, 140, 241, 242, 243, 244, 247,
1586, 816, 248, 481, 482, 483, 484, 485, 486, 487, 488, 449,
1978, 1986, | 490, 491, 492, 602, 603, 604, 607, 608, 615, 616,
1594, 1977 | 620, 721, 722, 723, 724, 727, 728, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43,44, 46,47, 48, 49,50, 51, 52, 53, 54, 55, 56, $8,
59, 60, 125, 131, 133, 138, 144, 145, 156, 157,
158, 170, 245, 251, 253, 264, 266, 267, 268, 211,
272, 278, 279, 280, 283, 284, 291, 292, 295, 296,
363, 376, 61, 66, 72, 73, 74, 86, 87, 88, 91, 92, 98,
99, 100, 103, 104, 111, 112, 115, 116, 304, 62, §3,
64, 67, 68, 75, 76, 79, 80, 555, 556, 559, 560, §9,
81, 82, 185, 186, 191, 193, 198, 204, 205, 206,
211, 218, 781, 782, 785, 786, 787, 788, 791, 792,
793, 794, 795, 798, 799, 800, 804, 89, 93, 94, 101,
105, 106, 107, 113, 118, 119, 197, 203, 210, 216,
217,181, 182, 192, 194, 199, 276, 70, 219, 183,
188, 195, 196, 200, 207, 307, 65, 71, 78, 84, 85,
90, 96, 97, 303, 316, 328, 83, 108, 109, 95, 114,
352, 102, 340, 110, 143, 168, 169, 258, 368, 190,
209, 215, 554, 567, 568, 572, 579, 580, 584, 591,
592, 596, 117, 221, 227, 337, 440, 459, 234, 317,
323, 330, 472, 427, 569, 570, 573, 574, 575, 690,
696, 702, 708, 709, 720, 816, 928, 940
151 12 96 254, 10, 149, 387, 150, 388, 222, 228, 229, 230,231,2350| 1| 1| 0| 1| 1 | 2| 14_3, 16_0
1546, 1545, | 236, 240, 325, 326, 331, 332, 336, 338, 339, 343, | , |, .. 144
1554, 153, 9,| 344, 350, 351, 355, 356, 428, 435, 460, 223,2444(0| O 01
57, 1593, 301, 302, 305, 306, 311, 312, 313, 314, 318, 319, , 2
249, 1785, 324, 423, 424, 436, 549, 550, 557, 561, 562, 563, 3
209 661, 662, 663, 664, 665, 666, 667, 668, 671, 6712,
673, 674, 675, 676, 678, 679, 680, 684, 685, 646,
687, 688, 691, 692, 698, 699, 700, 703, 704, 903,
904, 916, 448, 538, 638, 650, 697, 710, 711, 712,
715, 716, 770, 578, 649, 725
15_2 1 1 2186 179 b L L 0 2 145 16_]
15_3 1 1 1137 212 P L B 1 1 146 16_]
15 4 1 1 994 320) 1 2 147 16_
15 5 7 13 205, 2125, | 513, 642, 880, 654, 660, 892, 757, 617, 623,8480| 1| 0| 0| 1| 1| 1| 14_8, 16_4
2117, 2173, | 855, 635, 750 , s , | 14_14,
2116, 2164, 5 11 0| 14_17
2141 0
15 6 1 1 2021 525 b 0 P 0 1 149 16_|
15 7 1 1 1761 553 t L p 1 1 1410 16_
15_8 4 7 984, 1032, | 558, 564, 796, 577, 565, 576, 860 2|0|1f(0l0|Of 14 11, |16_7
1040, 2192 , , , 14_12
5 1
1

344

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parenﬂ
of Traces| of K| S|S|S[K K|S
Projects 112(3[4]2|3]|1
159 1 1 2097 590 5 0 B L1 D (1 1413 16_B
15_10 | 2 3 2220, 2268 629, 867, 756 5/1|@f1 1| 0f 14 15 16_9
3
1511 | 1 1 304 648 1 B P2 p [0 1416 16_[10
16_0 64 560 254, 10, 149, 387, 150, 388, 222, 228, 229, 230,231,2350| 1| 1| 0| 1| 1| 2| 15_1, 170
1546, 1545, | 236, 240, 325, 326, 331, 332, 336, 338, 339, 343, | , |, 1. |.,]15.0
1554, 153, 9,| 344, 350, 351, 355, 356, 428, 435, 460, 223,2444(0| O 01
57, 1593, 301, 302, 305, 306, 311, 312, 313, 314, 318, 319, , 2 ,
249, 1785, 324, 423, 424, 436, 549, 550, 557, 561, 562, 5435 3 ,
209, 1926, 661, 662, 663, 664, 665, 666, 667, 668, 671, 6712, ,
2118, 2022, | 673, 674, 675, 676, 678, 679, 680, 684, 685, 6462 0
1974, 1969, | 687, 688, 691, 692, 698, 699, 700, 703, 704, 903,
192, 193, 904, 916, 448, 538, 638, 650, 697, 710, 711, 712,
825, 864, 49, | 715, 716, 770, 578, 649, 725, 45, 161, 392, 399,
48, 240, 167, 263, 362, 277, 745, 605, 606, 611, 612, 613,
1018, 874, 618, 624, 625, 731, 843, 844, 856, 738, 744, 595,
872, 1065, 566, 571, 505, 506, 507, 508, 509, 510, 511, 512,
1681, 1585, | 514, 515, 516, 517, 518, 519, 520, 521, 522, 523,
98, 146, 524,526, 527, 528, 733, 746, 747, 748, 751, 792,
2018, 97, 758, 759, 760, 763, 764, 601, 630, 636, 637, 868,
970, 962, 327, 308, 583, 187, 184, 805, 806, 807, 808, 811,
194,960, 1, | 812, 137, 162, 290, 375, 400, 180, 265, 270, 529,
0, 2, 770, 530, 531, 532, 533, 534, 535, 536, 539, 540, 711,
769, 1537, 772,775,776, 77, 315, 120, 208, 220, 232, 13(,
1538, 1536, | 155, 174, 367, 380, 412, 541, 542, 543, 544, 545,
1922, 1105, | 546, 547, 548, 551, 552, 783, 784, 13, 14, 15, 16,
1009, 961, 17,18, 19, 20, 21, 22, 23, 24, 121, 126, 132, 134,
1057, 1113, | 139, 146, 147, 148, 151, 152, 159, 160, 163, 164,
818, 866, 171, 172, 175, 176, 246, 252, 254, 255, 256, 259,
1010, 914, 260, 364, 493, 494, 495, 496, 497, 498, 499, 500,
817, 50, 501, 502, 503, 504, 614, 619, 626, 627, 628, 631,
1586, 816, 632, 639, 640, 643, 644, 651, 652, 655, 656, 726,
1978, 1986, | 732,734,735,736,739,740,1,2,3,4,5,6,7,8{9,
1594, 1977 | 10, 11, 12, 122, 123, 124, 127, 128, 135, 136, 140,
241, 242, 243, 244, 247, 248, 481, 482, 483, 484,
485, 486, 487, 488, 489, 490, 491, 492, 602, 603,
604, 607, 608, 615, 616, 620, 721, 722, 723, 734,
727,728, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39,40, 41, 42,43, 44, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 58, 59, 60, 125, 131, 133,
138, 144, 145, 156, 157, 158, 170, 245, 251, 253,
264, 266, 267, 268, 271, 272, 278, 279, 280, 243,
284, 291, 292, 295, 296, 363, 376, 61, 66, 72, 13,
74, 86, 87, 88, 91, 92, 98, 99, 100, 103, 104, 111,
112, 115, 116, 304, 62, 63, 64, 67, 68, 75, 76, 19,
80, 555, 556, 559, 560, 69, 81, 82, 185, 186, 191,
193, 198, 204, 205, 206, 211, 218, 781, 782, 785,
786, 787, 788, 791, 792, 793, 794, 795, 798, 799,
800, 804, 89, 93, 94, 101, 105, 106, 107, 113, 118,
119, 197, 203, 210, 216, 217, 181, 182, 192, 194,
199, 276, 70, 219, 183, 188, 195, 196, 200, 207,
307, 65, 71, 78, 84, 85, 90, 96, 97, 303, 316, 338,
83, 108, 109, 95, 114, 352, 102, 340, 110, 143,
168, 169, 258, 368, 190, 209, 215, 554, 567, 568,
572, 579, 580, 584, 591, 592, 596, 117, 221, 237,
337, 440, 459, 234, 317, 323, 330, 472, 427, 569,
570, 573, 574, 575, 690, 696, 702, 708, 709, 740,
816, 928, 940
16_1 1 1 2186 179 b 1L L L |0D (2 152 17_1
16_2 1 1 1137 212 P L B L |1 P |1 153 17
16_3 1 1 994 320 P 1 p L1 (2 154 17_38
16_4 7 13 205, 2125, | 513, 642, 880, 654, 660, 892, 757, 617, 623,8480| 1(0| 0| 1| 1| 1| 15_5 17_0
2117, 2173, | 855, 635, 750 , Sl ,
2116, 2164, 5 11 0
2141 0

345

Table B-1.Clusters

Children Parentl

Cluster | Number | Number | Traces Projects DD| D| D| D| D | D|
of Traces| of K| S|S|S[K K|S
Projects 112(3[4]2|3]|1
16_5 1 1 2021 525 b 0 P p|0OL (1 156 17_4
16_6 1 1 1761 553 L ppLi1Lp |1 157 17_%
16_7 4 7 984, 1032, | 558, 564, 796, 577, 565, 576, 860 2|0|1[{0l0|O0| 15_8 17_6
1040, 2192 ,))
5 1
1
16_8 1 1 2097 590 5 0 B L |1 P |1 1509 17_y
16_9 2 3 2220, 2268 629, 867, 756 5|1(@| 1 1| o 15_10 17_8
3
16_10 | 1 1 304 648 1 B pPJ|2 p [0 1511 17 p
170 71 573 205, 2125, | 513, 642, 880, 654, 660, 892, 757, 617,623,8480| 1| 0| 0| 1| 1 | 1| 16_4, 18_0
2117, 2173, | 855, 635, 750, 149, 387, 150, 388, 222,228,249, |, |, |.|.|., | .| 16_0
2116, 2164, | 230, 231, 235, 236, 240, 325, 326, 331,332,3365| 0| 1| 1 0|0
2141, 254, 338, 339, 343, 344, 350, 351, 355, 356, 428, 435, , 0 ,
10, 1546, 460, 223, 224, 301, 302, 305, 306, 311, 312, 3134 3 , 2
1545, 1554, | 314, 318, 319, 324, 423, 424, 436, 549, 550, 547, ,
153, 9, 57, 561, 562, 563, 661, 662, 663, 664, 665, 666, 6472 2 2

1593, 249, 668, 671, 672, 673, 674, 675, 676, 678, 679, 6
1785, 209, 684, 685, 686, 687, 688, 691, 692, 698, 699, 7(
1926, 2118, | 703, 704, 903, 904, 916, 448, 538, 638, 650, 69
2022, 1974, | 710, 711, 712, 715, 716, 770, 578, 649, 725, 45
1969, 192, 161, 392, 399, 167, 263, 362, 277, 745, 605, 60
193, 825, 611, 612, 613, 618, 624, 625, 731, 843, 844, 85
864, 49, 48, | 738, 744, 595, 566, 571, 505, 506, 507, 508, 5(
240, 1018, 510, 511, 512, 514, 515, 516, 517, 518, 519, 57
874, 872, 521, 522, 523, 524, 526, 527, 528, 733, 746, 74
1065, 1681, | 748, 751, 752, 758, 759, 760, 763, 764, 601, 63
1585, 98, 636, 637, 868, 327, 308, 583, 187, 184, 805, 8(
146, 2018, 807, 808, 811, 812, 137, 162, 290, 375, 400, 19
97,970, 962,| 265, 270, 529, 530, 531, 532, 533, 534, 535, 53
194, 960, 1, | 539, 540, 771, 772, 775, 776, 77, 315, 120, 209
0, 2, 770, 220, 232, 130, 155, 174, 367, 380, 412, 541, 54
769, 1537, 543, 544, 545, 546, 547, 548, 551, 552, 783, 79
1538, 1536, | 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 12
1922, 1105, | 126, 132, 134, 139, 146, 147, 148, 151, 152, 15
1009, 961, 160, 163, 164, 171, 172, 175, 176, 246, 252, 24
1057, 1113, | 255, 256, 259, 260, 364, 493, 494, 495, 496, 49
818, 866, 498, 499, 500, 501, 502, 503, 504, 614, 619, 62
1010, 914, 627, 628, 631, 632, 639, 640, 643, 644, 651, 65
817, 50, 655, 656, 726, 732, 734, 735, 736, 739, 740, 1
1586, 816, 3,4,5,6,7,8,9,10, 11, 12, 122, 123, 124, 127
1978, 1986, | 128, 135, 136, 140, 241, 242, 243, 244, 247, 24
1594, 1977 | 481, 482, 483, 484, 485, 486, 487, 488, 489, 49
491, 492, 602, 603, 604, 607, 608, 615, 616, 62
721,722,723,724,727,728, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42
44,46,47, 48, 49,50, 51, 52, 53, 54, 55, 56, 58, $
60, 125, 131, 133, 138, 144, 145, 156, 157, 159
170, 245, 251, 253, 264, 266, 267, 268, 271, 21
278, 279, 280, 283, 284, 291, 292, 295, 296, 34
376, 61, 66, 72, 73, 74, 86, 87, 88, 91, 92, 98, 9
100, 103, 104, 111, 112, 115, 116, 304, 62, 63

67, 68, 75, 76, 79, 80, 555, 556, 559, 560, 69, 4
82, 185, 186, 191, 193, 198, 204, 205, 206, 211
218, 781, 782, 785, 786, 787, 788, 791, 792, 79
794, 795, 798, 799, 800, 804, 89, 93, 94, 101, 1
106, 107, 113, 118, 119, 197, 203, 210, 216, 21
181, 182, 192, 194, 199, 276, 70, 219, 183, 18§
195, 196, 200, 207, 307, 65, 71, 78, 84, 85, 90

97, 303, 316, 328, 83, 108, 109, 95, 114, 352, 1
340, 110, 143, 168, 169, 258, 368, 190, 209, 21
554, 567, 568, 572, 579, 580, 584, 591, 592, 59
117, 221, 227, 337, 440, 459, 234, 317, 323, 33
472, 427, 569, 570, 573, 574, 575, 690, 696, 7(
708, 709, 720, 816, 928, 940

Noo

HOOONO OO0

NNONPORANT

So®

s
©w

PROWONT

NOOUKe” Naw-

346

Table B-1.Clusters

Cluster | Number | Number | Traces Projects PD| D| D| D| D | D| Children Parentl
of Traces| of K| S| S[S|K K|S
Projects 112342131
17_1 1 1 2186 179 b L L (0P [2 161 18 0
172 |1 1 1137 212 p B Li1Lp |1 162 18_1
17_3 1 1 994 320 D L |1 0 [2 16_3 18 2
174 |1 1 2021 525 5 b plol |1 165 18 B
17_5 1 1 1761 553 f D L1 D |1 16_6 18_4
17_6 4 7 984, 1032, | 558, 564, 796, 577, 565, 576, 860 2(0({1|00|O0Of16_7 18 5
1040, 2192) ,)
5 1
1
17 7 1 1 2097 590 b B ILI|LP |1 168 18 b
17_8 2 3 2220, 2268 629, 867, 756 5(1|@|1f 1| 0 16_9 18 7
3
179 1 1 304 648 P D |2 0 |0 16_10 18 8

347

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parenﬂ
of Traces| of K| S|S|S[K K|S
Projects 123142131
18_0 72 574 2186, 205, | 179, 513, 642, 880, 654, 660, 892, 757,617,62335(11| 1| 0| 0 | 2| 17_1, 19 0
2125, 2117, | 848, 855, 635, 750, 149, 387, 150, 388,222,248, | , |, . |.|. | .| 17_0
2173, 2116, | 229, 230, 231, 235, 236, 240, 325, 326, 331,3320| 0| 0| O 1(1
2164, 2141, | 336, 338, 339, 343, 344, 350, 351, 355, 356, 428, , 1 ,
254, 10, 435, 460, 223, 224, 301, 302, 305, 306, 311, 3124 3)
1546, 1545, | 313, 314, 318, 319, 324, 423, 424, 436, 549, 550, ,
1554, 153, 9,| 557, 561, 562, 563, 661, 662, 663, 664, 665, 6662 2
57, 1593, 667, 668, 671, 672, 673, 674, 675, 676, 678, 619,
249, 1785, 680, 684, 685, 686, 687, 688, 691, 692, 698, 699,
209, 1926, 700, 703, 704, 903, 904, 916, 448, 538, 638, 640,
2118, 2022, | 697, 710, 711, 712, 715, 716, 770, 578, 649, 7235,
1974, 1969, | 45, 161, 392, 399, 167, 263, 362, 277, 745, 604,
192, 193, 606, 611, 612, 613, 618, 624, 625, 731, 843, 844,
825, 864, 49, | 856, 738, 744, 595, 566, 571, 505, 506, 507, 508,
48, 240, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519,
1018, 874, 520, 521, 522, 523, 524, 526, 527, 528, 733, 746,
872, 1065, 747,748, 751, 752, 758, 759, 760, 763, 764, 601,
1681, 1585, | 630, 636, 637, 868, 327, 308, 583, 187, 184, 805,
98, 146, 806, 807, 808, 811, 812, 137, 162, 290, 375, 40,
2018, 97, 180, 265, 270, 529, 530, 531, 532, 533, 534, 535,
970, 962, 536, 539, 540, 771, 772, 775, 776, 77, 315, 12Q,
194, 960, 1, | 208, 220, 232, 130, 155, 174, 367, 380, 412, 541,
0, 2, 770, 542, 543, 544, 545, 546, 547, 548, 551, 552, 793,
769, 1537, 784,13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
1538, 1536, | 121, 126, 132, 134, 139, 146, 147, 148, 151, 152,
1922, 1105, | 159, 160, 163, 164, 171, 172, 175, 176, 246, 252,
1009, 961, 254, 255, 256, 259, 260, 364, 493, 494, 495, 496,
1057, 1113, | 497, 498, 499, 500, 501, 502, 503, 504, 614, 619,
818, 866, 626, 627, 628, 631, 632, 639, 640, 643, 644, 641,
1010, 914, 652, 655, 656, 726, 732, 734, 735, 736, 739, 740,
817, 50, 1,2,3,4,5,6,7,8,9,10, 11, 12, 122, 123, 124,
1586, 816, 127,128, 135, 136, 140, 241, 242, 243, 244, 247,
1978, 1986, | 248, 481, 482, 483, 484, 485, 486, 487, 488, 449,
1594, 1977 | 490, 491, 492, 602, 603, 604, 607, 608, 615, 616,
620, 721, 722, 723, 724, 727, 728, 25, 26, 27, 38,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43,44, 46, 47,48, 49, 50, 51, 52, 53, 54, 55, 56, 8,
59, 60, 125, 131, 133, 138, 144, 145, 156, 157,
158, 170, 245, 251, 253, 264, 266, 267, 268, 271,
272, 278, 279, 280, 283, 284, 291, 292, 295, 296,
363, 376, 61, 66, 72, 73, 74, 86, 87, 88, 91, 92, 98,
99, 100, 103, 104, 111, 112, 115, 116, 304, 62, $3,
64, 67, 68, 75, 76, 79, 80, 555, 556, 559, 560, §9,
81, 82, 185, 186, 191, 193, 198, 204, 205, 206,
211, 218, 781, 782, 785, 786, 787, 788, 791, 792,
793, 794, 795, 798, 799, 800, 804, 89, 93, 94, 101,
105, 106, 107, 113, 118, 119, 197, 203, 210, 216,
217,181, 182, 192, 194, 199, 276, 70, 219, 183,
188, 195, 196, 200, 207, 307, 65, 71, 78, 84, 85,
90, 96, 97, 303, 316, 328, 83, 108, 109, 95, 114,
352, 102, 340, 110, 143, 168, 169, 258, 368, 190,
209, 215, 554, 567, 568, 572, 579, 580, 584, 591,
592, 596, 117, 221, 227, 337, 440, 459, 234, 317,
323, 330, 472, 427, 569, 570, 573, 574, 575, 690,
696, 702, 708, 709, 720, 816, 928, 940
18_1 1 1 1137 212 P L B LT P |1 172 19 _{
18_2 1 1 994 320 > 1 p L1 O |2 173 19_
18_3 1 1 2021 525 > p R plOL |1 17 4 19_]
18_4 1 1 1761 553 L ppLiLp |1 175 19]
18 5 4 7 984, 1032, | 558, 564, 796, 577, 565, 576, 860 2| 0|1[0l0|O0|17_6 19 4
1040, 2192 , , ,
5 1
1
18_6 1 1 2097 590 5 0 B L1 P |1 177 19 |
18_7 2 3 2220, 2268 629, 867, 756 5(1]@|1] 1| of 17_8 196
3

348

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parenﬂ
of Traces| of K| S|S|S[K K|S
Projects 112(3[4]2|3]|1
18_8 1 1 304 648 1 2 P2 0 [0 179 19 7
19 0 73 575 1137, 2186, | 212, 179, 513, 642, 880, 654, 660, 892, 757,672 | 1| 3| 1| 1[0 | 1| 18_1, 200
205, 2125, 623, 848, 855, 635, 750, 149, 387, 150,388,232, | , |, |.|.|., | .| 18.0
2117, 2173, | 228, 229, 230, 231, 235, 236, 240, 325, 326,3315| 0| 1| O 1|2
2116, 2164, | 332, 336, 338, 339, 343, 344, 350, 351, 355, 356, , 0 ,
2141, 254, 428, 435, 460, 223, 224, 301, 302, 305, 306, 3110 0 , 0
10, 1546, 312, 313, 314, 318, 319, 324, 423, 424, 436, 549, ,
1545, 1554, | 550, 557, 561, 562, 563, 661, 662, 663, 664, 6654 2 2
153, 9, 57, 666, 667, 668, 671, 672, 673, 674, 675, 676, 618,
1593, 249, 679, 680, 684, 685, 686, 687, 688, 691, 692, 698,
1785, 209, 699, 700, 703, 704, 903, 904, 916, 448, 538, 638,
1926, 2118, | 650, 697, 710, 711, 712, 715, 716, 770, 578, 649,
2022, 1974, | 725, 45, 161, 392, 399, 167, 263, 362, 277, 744,
1969, 192, 605, 606, 611, 612, 613, 618, 624, 625, 731, 843,
193, 825, 844, 856, 738, 744, 595, 566, 571, 505, 506, 507,
864, 49, 48, | 508, 509, 510, 511, 512, 514, 515, 516, 517, 518,
240, 1018, 519, 520, 521, 522, 523, 524, 526, 527, 528, 733,
874, 872, 746, 747,748, 751, 752, 758, 759, 760, 763, 764,
1065, 1681, | 601, 630, 636, 637, 868, 327, 308, 583, 187, 144,
1585, 98, 805, 806, 807, 808, 811, 812, 137, 162, 290, 315,
146, 2018, 400, 180, 265, 270, 529, 530, 531, 532, 533, 534,
97,970, 962, | 535, 536, 539, 540, 771, 772, 775, 776, 77, 31§,
194, 960, 1, | 120, 208, 220, 232, 130, 155, 174, 367, 380, 412,
0, 2, 770, 541, 542, 543, 544, 545, 546, 547, 548, 551, 592,
769, 1537, 783,784, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
1538, 1536, | 24, 121, 126, 132, 134, 139, 146, 147, 148, 151
1922, 1105, | 152, 159, 160, 163, 164, 171, 172, 175, 176, 246,
1009, 961, 252, 254, 255, 256, 259, 260, 364, 493, 494, 495,
1057, 1113, | 496, 497, 498, 499, 500, 501, 502, 503, 504, 614,
818, 866, 619, 626, 627, 628, 631, 632, 639, 640, 643, 644,
1010, 914, 651, 652, 655, 656, 726, 732, 734, 735, 736, 739,
817, 50, 740,1,2,3,4,5,6,7,8,9,10, 11, 12, 122, 123,
1586, 816, 124,127,128, 135, 136, 140, 241, 242, 243, 244,
1978, 1986, | 247, 248, 481, 482, 483, 484, 485, 486, 487, 498,
1594, 1977 | 489, 490, 491, 492, 602, 603, 604, 607, 608, 615,
616, 620, 721, 722, 723, 724,727, 728, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42,43,44, 46,47, 48, 49,50, 51, 52, 53, 54, 55, 6,
58, 59, 60, 125, 131, 133, 138, 144, 145, 156, 157,
158, 170, 245, 251, 253, 264, 266, 267, 268, 271,
272, 278, 279, 280, 283, 284, 291, 292, 295, 296,
363, 376, 61, 66, 72, 73, 74, 86, 87, 88, 91, 92, 98,
99, 100, 103, 104, 111, 112, 115, 116, 304, 62, §3,
64, 67, 68, 75, 76, 79, 80, 555, 556, 559, 560, §9,
81, 82, 185, 186, 191, 193, 198, 204, 205, 206,
211, 218, 781, 782, 785, 786, 787, 788, 791, 792,
793, 794, 795, 798, 799, 800, 804, 89, 93, 94, 101,
105, 106, 107, 113, 118, 119, 197, 203, 210, 216,
217,181, 182, 192, 194, 199, 276, 70, 219, 183,
188, 195, 196, 200, 207, 307, 65, 71, 78, 84, 8§,
90, 96, 97, 303, 316, 328, 83, 108, 109, 95, 114,
352, 102, 340, 110, 143, 168, 169, 258, 368, 190,
209, 215, 554, 567, 568, 572, 579, 580, 584, 591,
592, 596, 117, 221, 227, 337, 440, 459, 234, 317,
323, 330, 472, 427, 569, 570, 573, 574, 575, 690,
696, 702, 708, 709, 720, 816, 928, 940
191 1 1 994 320 P 1 p L1 0 |2 182 20_
19 2 1 1 2021 525 > 0 P p|oL (1 183 201
193 1 1 1761 553 t L ppLi1Lp |1 184 20_p
19 4 4 7 984, 1032, | 558, 564, 796, 577, 565, 576, 860 2|0|1|(0l0|O0f 185 20_3
1040, 2192 , , ,
5 1
1
19 5 1 1 2097 590 5 0 B L IL P |1 186 20_4

349

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parenﬂ
of Traces| of K| S|S|S[K K|S
Projects 123142131
19 6 2 3 2220, 2268 629, 867, 756 5/1(@|1 1| 0f 18_7 205
19 7 1 1 304 648 1 P 2 0 188 20_|
200 74 576 994, 1137, | 320, 212, 179, 513, 642, 880, 654, 660, 892, 7972| 1| 0| 1| 1| 0| 2| 19_1, 210
2186, 205, 617, 623, 848, 855, 635, 750, 149, 387,150,388, |, |, |.|.|., |.] 19_0
2125, 2117, | 222, 228, 229, 230, 231, 235, 236, 240, 325,3265| 0| 3| 0 1(1
2173, 2116, | 331, 332, 336, 338, 339, 343, 344, 350, 351, 355, , 0 ,
2164, 2141, | 356, 428, 435, 460, 223, 224, 301, 302, 305, 3060 1 ,
254, 10, 311, 312, 313, 314, 318, 319, 324, 423, 424, 436, ,
1546, 1545, | 549, 550, 557, 561, 562, 563, 661, 662, 663, 6644 2
1554, 153, 9,| 665, 666, 667, 668, 671, 672, 673, 674, 675, 616,
57, 1593, 678, 679, 680, 684, 685, 686, 687, 688, 691, 692,
249, 1785, 698, 699, 700, 703, 704, 903, 904, 916, 448, 538,
209, 1926, 638, 650, 697, 710, 711, 712, 715, 716, 770, 578,
2118, 2022, | 649, 725, 45, 161, 392, 399, 167, 263, 362, 271,
1974, 1969, | 745, 605, 606, 611, 612, 613, 618, 624, 625, 731,
192, 193, 843, 844, 856, 738, 744, 595, 566, 571, 505, 506,
825, 864, 49,| 507, 508, 509, 510, 511, 512, 514, 515, 516, 517,
48, 240, 518, 519, 520, 521, 522, 523, 524, 526, 527, 538,
1018, 874, 733, 746, 747, 748, 751, 752, 758, 759, 760, 763,
872, 1065, 764, 601, 630, 636, 637, 868, 327, 308, 583, 147,
1681, 1585, | 184, 805, 806, 807, 808, 811, 812, 137, 162, 290,
98, 146, 375, 400, 180, 265, 270, 529, 530, 531, 532, 533,
2018, 97, 534, 535, 536, 539, 540, 771, 772, 775, 776, 71,
970, 962, 315, 120, 208, 220, 232, 130, 155, 174, 367, 340,
194,960, 1, | 412, 541, 542, 543, 544, 545, 546, 547, 548, 591,
0, 2, 770, 552,783, 784,13, 14,15, 16, 17, 18, 19, 20, 21, P2,
769, 1537, 23,124,121, 126, 132, 134, 139, 146, 147, 148,
1538, 1536, | 151, 152, 159, 160, 163, 164, 171, 172, 175, 176,
1922, 1105, | 246, 252, 254, 255, 256, 259, 260, 364, 493, 494,
1009, 961, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504,
1057, 1113, | 614, 619, 626, 627, 628, 631, 632, 639, 640, 643,
818, 866, 644, 651, 652, 655, 656, 726, 732, 734, 735, 736,
1010, 914, 739,740,1,2,3,4,5,6,7,8,9,10, 11, 12, 123,
817, 50, 123,124,127, 128, 135, 136, 140, 241, 242, 243,
1586, 816, 244, 247, 248, 481, 482, 483, 484, 485, 486, 447,
1978, 1986, | 488, 489, 490, 491, 492, 602, 603, 604, 607, 608,
1594, 1977 | 615, 616, 620, 721, 722, 723, 724, 727,728, 2
26,27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, B9,
40,41,42,43, 44, 46,47, 48,49, 50, 51, 52, 53, 4,
55, 56, 58, 59, 60, 125, 131, 133, 138, 144, 145,
156, 157, 158, 170, 245, 251, 253, 264, 266, 2§7,
268, 271, 272, 278, 279, 280, 283, 284, 291, 292,
295, 296, 363, 376, 61, 66, 72, 73, 74, 86, 87, §8,
91, 92, 98, 99, 100, 103, 104, 111, 112, 115, 116,
304, 62, 63, 64, 67, 68, 75, 76, 79, 80, 555, 554,
559, 560, 69, 81, 82, 185, 186, 191, 193, 198, 204,
205, 206, 211, 218, 781, 782, 785, 786, 787, 748,
791, 792, 793, 794, 795, 798, 799, 800, 804, 89,
93, 94, 101, 105, 106, 107, 113, 118, 119, 197,
203, 210, 216, 217, 181, 182, 192, 194, 199, 276,
70, 219, 183, 188, 195, 196, 200, 207, 307, 65, 11,
78, 84, 85, 90, 96, 97, 303, 316, 328, 83, 108, 109,
95, 114, 352, 102, 340, 110, 143, 168, 169, 259,
368, 190, 209, 215, 554, 567, 568, 572, 579, 540,
584, 591, 592, 596, 117, 221, 227, 337, 440, 499,
234, 317, 323, 330, 472, 427, 569, 570, 573, 574,
575, 690, 696, 702, 708, 709, 720, 816, 928, 940
20_1 1 1 2021 525 b p P 0 1 192 219
20_2 1 1 1761 553 t LD 1 1 193 21 1
20_3 4 7 984, 1032, | 558, 564, 796, 577, 565, 576, 860 2|0|1[0l0|0O] 194 21_2
1040, 2192 , ,)
5 1
1
20_4 1 1 2097 590 b 0 B 1 1 195 21_8B

350

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parentl
of Traces| of K| S|S|S[K K|S
Projects 112(3[4]2|3]|1
205 2 3 2220, 2268 629, 867, 756 5/1(@| 1 1| 0 19_6 21 4
20_6 1 1 304 648 1 P 2 0 19 7 21 %
210 75 577 2021, 994, | 525, 320, 212, 179, 513, 642, 880, 654, 660,8925| 02| 0| 0| 1| 1| 20_1, 220
1137, 2186, | 757, 617, 623, 848, 855, 635, 750, 149,387,140, |, |, . |.|., | .| 20_0
205, 2125, 388, 222, 228, 229, 230, 231, 235, 236,240,3252| 1| 0| 1 0]2
2117, 2173, | 326, 331, 332, 336, 338, 339, 343, 344, 350, 391, , 1 ,
2116, 2164, | 355, 356, 428, 435, 460, 223, 224, 301, 302, 3050 3 , 0
2141, 254, 306, 311, 312, 313, 314, 318, 319, 324, 423, 424, ,
10, 1546, 436, 549, 550, 557, 561, 562, 563, 661, 662, 6634 2
1545, 1554, | 664, 665, 666, 667, 668, 671, 672, 673, 674, 615,
153, 9, 57, 676, 678, 679, 680, 684, 685, 686, 687, 688, 691,
1593, 249, 692, 698, 699, 700, 703, 704, 903, 904, 916, 448,
1785, 209, 538, 638, 650, 697, 710, 711, 712, 715, 716, 710,
1926, 2118, | 578, 649, 725, 45, 161, 392, 399, 167, 263, 367,
2022, 1974, | 277, 745, 605, 606, 611, 612, 613, 618, 624, 635,
1969, 192, 731, 843, 844, 856, 738, 744, 595, 566, 571, 505,
193, 825, 506, 507, 508, 509, 510, 511, 512, 514, 515, 516,
864, 49, 48, | 517, 518, 519, 520, 521, 522, 523, 524, 526, 547,
240, 1018, 528, 733, 746, 747, 748, 751, 752, 758, 759, 740,
874, 872, 763, 764, 601, 630, 636, 637, 868, 327, 308, 543,
1065, 1681, | 187, 184, 805, 806, 807, 808, 811, 812, 137, 162,
1585, 98, 290, 375, 400, 180, 265, 270, 529, 530, 531, 532,
146, 2018, 533, 534, 535, 536, 539, 540, 771, 772, 775, 716,
97,970, 962,| 77, 315, 120, 208, 220, 232, 130, 155, 174, 367,
194,960, 1, | 380, 412, 541, 542, 543, 544, 545, 546, 547, 548,
0, 2, 770, 551, 552, 783, 784, 13, 14, 15, 16, 17, 18, 19, 40,
769, 1537, 21, 22, 23, 24, 121, 126, 132, 134, 139, 146, 147,
1538, 1536, | 148, 151, 152, 159, 160, 163, 164, 171, 172, 115,
1922, 1105, | 176, 246, 252, 254, 255, 256, 259, 260, 364, 493,
1009, 961, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503,
1057, 1113, | 504, 614, 619, 626, 627, 628, 631, 632, 639, 640,
818, 866, 643, 644, 651, 652, 655, 656, 726, 732, 734, 735,
1010, 914, 736,739,740,1,2,3,4,5,6,7,8,9,10, 11, 13,
817, 50, 122,123, 124,127, 128, 135, 136, 140, 241, 242,
1586, 816, 243, 244, 247, 248, 481, 482, 483, 484, 485, 446,
1978, 1986, | 487, 488, 489, 490, 491, 492, 602, 603, 604, 647,
1594, 1977 | 608, 615, 616, 620, 721, 722, 723, 724, 727, 728,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 88,
39,40, 41, 42,43, 44, 46, 47,48, 49, 50, 51, 52, $3,
54, 55, 56, 58, 59, 60, 125, 131, 133, 138, 144,
145, 156, 157, 158, 170, 245, 251, 253, 264, 246,
267, 268, 271, 272, 278, 279, 280, 283, 284, 291,
292, 295, 296, 363, 376, 61, 66, 72, 73, 74, 86, $7,
88, 91, 92, 98, 99, 100, 103, 104, 111, 112, 11§,
116, 304, 62, 63, 64, 67, 68, 75, 76, 79, 80, 555,
556, 559, 560, 69, 81, 82, 185, 186, 191, 193, 198,
204, 205, 206, 211, 218, 781, 782, 785, 786, 747,
788, 791, 792, 793, 794, 795, 798, 799, 800, 804,
89, 93, 94, 101, 105, 106, 107, 113, 118, 119, 197,
203, 210, 216, 217, 181, 182, 192, 194, 199, 276,
70, 219, 183, 188, 195, 196, 200, 207, 307, 65, 11,
78, 84, 85, 90, 96, 97, 303, 316, 328, 83, 108, 109,
95, 114, 352, 102, 340, 110, 143, 168, 169, 259,
368, 190, 209, 215, 554, 567, 568, 572, 579, 540,
584, 591, 592, 596, 117, 221, 227, 337, 440, 499,
234, 317, 323, 330, 472, 427, 569, 570, 573, 574,
575, 690, 696, 702, 708, 709, 720, 816, 928, 940
21 1 1 1 1761 553 t L p 1 1 202 22_{
21_2 4 7 984, 1032, | 558, 564, 796, 577, 565, 576, 860 210|100 |O0]20_3 221
1040, 2192 , , ,
5 1
1
21_3 1 1 2097 590 b 0 B 1 1 20_4 22_]

351

>

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parentl
of Traces| of K| S|S|S[K K|S
Projects 112(3[4]2|3]|1
21 4 2 3 2220, 2268 629, 867, 756 5/1(@| 1 1| 0f 20_5 223
215 1 1 304 648 1 P 2 0 20_6 22_4
220 76 578 1761, 2021,| 553, 525, 320, 212, 179, 513, 642, 880, 654, 6604 | 1 (0| 1| 1[0 | 1| 21_1, 230
994, 1137, 892, 757, 617, 623, 848, 855, 635, 750, 149,387, | , |, | . |.|., | .| 210
2186, 205, 150, 388, 222, 228, 229, 230, 231, 235, 236,2405| 0| 2| 0 112
2125, 2117, | 325, 326, 331, 332, 336, 338, 339, 343, 344, 350, , 0 ,
2173, 2116, | 351, 355, 356, 428, 435, 460, 223, 224, 301, 3022 3 , 0
2164, 2141, | 305, 306, 311, 312, 313, 314, 318, 319, 324, 443, ,
254, 10, 424, 436, 549, 550, 557, 561, 562, 563, 661, 6620 2
1546, 1545, | 663, 664, 665, 666, 667, 668, 671, 672, 673, 614,
1554, 153, 9,| 675, 676, 678, 679, 680, 684, 685, 686, 687, 648,
57, 1593, 691, 692, 698, 699, 700, 703, 704, 903, 904, 916,
249, 1785, 448, 538, 638, 650, 697, 710, 711, 712, 715, 716,
209, 1926, 770, 578, 649, 725, 45, 161, 392, 399, 167, 263,
2118, 2022, | 362, 277, 745, 605, 606, 611, 612, 613, 618, 634,
1974, 1969, | 625, 731, 843, 844, 856, 738, 744, 595, 566, 511,
192, 193, 505, 506, 507, 508, 509, 510, 511, 512, 514, 515,
825, 864, 49, 516, 517, 518, 519, 520, 521, 522, 523, 524, 576,
48, 240, 527,528, 733, 746, 747, 748, 751, 752, 758, 799,
1018, 874, 760, 763, 764, 601, 630, 636, 637, 868, 327, 308,
872, 1065, 583, 187, 184, 805, 806, 807, 808, 811, 812, 137,
1681, 1585, | 162, 290, 375, 400, 180, 265, 270, 529, 530, 531,
98, 146, 532, 533, 534, 535, 536, 539, 540, 771, 772, 715,
2018, 97, 776, 77, 315, 120, 208, 220, 232, 130, 155, 174,
970, 962, 367, 380, 412, 541, 542, 543, 544, 545, 546, 547,
194, 960, 1, | 548, 551, 552, 783, 784, 13, 14, 15, 16, 17, 18, 19,
0, 2, 770, 20, 21, 22, 23, 24,121, 126, 132, 134, 139, 144,
769, 1537, 147, 148, 151, 152, 159, 160, 163, 164, 171, 172,
1538, 1536, | 175, 176, 246, 252, 254, 255, 256, 259, 260, 344,
1922, 1105, | 493, 494, 495, 496, 497, 498, 499, 500, 501, 502,
1009, 961, 503, 504, 614, 619, 626, 627, 628, 631, 632, 639,
1057, 1113, | 640, 643, 644, 651, 652, 655, 656, 726, 732, 734,
818, 866, 735, 736, 739, 740, 1, 2,3,4,5,6, 7, 8,9, 10, 11,
1010, 914, 12,122, 123, 124, 127, 128, 135, 136, 140, 241,
817, 50, 242,243, 244, 247, 248, 481, 482, 483, 484, 495,
1586, 816, 486, 487, 488, 489, 490, 491, 492, 602, 603, 644,
1978, 1986, | 607, 608, 615, 616, 620, 721, 722, 723, 724, 737,
1594, 1977 | 728, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37,38,39,40,41, 42,43, 44,46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 58, 59, 60, 125, 131, 133, 138,
144, 145, 156, 157, 158, 170, 245, 251, 253, 244,
266, 267, 268, 271, 272, 278, 279, 280, 283, 244,
291, 292, 295, 296, 363, 376, 61, 66, 72, 73, 74,
86, 87, 88, 91, 92, 98, 99, 100, 103, 104, 111, 112,
115, 116, 304, 62, 63, 64, 67, 68, 75, 76, 79, 8(,
555, 556, 559, 560, 69, 81, 82, 185, 186, 191, 193,
198, 204, 205, 206, 211, 218, 781, 782, 785, 796,
787,788, 791, 792, 793, 794, 795, 798, 799, 800,
804, 89, 93, 94, 101, 105, 106, 107, 113, 118, 119,
197, 203, 210, 216, 217, 181, 182, 192, 194, 199,
276, 70, 219, 183, 188, 195, 196, 200, 207, 307,
65, 71, 78, 84, 85, 90, 96, 97, 303, 316, 328, 83,
108, 109, 95, 114, 352, 102, 340, 110, 143, 164,
169, 258, 368, 190, 209, 215, 554, 567, 568, 572,
579, 580, 584, 591, 592, 596, 117, 221, 227, 337,
440, 459, 234, 317, 323, 330, 472, 427, 569, 570,
573, 574, 575, 690, 696, 702, 708, 709, 720, 816,
928, 940
221 4 7 984, 1032, | 558, 564, 796, 577, 565, 576, 860 2|0|1({0l0|0] 212 230
1040, 2192 , , ,
5 1
1
222 1 1 2097 590 b P B 1 1 213 23_]
223 2 3 2220, 2268 629, 867, 756 5(1]@| 1] 1| 0f 21_4 23_2
3

352

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parentl
of Traces| of K| S| S[S| K| K|S
Projects 123142131
22 4 1 1 304 648 1 2 P2 0 [0 215 23 38
23 0 80 585 984, 1032, | 558, 564, 796, 577, 565, 576, 860, 553, 525,3202| 1| 0| 1| 0/ 0| Of 22_1, 24 0
1040, 2192, | 212, 179, 513, 642, 880, 654, 660, 892, 757,617, | , |, [, | .|, | .| 22_0
1761, 2021, | 623, 848, 855, 635, 750, 149, 387, 150, 388,2425| 0| 1| O 1(1
994, 1137, 228, 229, 230, 231, 235, 236, 240, 325, 326, 331, , 1 ,
2186, 205, 332, 336, 338, 339, 343, 344, 350, 351, 355, 3564 2 ,
2125, 2117, | 428, 435, 460, 223, 224, 301, 302, 305, 306, 311, ,
2173, 2116, | 312, 313, 314, 318, 319, 324, 423, 424, 436, 5490 3 2
2164, 2141, | 550, 557, 561, 562, 563, 661, 662, 663, 664, 665,
254, 10, 666, 667, 668, 671, 672, 673, 674, 675, 676, 618,
1546, 1545, | 679, 680, 684, 685, 686, 687, 688, 691, 692, 698,
1554, 153, 9,| 699, 700, 703, 704, 903, 904, 916, 448, 538, 638,
57, 1593, 650, 697, 710, 711, 712, 715, 716, 770, 578, 649,
249, 1785, 725, 45, 161, 392, 399, 167, 263, 362, 277, 74§,
209, 1926, 605, 606, 611, 612, 613, 618, 624, 625, 731, 843,
2118, 2022, | 844, 856, 738, 744, 595, 566, 571, 505, 506, 507,
1974, 1969, | 508, 509, 510, 511, 512, 514, 515, 516, 517, 518,
192, 193, 519, 520, 521, 522, 523, 524, 526, 527, 528, 733,
825, 864, 49, | 746, 747, 748, 751, 752, 758, 759, 760, 763, 764,
48, 240, 601, 630, 636, 637, 868, 327, 308, 583, 187, 144,
1018, 874, 805, 806, 807, 808, 811, 812, 137, 162, 290, 315,
872, 1065, 400, 180, 265, 270, 529, 530, 531, 532, 533, 534,
1681, 1585, | 535, 536, 539, 540, 771, 772, 775, 776, 77, 31§,
98, 146, 120, 208, 220, 232, 130, 155, 174, 367, 380, 412,
2018, 97, 541, 542, 543, 544, 545, 546, 547, 548, 551, 592,
970, 962, 783,784, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
194,960, 1, | 24, 121, 126, 132, 134, 139, 146, 147, 148, 151,
0, 2, 770, 152, 159, 160, 163, 164, 171, 172, 175, 176, 246,
769, 1537, 252, 254, 255, 256, 259, 260, 364, 493, 494, 495,
1538, 1536, | 496, 497, 498, 499, 500, 501, 502, 503, 504, 614,
1922, 1105, | 619, 626, 627, 628, 631, 632, 639, 640, 643, 644,
1009, 961, 651, 652, 655, 656, 726, 732, 734, 735, 736, 739,
1057, 1113, | 740, 1, 2,3,4,5,6,7,8,9, 10, 11, 12, 122, 123,
818, 866, 124,127,128, 135, 136, 140, 241, 242, 243, 244,
1010, 914, 247, 248, 481, 482, 483, 484, 485, 486, 487, 448,
817, 50, 489, 490, 491, 492, 602, 603, 604, 607, 608, 615,
1586, 816, 616, 620, 721, 722, 723, 724,727,728, 25, 26, 27,
1978, 1986, | 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
1594, 1977 | 42,43, 44,46, 47,48, 49,50, 51, 52, 53, 54, 55, 56,
58, 59, 60, 125, 131, 133, 138, 144, 145, 156, 157,
158, 170, 245, 251, 253, 264, 266, 267, 268, 211,
272, 278, 279, 280, 283, 284, 291, 292, 295, 296,
363, 376, 61, 66, 72, 73, 74, 86, 87, 88, 91, 92, 98,
99, 100, 103, 104, 111, 112, 115, 116, 304, 62, §3,
64, 67, 68, 75, 76, 79, 80, 555, 556, 559, 560, §9,
81, 82, 185, 186, 191, 193, 198, 204, 205, 206,
211, 218, 781, 782, 785, 786, 787, 788, 791, 792,
793, 794, 795, 798, 799, 800, 804, 89, 93, 94, 101,
105, 106, 107, 113, 118, 119, 197, 203, 210, 216,
217,181, 182, 192, 194, 199, 276, 70, 219, 183,
188, 195, 196, 200, 207, 307, 65, 71, 78, 84, 85,
90, 96, 97, 303, 316, 328, 83, 108, 109, 95, 114,
352, 102, 340, 110, 143, 168, 169, 258, 368, 190,
209, 215, 554, 567, 568, 572, 579, 580, 584, 591,
592, 596, 117, 221, 227, 337, 440, 459, 234, 317,
323, 330, 472, 427, 569, 570, 573, 574, 575, 690,
696, 702, 708, 709, 720, 816, 928, 940
231 1 1 2097 590 b 0 B L1 D (1 222 24 0
23_2 2 3 2220, 2268 629, 867, 756 5(1]@|1] 1| 0o 22_3 24 1
3
23_3 1 1 304 648 1 R D |2 ¢ [0 224 24

353

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parentl
of Traces| of K| S|S|S[K K|S
Projects 123142131
24 0 81 586 2097, 984, | 590, 558, 564, 796, 577, 565, 576, 860, 553,5255(0 3| 1| 1| 0 [1| 23_1, 25 0
1032, 1040, | 320, 212, 179, 513, 642, 880, 654, 660,892, 797, | , | . [. |.|. | .| 23_0
2192, 1761, | 617, 623, 848, 855, 635, 750, 149, 387, 150,3482| 1| 0| O 1{0
2021, 994, 222, 228, 229, 230, 231, 235, 236, 240, 325, 326, , 0 ,
1137, 2186, | 331, 332, 336, 338, 339, 343, 344, 350, 351, 3954 1 , 2
205, 2125, 356, 428, 435, 460, 223, 224, 301, 302, 305, 306, ,
2117, 2173, | 311, 312, 313, 314, 318, 319, 324, 423, 424, 4360 2
2116, 2164, | 549, 550, 557, 561, 562, 563, 661, 662, 663, 664,
2141, 254, 665, 666, 667, 668, 671, 672, 673, 674, 675, 616,
10, 1546, 678, 679, 680, 684, 685, 686, 687, 688, 691, 692,
1545, 1554, | 698, 699, 700, 703, 704, 903, 904, 916, 448, 538,
153, 9, 57, 638, 650, 697, 710, 711, 712, 715, 716, 770, 578,
1593, 249, 649, 725, 45, 161, 392, 399, 167, 263, 362, 271,
1785, 209, 745, 605, 606, 611, 612, 613, 618, 624, 625, 731,
1926, 2118, | 843, 844, 856, 738, 744, 595, 566, 571, 505, 506,
2022, 1974, | 507, 508, 509, 510, 511, 512, 514, 515, 516, 517,
1969, 192, 518, 519, 520, 521, 522, 523, 524, 526, 527, 538,
193, 825, 733, 746, 747, 748, 751, 752, 758, 759, 760, 763,
864, 49, 48, | 764, 601, 630, 636, 637, 868, 327, 308, 583, 197,
240, 1018, 184, 805, 806, 807, 808, 811, 812, 137, 162, 290,
874, 872, 375, 400, 180, 265, 270, 529, 530, 531, 532, 533,
1065, 1681, | 534, 535, 536, 539, 540, 771, 772, 775, 776, 71,
1585, 98, 315, 120, 208, 220, 232, 130, 155, 174, 367, 340,
146, 2018, 412,541, 542, 543, 544, 545, 546, 547, 548, 591,
97,970, 962, | 552, 783, 784, 13, 14, 15, 16, 17, 18, 19, 20, 21, P2,
194,960, 1, | 283, 24,121, 126, 132, 134, 139, 146, 147, 148,
0, 2, 770, 151, 152, 159, 160, 163, 164, 171, 172, 175, 176,
769, 1537, 246, 252, 254, 255, 256, 259, 260, 364, 493, 494,
1538, 1536, | 495, 496, 497, 498, 499, 500, 501, 502, 503, 504,
1922, 1105, | 614, 619, 626, 627, 628, 631, 632, 639, 640, 643,
1009, 961, 644, 651, 652, 655, 656, 726, 732, 734, 735, 736,
1057, 1113, | 739,740, 1, 2,3,4,5,6,7, 8,9, 10, 11, 12, 123,
818, 866, 123,124,127, 128, 135, 136, 140, 241, 242, 243,
1010, 914, 244, 247, 248, 481, 482, 483, 484, 485, 486, 447,
817, 50, 488, 489, 490, 491, 492, 602, 603, 604, 607, 608,
1586, 816, 615, 616, 620, 721, 722, 723, 724, 727, 728, 25,
1978, 1986, | 26, 27,28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, B9,
1594, 1977 | 40,41, 42,43, 44,46, 47,48, 49, 50, 51, 52, 53, 54,
55, 56, 58, 59, 60, 125, 131, 133, 138, 144, 145,
156, 157, 158, 170, 245, 251, 253, 264, 266, 2§7,
268, 271, 272, 278, 279, 280, 283, 284, 291, 292,
295, 296, 363, 376, 61, 66, 72, 73, 74, 86, 87, 88,
91, 92, 98, 99, 100, 103, 104, 111, 112, 115, 116,
304, 62, 63, 64, 67, 68, 75, 76, 79, 80, 555, 554,
559, 560, 69, 81, 82, 185, 186, 191, 193, 198, 204,
205, 206, 211, 218, 781, 782, 785, 786, 787, 788,
791, 792, 793, 794, 795, 798, 799, 800, 804, 89,
93, 94, 101, 105, 106, 107, 113, 118, 119, 197,
203, 210, 216, 217, 181, 182, 192, 194, 199, 216,
70, 219, 183, 188, 195, 196, 200, 207, 307, 65, 11,
78, 84, 85, 90, 96, 97, 303, 316, 328, 83, 108, 109,
95, 114, 352, 102, 340, 110, 143, 168, 169, 25§,
368, 190, 209, 215, 554, 567, 568, 572, 579, 540,
584, 591, 592, 596, 117, 221, 227, 337, 440, 459,
234, 317, 323, 330, 472, 427, 569, 570, 573, 574,
575, 690, 696, 702, 708, 709, 720, 816, 928, 940
24 1 2 3 2220, 2268 629, 867, 756 5(1]@|1] 1| 0of 23_2 250
3
24_2 1 1 304 648 p 2 0 23 3 25_

354

Table B-1.Clusters

Cluster | Number | Number | Traces Projects DD| D| D[D| D | D| Children Parenﬂ
of Traces| of K| S|S|S[K K|S
Projects 123142131
250 83 589 2220, 2268, | 629, 867, 756, 590, 558, 564, 796, 577, 565,5765| 1 (2| 0| 1| 1 [0| 24_1, 26_0
2097, 984, 860, 553, 525, 320, 212, 179, 513, 642,880,694, | , | . |.|.|. | .| 240
1032, 1040, | 660, 892, 757, 617, 623, 848, 855, 635, 750,1492| 0| 3(1 01
2192, 1761, | 387, 150, 388, 222, 228, 229, 230, 231, 235, 236, , 0 ,
2021, 994, 240, 325, 326, 331, 332, 336, 338, 339, 343, 3444 0)
1137, 2186, | 350, 351, 355, 356, 428, 435, 460, 223, 224, 301, ,
205, 2125, 302, 305, 306, 311, 312, 313, 314, 318, 319, 3240 2
2117, 2173, | 423, 424, 436, 549, 550, 557, 561, 562, 563, 641,
2116, 2164, | 662, 663, 664, 665, 666, 667, 668, 671, 672, 613,
2141, 254, 674, 675, 676, 678, 679, 680, 684, 685, 686, 647,
10, 1546, 688, 691, 692, 698, 699, 700, 703, 704, 903, 904,
1545, 1554, | 916, 448, 538, 638, 650, 697, 710, 711, 712, 715,
153, 9, 57, 716, 770, 578, 649, 725, 45, 161, 392, 399, 167,
1593, 249, 263, 362, 277, 745, 605, 606, 611, 612, 613, 618,
1785, 209, 624, 625, 731, 843, 844, 856, 738, 744, 595, 566,
1926, 2118, | 571, 505, 506, 507, 508, 509, 510, 511, 512, 514,
2022, 1974, | 515, 516, 517, 518, 519, 520, 521, 522, 523, 534,
1969, 192, 526, 527, 528, 733, 746, 747, 748, 751, 752, 758,
193, 825, 759, 760, 763, 764, 601, 630, 636, 637, 868, 347,
864, 49, 48, | 308, 583, 187, 184, 805, 806, 807, 808, 811, 812,
240, 1018, 137, 162, 290, 375, 400, 180, 265, 270, 529, 530,
874, 872, 531, 532, 533, 534, 535, 536, 539, 540, 771, 772,
1065, 1681, | 775, 776, 77, 315, 120, 208, 220, 232, 130, 15§,
1585, 98, 174, 367, 380, 412, 541, 542, 543, 544, 545, 546,
146, 2018, 547, 548, 551, 552, 783, 784, 13, 14, 15, 16, 11,
97,970, 962, | 18, 19, 20, 21, 22, 23, 24, 121, 126, 132, 134, 139,
194,960, 1, | 146, 147, 148, 151, 152, 159, 160, 163, 164, 111,
0, 2, 770, 172, 175, 176, 246, 252, 254, 255, 256, 259, 240,
769, 1537, 364, 493, 494, 495, 496, 497, 498, 499, 500, 501,
1538, 1536, | 502, 503, 504, 614, 619, 626, 627, 628, 631, 632,
1922, 1105, | 639, 640, 643, 644, 651, 652, 655, 656, 726, 732,
1009, 961, 734,735,736, 739,740, 1, 2,3,4,5,6,7,8,9, 10,
1057, 1113, | 11, 12, 122, 123, 124, 127, 128, 135, 136, 140,
818, 866, 241, 242, 243, 244, 247, 248, 481, 482, 483, 444,
1010, 914, 485, 486, 487, 488, 489, 490, 491, 492, 602, 603,
817, 50, 604, 607, 608, 615, 616, 620, 721, 722, 723, 734,
1586, 816, 727,728, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
1978, 1986, | 36,37, 38, 39, 40,41, 42,43, 44, 46, 47, 48, 49, 50,
1594, 1977 | 51, 52, 53, 54, 55, 56, 58, 59, 60, 125, 131, 133,
138, 144, 145, 156, 157, 158, 170, 245, 251, 253,
264, 266, 267, 268, 271, 272, 278, 279, 280, 293,
284, 291, 292, 295, 296, 363, 376, 61, 66, 72, 13,
74, 86, 87, 88, 91, 92, 98, 99, 100, 103, 104, 111,
112, 115, 116, 304, 62, 63, 64, 67, 68, 75, 76, 79,
80, 555, 556, 559, 560, 69, 81, 82, 185, 186, 191,
193, 198, 204, 205, 206, 211, 218, 781, 782, 785,
786, 787, 788, 791, 792, 793, 794, 795, 798, 799,
800, 804, 89, 93, 94, 101, 105, 106, 107, 113, 118,
119, 197, 203, 210, 216, 217, 181, 182, 192, 194,
199, 276, 70, 219, 183, 188, 195, 196, 200, 207,
307, 65, 71, 78, 84, 85, 90, 96, 97, 303, 316, 338,
83, 108, 109, 95, 114, 352, 102, 340, 110, 143,
168, 169, 258, 368, 190, 209, 215, 554, 567, 568,
572, 579, 580, 584, 591, 592, 596, 117, 221, 237,
337, 440, 459, 234, 317, 323, 330, 472, 427, 569,
570, 573, 574, 575, 690, 696, 702, 708, 709, 740,
816, 928, 940
251 1 1 304 648 1 P 2 0 242 26_|

355

Table B-1.Clusters

Cluster

Number
of Traces

Number
of
Projects

Traces

Projects

wwno

NXO
w X0

= 0o

Children

Parentl

26 0

84

590

304, 2220,
2268, 2097,
984, 1032,
1040, 2192,
1761, 2021,
994, 1137,
2186, 205,
2125, 2117,
2173, 2116,
2164, 2141,
254, 10,
1546, 1545,
1554, 153, 9,
57, 1593,
249, 1785,
209, 1926,
2118, 2022,
1974, 1969,
192, 193,
825, 864, 49,
48, 240,
1018, 874,
872, 1065,
1681, 1585,
98, 146,
2018, 97,
970, 962,
194, 960, 1,
0, 2,770,
769, 1537,
1538, 1536,
1922, 1105,
1009, 961,
1057, 1113,
818, 866,
1010, 914,
817, 50,
1586, 816,
1978, 1986,
1594, 1977

648, 629, 867, 756, 590, 558, 564, 796, 577,
576, 860, 553, 525, 320, 212, 179, 513, 642,
654, 660, 892, 757, 617, 623, 848, 855, 635,
149, 387, 150, 388, 222, 228, 229, 230, 231,
236, 240, 325, 326, 331, 332, 336, 338, 339,
344, 350, 351, 355, 356, 428, 435, 460, 223,
301, 302, 305, 306, 311, 312, 313, 314, 318,
324, 423, 424, 436, 549, 550, 557, 561, 562,
661, 662, 663, 664, 665, 666, 667, 668, 671,
673, 674, 675, 676, 678, 679, 680, 684, 685,

1
171,172,175, 176, 246, 252, 254, 255, 256, 2
260, 364, 493, 494, 495, 496, 497, 498, 499, 5
501, 502, 503, 504, 614, 619, 626, 627, 628, 6
632, 639, 640, 643, 644, 651, 652, 655, 656, 7
732,734,735,736,739,740,1,2,3,4,5,6,7,8
10,11, 12,122, 123, 124, 127, 128, 135, 136, 1
241, 242, 243, 244, 247, 248, 481, 482, 483, 4

604, 607, 608, 615, 616, 620, 721, 722, 723, 7
727,728, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 3
36, 37, 38, 39,40, 41, 42,43, 44, 46, 47, 48, 49,
51, 52, 53, 54, 55, 56, 58, 59, 60, 125, 131, 13
138, 144, 145, 156, 157, 158, 170, 245, 251, 2

119, 197, 203, 210, 216, 217, 181, 182, 192, 1
199, 276, 70, 219, 183, 188, 195, 196, 200, 20
307, 65, 71, 78, 84, 85, 90, 96, 97, 303, 316, 3
83, 108, 109, 95, 114, 352, 102, 340, 110, 143
168, 169, 258, 368, 190, 209, 215, 554, 567, 5
572, 579, 580, 584, 591, 592, 596, 117, 221, 2
337, 440, 459, 234, 317, 323, 330, 472, 427, 5
570, 573, 574, 575, 690, 696, 702, 708, 709, 7.
816, 928, 940

8,

8,
7,
9,
0,

o W N
[o

- O

none

356

This appendix contains the attributes of the problems that followed traces with a high cov-

erage (see Table 10-6 on page 230).

Appendix C. Clusters of Problems

C.1 Trace O

Table C- 1 shows how the projects that followed Trace 0 differ from each other in their con-
straints and requirements. We have highlighted the points in the table that show a major
change in the constraints or requirements. These points are the candidate points for parti-

tioning the set of projects into different groups that hopefully will have some correlation

with the change of approaches in the trace or cluster of traces.

Table C-1.All Projects that followed trace 0. Total 52 projects.

Project ID| Constraint ol Constraint on| Workspace | Workload Settling Maximum

Deflection Gain 1 (kg) Time (sec)| Overshoot
1 0.01 1000 "small-M" 1.0 0 0
2 0.01 1000 "small-M" 1.0 0 1
3 0.01 1000 "small-M" 1.0 0 2
4 0.01 1000 "small-M" 1.0 0 3
5 0.01 1000 "small-M" 1.0 1 0
6 0.01 1000 "small-M" 1.0 1 1
7 0.01 1000 "small-M" 1.0 1 2
8 0.01 1000 "small-M" 1.0 1 3
9 0.01 1000 "small-M" 1.0 2 0
10 0.01 1000 "small-M" 1.0 2 1
11 0.01 1000 "small-M" 1.0 2 2
12 0.01 1000 "small-M" 1.0 2 3

122 0.01 1000 "big-M" 1.0 0 1

123 0.01 1000 "big-M" 1.0 0 2
124 0.01 1000 "big-M" 1.0 0 3

357

Table C-1.All Projects that followed trace 0. Total 52 projects.

Project ID| Constraint on Constrainton| Workspace | Workload Settling Maximum
Deflection Gain 1 (kg) Time (sec)| Overshoot

127 0.01 1000 "big-M" 1.0 1 2
128 0.01 1000 "big-M" 1.0 1 3
135 0.01 1000 "big-M" 2.0 0 2
136 0.01 1000 "big-M" 2.0 0 3
140 0.01 1000 "big-M" 2.0 1 3
241 0.01 100 "small-M" 1.0 0 0

242 0.01 100 "small-M" 1.0 0 1
243 0.01 100 "small-M" 1.0 0 2
244 0.01 100 "small-M" 1.0 0 3
247 0.01 100 "small-M" 1.0 1 2
248 0.01 100 "small-M" 1.0 1 3
481 0.001 1000 "small-M" 1.0 0 0
482 0.001 1000 "small-M" 1.0 0 1
483 0.001 1000 "small-M" 1.0 0 2
484 0.001 1000 "small-M" 1.0 0 3
485 0.001 1000 "small-M" 1.0 1 0
486 0.001 1000 "small-M" 1.0 1 1
487 0.001 1000 "small-M" 1.0 1 2
488 0.001 1000 "small-M" 1.0 1 3
489 0.001 1000 "small-M" 1.0 2 0
490 0.001 1000 "small-M" 1.0 2 1
491 0.001 1000 "small-M" 1.0 2 2
492 0.001 1000 "small-M" 1.0 2 3

602 0.001 1000 "big-M" 1.0 0 1

603 0.001 1000 "big-M" 1.0 0 2
604 0.001 1000 "big-M" 1.0 0 3
607 0.001 1000 "big-M" 1.0 1 2
608 0.001 1000 "big-M" 1.0 1 3
615 0.001 1000 "big-M" 2.0 0 2
616 0.001 1000 "big-M" 2.0 0 3
620 0.001 1000 "big-M" 2.0 1 3

721 0.001 100 "small-M" 1.0 0 0

722 0.001 100 "small-M" 1.0 0 1

358

Table C-1.All Projects that followed trace 0. Total 52 projects.

Project ID| Constraint on Constrainton| Workspace | Workload Settling Maximum
Deflection Gain 1 (kg) Time (sec)| Overshoot
723 0.001 100 "small-M" 1.0 0 2
724 0.001 100 "small-M" 1.0 0 3
727 0.001 100 "small-M" 1.0 1 2
728 0.001 100 "small-M" 1.0 1 3

An interesting pattern in the projects that followed “Trace 0” is shown in Table C-

2. The set of projects is divided into two similar subsets. The similarity is in the number of

projects in a continuous block that have followed “Trace 0” as well as in the distance

between these blocks.

Table C-2.Patterns in the projects that followed “Trace 0”.

ibset

Projects number of projects in each subset jump of the project ID to the next s
lto 12 12 110
122 to 124 3 3
127 to 128 2
135 to 136 2 4
140 1 101
241to 244 4 3
247 to 248 2 233
481 to 492 12 110
602 to 604 3 3
607 to 608 2
615 to 616 2 4
620 1 101
721to 724 4 3
72710 728 2 N/A

359

C.2 Trace 1

Table C-3.All Projects that followed trace 1. Total 72 projects.

Project ID| Constraint or] Constrainton| Workspace | Workload Settling Maximum
Deflection Gain 1 (kg) Time (sec)| Overshoot

13 0.01 1000 "small-M" 2.0 3.0 50%
14 0.01 1000 "small-M" 2.0 3.0 40%
15 0.01 1000 "small-M" 2.0 3.0 20%
16 0.01 1000 "small-M" 2.0 3.0 10%
17 0.01 1000 "small-M" 2.0 2.0 50%
18 0.01 1000 "small-M" 2.0 2.0 40%
19 0.01 1000 "small-M" 2.0 2.0 20%
20 0.01 1000 "small-M" 2.0 2.0 10%
21 0.01 1000 "small-M" 2.0 1.0 50%
22 0.01 1000 "small-M" 2.0 1.0 40%
23 0.01 1000 "small-M" 2.0 1.0 20%
24 0.01 1000 "small-M" 2.0 1.0 10%
121 0.01 1000 "big-M" 1.0 3.0 50%

126 0.01 1000 "big-M" 1.0 2.0 40%
132 0.01 1000 "big-M" 1.0 1.0 10%
134 0.01 1000 "big-M" 2.0 3.0 40%
139 0.01 1000 "big-M" 2.0 2.0 20%
146 0.01 1000 "big-M" 3.0 3.0 40%
147 0.01 1000 "big-M" 3.0 3.0 20%
148 0.01 1000 "big-M" 3.0 3.0 10%
151 0.01 1000 "big-M" 3.0 2.0 20%
152 0.01 1000 "big-M" 3.0 2.0 10%
159 0.01 1000 "big-M" 4.0 3.0 20%
160 0.01 1000 "big-M" 4.0 3.0 10%
163 0.01 1000 "big-M" 4.0 2.0 20%
164 0.01 1000 "big-M" 4.0 2.0 10%
171 0.01 1000 "big-M" 5.0 3.0 20%
172 0.01 1000 "big-M" 5.0 3.0 10%
175 0.01 1000 "big-M" 5.0 2.0 20%
176 0.01 1000 "big-M" 5.0 2.0 10%
246 0.01 100 "small-M" 1.0 2.0 40%

360

Table C-3.All Projects that followed trace 1. Total 72 projects.

Project ID| Constraint o) Constrainton| Workspace | Workload Settling Maximum
Deflection Gain 1 (kg) Time (sec)| Overshoot

252 0.01 100 "small-M" 1.0 1.0 10%
254 0.01 100 "small-M" 2.0 3.0 40%
255 0.01 100 "small-M" 2.0 3.0 20%
256 0.01 100 "small-M" 2.0 3.0 10%
259 0.01 100 "small-M" 2.0 2.0 20%
260 0.01 100 "small-M" 2.0 2.0 10%
364 0.01 100 "big-M" 1.0 3.0 10%
493 0.001 1000 "small-M" 2.0 3.0 50%
494 0.001 1000 "small-M" 2.0 3.0 40%
495 0.001 1000 "small-M" 2.0 3.0 20%
496 0.001 1000 "small-M" 2.0 3.0 10%
497 0.001 1000 "small-M" 2.0 2.0 50%
498 0.001 1000 "small-M" 2.0 2.0 40%
499 0.001 1000 "small-M" 2.0 2.0 20%
500 0.001 1000 "small-M" 2.0 2.0 10%
501 0.001 1000 "small-M" 2.0 1.0 50%
502 0.001 1000 "small-M" 2.0 1.0 40%
503 0.001 1000 "small-M" 2.0 1.0 20%
504 0.001 1000 "small-M" 2.0 1.0 10%
614 0.001 1000 "big-M" 2.0 3.0 40%
619 0.001 1000 "big-M" 2.0 2.0 20%
626 0.001 1000 "big-M" 3.0 3.0 40%
627 0.001 1000 "big-M" 3.0 3.0 20%
628 0.001 1000 "big-M" 3.0 3.0 10%
631 0.001 1000 "big-M" 3.0 2.0 20%
632 0.001 1000 "big-M" 3.0 2.0 10%
639 0.001 1000 "big-M" 4.0 3.0 20%
640 0.001 1000 "big-M" 4.0 3.0 10%
643 0.001 1000 "big-M" 4.0 2.0 20%
644 0.001 1000 "big-M" 4.0 2.0 10%
651 0.001 1000 "big-M" 5.0 3.0 20%
652 0.001 1000 "big-M" 5.0 3.0 10%
655 0.001 1000 "big-M" 5.0 2.0 20%

361

Table C-3.All Projects that followed trace 1. Total 72 projects.

Project ID| Constraint o] Constrainton| Workspace | Workload Settling Maximum
Deflection Gain 1 (kg) Time (sec)| Overshoot

656 0.001 1000 "big-M" 5.0 2.0 10%
726 0.001 100 "small-M" 1.0 2.0 40%
732 0.001 100 "small-M" 1.0 1.0 10%
734 0.001 100 "small-M" 2.0 3.0 40%
735 0.001 100 "small-M" 2.0 3.0 20%
736 0.001 100 "small-M" 2.0 3.0 10%
739 0.001 100 "small-M" 2.0 2.0 20%
740 0.001 100 "small-M" 2.0 2.0 10%

There is a pattern in the block of projects and the distance between these blocks for
projects that followed “Trace 1”. While this pattern is not as good as the similar one for

“Trace 0” it divides the set of projects into two subsets.

Table C-4.Patterns in the projects that followed “Trace 1".

Projects number of projects in each subset jump of the project ID to the next subset
13to 24 12 97
121 1 5
126 1 6
132 1 2
134 1 5
139 1 7
146 to 148 3 3
151 to 152 2 7
159 to 160 2 3
163 to 164 2 7
171to 172 2 3
175 to176 2 70
246 1 6
252 1 2
254 to 256 3 3

362

Table C-4.Patterns in the projects that followed “Trace 1”.

Projects

number of projects in each subset

jump of the project ID to the next subset

259 to 260

2

104

364

1

129

493 to 504

=
N

614

619

626 to 628

631 to 632

639 to 640

643 to 644

651 to 652

655 to 656

726

732

734 to 736

739 to 740

N| W] FRP[FRP]I NI N[NNI N W[P

110

N/A

363

C.3 Trace 2

Table C-5.All Projects that followed trace 2. Total 64 projects.

Project ID| Constraint or) Constrainton| Workspace | Workload Settling Maximum
Deflection Gain 1 (kg) Time (sec) | Overshoot

25 0.01 1000 "small-M" 3.0 3.0 50%
26 0.01 1000 "small-M" 3.0 3.0 40%
27 0.01 1000 "small-M" 3.0 3.0 20%
28 0.01 1000 "small-M" 3.0 3.0 10%
29 0.01 1000 "small-M" 3.0 2.0 50%
30 0.01 1000 "small-M" 3.0 2.0 40%
31 0.01 1000 "small-M" 3.0 2.0 20%
32 0.01 1000 "small-M" 3.0 2.0 10%
33 0.01 1000 "small-M" 3.0 1.0 50%
34 0.01 1000 "small-M" 3.0 1.0 40%
35 0.01 1000 "small-M" 3.0 1.0 20%
36 0.01 1000 "small-M" 3.0 1.0 10%
37 0.01 1000 "small-M" 4.0 3.0 50%

38 0.01 1000 "small-M" 4.0 3.0 40%
39 0.01 1000 "small-M" 4.0 3.0 20%
40 0.01 1000 "small-M" 4.0 3.0 10%
41 0.01 1000 "small-M" 4.0 2.0 50%
42 0.01 1000 "small-M" 4.0 2.0 40%
43 0.01 1000 "small-M" 4.0 2.0 20%
44 0.01 1000 "small-M" 4.0 2.0 10%
46 0.01 1000 "small-M" 4.0 1.0 40%
47 0.01 1000 "small-M" 4.0 1.0 20%
48 0.01 1000 "small-M" 4.0 1.0 10%
49 0.01 1000 "small-M" 5.0 3.0 50%

50 0.01 1000 "small-M" 5.0 3.0 40%
51 0.01 1000 "small-M" 5.0 3.0 20%
52 0.01 1000 "small-M" 5.0 3.0 10%
53 0.01 1000 "small-M" 5.0 2.0 50%
54 0.01 1000 "small-M" 5.0 2.0 40%
55 0.01 1000 "small-M" 5.0 2.0 20%
56 0.01 1000 "small-M" 5.0 2.0 10%

364

Table C-5.All Projects that followed trace 2. Total 64 projects.

Project ID| Constraint orj Constrainton| Workspace | Workload Settling Maximum
Deflection Gain 1 (kg) Time (sec) | Overshoot

58 0.01 1000 "small-M" 5.0 1.0 40%
59 0.01 1000 "small-M" 5.0 1.0 20%
60 0.01 1000 "small-M" 5.0 1.0 10%

125 0.01 1000 "big-M" 1.0 2.0 50%

131 0.01 1000 "big-M" 1.0 1.0 20%
133 0.01 1000 "big-M" 2.0 3.0 50%
138 0.01 1000 "big-M" 2.0 2.0 40%
144 0.01 1000 "big-M" 2.0 1.0 10%
145 0.01 1000 "big-M" 3.0 3.0 50%
156 0.01 1000 "big-M" 3.0 1.0 10%
157 0.01 1000 "big-M" 4.0 3.0 50%
158 0.01 1000 "big-M" 4.0 3.0 40%
170 0.01 1000 "big-M" 5.0 3.0 40%

245 0.01 100 "small-M" 1.0 2.0 50%

251 0.01 100 "small-M" 1.0 1.0 20%
253 0.01 100 "small-M" 2.0 3.0 50%
264 0.01 100 "small-M" 2.0 1.0 10%
266 0.01 100 "small-M" 3.0 3.0 40%
267 0.01 100 "small-M" 3.0 3.0 20%
268 0.01 100 "small-M" 3.0 3.0 10%
271 0.01 100 "small-M" 3.0 2.0 20%
272 0.01 100 "small-M" 3.0 2.0 10%
278 0.01 100 "small-M" 4.0 3.0 40%
279 0.01 100 "small-M" 4.0 3.0 20%
280 0.01 100 "small-M" 4.0 3.0 10%
283 0.01 100 "small-M" 4.0 2.0 20%
284 0.01 100 "small-M" 4.0 2.0 10%
291 0.01 100 "small-M" 5.0 3.0 20%
292 0.01 100 "small-M" 5.0 3.0 10%
295 0.01 100 "small-M" 5.0 2.0 20%
296 0.01 100 "small-M" 5.0 2.0 10%
363 0.01 100 "big-M" 1.0 3.0 20%
376 0.01 100 "big-M" 2.0 3.0 10%

365

C.4 Trace 49

Table C-6.All the projects that followed Trace 49. Total 33 Projects.

Project ID| Constrainton) Constraint | Workspace | Workload Settling Maximum
Deflection on Gain 1 (kg) Time (sec)| Overshoot
505 0.001 1000 "small-M" 3.0 3.0 50%
506 0.001 1000 "small-M" 3.0 3.0 40%
507 0.001 1000 "small-M" 3.0 3.0 20%
508 0.001 1000 "small-M" 3.0 3.0 10%
509 0.001 1000 "small-M" 3.0 2.0 50%
510 0.001 1000 "small-M" 3.0 2.0 40%
511 0.001 1000 "small-M" 3.0 2.0 20%
512 0.001 1000 "small-M" 3.0 2.0 10%
514 0.001 1000 "small-M" 3.0 1.0 40%
515 0.001 1000 "small-M" 3.0 1.0 20%
516 0.001 1000 "small-M" 3.0 1.0 10%
517 0.001 1000 "small-M" 4.0 3.0 50%
518 0.001 1000 "small-M" 4.0 3.0 40%
519 0.001 1000 "small-M" 4.0 3.0 20%
520 0.001 1000 "small-M" 4.0 3.0 10%
521 0.001 1000 "small-M" 4.0 2.0 50%
522 0.001 1000 "small-M" 4.0 2.0 40%
523 0.001 1000 "small-M" 4.0 2.0 20%
524 0.001 1000 "small-M" 4.0 2.0 10%
526 0.001 1000 "small-M" 4.0 1.0 40%
527 0.001 1000 "small-M" 4.0 1.0 20%
528 0.001 1000 "small-M" 4.0 1.0 10%
733 0.001 100 "small-M" 2.0 3.0 50%
746 0.001 100 "small-M" 3.0 3.0 40%
747 0.001 100 "small-M" 3.0 3.0 20%
748 0.001 100 "small-M" 3.0 3.0 10%
751 0.001 100 "small-M" 3.0 2.0 20%
752 0.001 100 "small-M" 3.0 2.0 10%
758 0.001 100 "small-M" 4.0 3.0 40%
759 0.001 100 "small-M" 4.0 3.0 20%
760 0.001 100 "small-M" 4.0 3.0 10%

366

Table C-6.All the projects that followed Trace 49. Total 33 Projects.

Project ID| Constraintonp Constraint | Workspace | Workload Settling Maximum
Deflection on Gain 1 (kg) Time (sec)| Overshoot

763 0.001 100 "small-M" 4.0 2.0 20%

764 0.001 100 "small-M" 4.0 2.0 10%

367

C.5 Trace 770

Table C-7.All the projects that followed Trace 770. Total 20.

Project ID| Constraintor) Constraint | Workspace| Workload Settling Maximum

Deflection on Gain 1 (kg) Time (sec)| Overshoot
61 0.01 1000 "small-L" 1.0 3.0 50%
66 0.01 1000 "small-L" 1.0 2.0 40%
72 0.01 1000 "small-L" 1.0 1.0 10%
73 0.01 1000 "small-L" 2.0 3.0 50%
74 0.01 1000 "small-L" 2.0 3.0 40%
86 0.01 1000 "small-L" 3.0 3.0 40%
87 0.01 1000 "small-L" 3.0 3.0 20%
88 0.01 1000 "small-L" 3.0 3.0 10%
91 0.01 1000 "small-L" 3.0 2.0 20%
92 0.01 1000 "small-L" 3.0 2.0 10%
98 0.01 1000 "small-L" 4.0 3.0 40%
99 0.01 1000 "small-L" 4.0 3.0 20%
100 0.01 1000 "small-L" 4.0 3.0 10%
103 0.01 1000 "small-L" 4.0 2.0 20%
104 0.01 1000 "small-L" 4.0 2.0 10%
111 0.01 1000 "small-L" 5.0 3.0 20%
112 0.01 1000 "small-L" 5.0 3.0 10%
115 0.01 1000 "small-L" 5.0 2.0 20%
116 0.01 1000 "small-L" 5.0 2.0 10%
304 0.01 100 "small-L" 1.0 3.0 10%

C.6 Trace 1537
Table C-8.All projects that followed Trace 1537. Total 28.

Project ID| Constrainton Constraint | Workspace | Workload Settling Maximum

Deflection on Gain 1 (kg) Time (sec) | Overshoot
69 0.01 1000 "small-L" 1.0 1.0 50%
81 0.01 1000 "small-L" 2.0 1.0 50%
82 0.01 1000 "small-L" 2.0 1.0 40%
185 0.01 1000 "big-L" 1.0 2.0 50%
186 0.01 1000 "big-L" 1.0 2.0 40%

368

Table C-8.All projects that followed Trace 1537. Total 28.

Project ID| Constrainton Constraint | Workspace | Workload Settling Maximum
Deflection on Gain 1 (kg) Time (sec) | Overshoot

191 0.01 1000 "big-L" 1.0 1.0 20%
193 0.01 1000 "big-L" 2.0 3.0 50%
198 0.01 1000 "big-L" 2.0 2.0 40%
204 0.01 1000 "big-L" 2.0 1.0 10%
205 0.01 1000 "big-L" 3.0 3.0 50%
206 0.01 1000 "big-L" 3.0 3.0 40%
211 0.01 1000 "big-L" 3.0 2.0 20%
218 0.01 1000 "big-L" 4.0 3.0 40%
781 0.001 100 "small-L" 1.0 3.0 50%
782 0.001 100 "small-L" 1.0 3.0 40%
785 0.001 100 "small-L" 1.0 2.0 50%
786 0.001 100 "small-L" 1.0 2.0 40%
787 0.001 100 "small-L" 1.0 2.0 20%
788 0.001 100 "small-L" 1.0 2.0 10%
791 0.001 100 "small-L" 1.0 1.0 20%
792 0.001 100 "small-L" 1.0 1.0 10%
793 0.001 100 "small-L" 2.0 3.0 50%
794 0.001 100 "small-L" 2.0 3.0 40%
795 0.001 100 "small-L" 2.0 3.0 20%
798 0.001 100 "small-L" 2.0 2.0 40%
799 0.001 100 "small-L" 2.0 2.0 20%
800 0.001 100 "small-L" 2.0 2.0 10%
804 0.001 100 "small-L" 2.0 1.0 10%

369

C.7 Trace 1545

Table C-9.All projects that followed Trace 1545. Total 54.

Project ID| Constrainton Constraint | Workspace| Workload Settling Maximum
Deflection on Gain 1 (kg) Time (sec)| Overshoot

223 0.01 1000 “big-L” 4.0 2.0 20%
224 0.01 1000 “big-L” 4.0 2.0 10%
301 0.01 100 “small_L" 1.0 3.0 50%

302 0.01 100 "small-L" 1.0 3.0 40%
305 0.01 100 "small-L" 1.0 2.0 50%
306 0.01 100 "small-L" 1.0 2.0 40%
311 0.01 100 "small-L" 1.0 1.0 20%
312 0.01 100 "small-L" 1.0 1.0 10%
313 0.01 100 "small-L" 2.0 3.0 50%
314 0.01 100 "small-L" 2.0 3.0 40%
318 0.01 100 "small-L" 2.0 2.0 40%
319 0.01 100 "small-L" 2.0 2.0 20%
324 0.01 100 "small-L" 2.0 1.0 10%
423 0.01 100 "big-L" 1.0 3.0 20%
424 0.01 100 "big-L" 1.0 3.0 10%
436 0.01 100 "big-L" 2.0 3.0 10%
549 0.001 1000 "small-L" 1.0 1.0 50%

550 0.001 1000 "small-L" 1.0 1.0 40%
557 0.001 1000 "small-L" 2.0 2.0 50%
561 0.001 1000 "small-L" 2.0 1.0 50%
562 0.001 1000 "small-L" 2.0 1.0 40%
563 0.001 1000 "small-L" 2.0 1.0 20%
661 0.001 1000 "big-L" 1.0 3.0 50%

662 0.001 1000 "big-L" 1.0 3.0 40%
663 0.001 1000 "big-L" 1.0 3.0 20%
664 0.001 1000 "big-L" 1.0 3.0 10%
665 0.001 1000 "big-L" 1.0 2.0 50%
666 0.001 1000 "big-L" 1.0 2.0 40%
667 0.001 1000 "big-L" 1.0 2.0 20%
668 0.001 1000 "big-L" 1.0 2.0 10%
671 0.001 1000 "big-L" 1.0 1.0 20%

370

Table C-9.All projects that followed Trace 1545. Total 54.

Project ID| Constraintor] Constraint | Workspace| Workload Settling Maximum
Deflection on Gain 1 (kg) Time (sec)| Overshoot

672 0.001 1000 "big-L" 1.0 1.0 10%
673 0.001 1000 "big-L" 2.0 3.0 50%

674 0.001 1000 "big-L" 2.0 3.0 40%
675 0.001 1000 "big-L" 2.0 3.0 20%
676 0.001 1000 "big-L" 2.0 3.0 10%
678 0.001 1000 "big-L" 2.0 2.0 40%
679 0.001 1000 "big-L" 2.0 2.0 20%
680 0.001 1000 "big-L" 2.0 2.0 10%
684 0.001 1000 "big-L" 2.0 1.0 10%
685 0.001 1000 "big-L" 3.0 3.0 50%
686 0.001 1000 "big-L" 3.0 3.0 40%
687 0.001 1000 "big-L" 3.0 3.0 20%
688 0.001 1000 "big-L" 3.0 3.0 10%
691 0.001 1000 "big-L" 3.0 2.0 20%
692 0.001 1000 "big-L" 3.0 2.0 10%
698 0.001 1000 "big-L" 4.0 3.0 40%
699 0.001 1000 "big-L" 4.0 3.0 20%
700 0.001 1000 "big-L" 4.0 3.0 10%
703 0.001 1000 "big-L" 4.0 2.0 20%
704 0.001 1000 "big-L" 4.0 2.0 10%
903 0.001 100 "big-L" 1.0 3.0 20%

904 0.001 100 "big-L" 1.0 3.0 10%
916 0.001 100 "big-L" 2.0 3.0 10%

371

C.8 Trace 1546

Table C-10.All projects that followed Trace 1546. Total 24.

Project ID| Constraint or] Constraint | Workspace| Workload Settling Maximum
Deflection on Gain 1 (kg) Time (sec)| Overshoot

222 0.01 1000 "big-L" 4.0 1 1
228 0.01 1000 "big-L" 4.0 2 3
229 0.01 1000 "big-L" 5.0 0 0
230 0.01 1000 "big-L" 5.0 0 1
231 0.01 1000 "big-L" 5.0 0 2
235 0.01 1000 "big-L" 5.0 1 2
236 0.01 1000 "big-L" 5.0 1 3
240 0.01 1000 "big-L" 5.0 2 3
325 0.01 100 "small-L" 3.0 0 0

326 0.01 100 "small-L" 3.0 0 1
331 0.01 100 "small-L" 3.0 1 2
332 0.01 100 "small-L" 3.0 1 3
336 0.01 100 "small-L" 3.0 2 3
338 0.01 100 "small-L" 4.0 0 1
339 0.01 100 "small-L" 4.0 0 2
343 0.01 100 "small-L" 4.0 1 2
344 0.01 100 "small-L" 4.0 1 3
350 0.01 100 "small-L" 5.0 0 1
351 0.01 100 "small-L" 5.0 0 2
355 0.01 100 "small-L" 5.0 1 2
356 0.01 100 "small-L" 5.0 1 3
428 0.01 100 "big-L" 1.0 1 3

435 0.01 100 "big-L" 2.0 0 2
460 0.01 100 "big-L" 4.0 0 3

372

Appendix D. RD: User’s Guide

D.1 Data Files Format

A datafile is organized in the form of blocks. Lines of comments can be inserted in any line
in the file by preceding the line by a number sign (#). Each block has a name and the name
of the block should follow the taBlock: . The name of the block should be one word but
combining words using underscore character ‘_’ is permitted. Each block starts fvith a

and ends with &. Blank lines, extra spaces, and tabs are ignored in reading a data file.

A block is consisted of a set of parameters. Each parameter has a name a type and
a value. The name of the parameter should be only one word but combining words using

underscore character ‘_’ is permitted. The following types are recognized in a data file:
1. numeric scalar identified by
2. string scalar identified iy

3. numeric vector started witff and ended with . Vector’s elements are separtaed
from each other by a space, and there should be at least one space around the start and

end identifiers.

4. numeric matrix started with[[, and ended with . Except the first row each row
starts with § and all the rows should end witl} a . There should be at least one

space between matrix and row identifiers.

373

5. string vector started witth and ended with] . Vector’'s elements are separtaed from
each other by a space, and there should be at least one space around the start and end
identifiers. boolean scalar identified by
The contents of a data file is returned as a hashtable with block names as hash keys and the
content of the blocks as values. The contents of each block is itself a hashtable with param-
eter names as hash keys and the contents of the parameters as values. The contents of each
parameter is itself a hashtable with only one element that its key is the type of the parameter
(= for numeric scalar,: for string scalar,=[for numeric vector,=[[for numeric

matrix, and;[for string vector) and its vaue is the value of the parameter.

D.1.1 An example of a data file:

/[This is a sample of the data file format
Block: DESIGN_REQUIREMENTS
{
operational_plane : horizontal
workspace =[[1.0 1.1 1.0939 1.05 1.05 1.0939 1.3 1.4]
[0.15 0.15 0.1061 0.15 0.3 0.5561 0.6 0.6]]
workload = 1.0
settling_time = 3.0
maximum_overshoot = 50.0

}
Block: DESIGNER_TRACES
{
Designer_1 1 depth=0
Designer_1 1 approaches =2
Designer_1 1 current_approach:minimize_link lengths_summatin
Designer_1_1 design_cases = 40
Designer_1_1 suppliers :[DesignRequirements]
Designer_1_1 consumers :[Designer_1_2 Designer_1_3]
}

In the DESIGNER TRACESlIock the first row shows the name, the depth of the
designer in a dependency tree, and the total number of design approaches. The second row

shows what design method was used by the designer at the time of recording the trace. The

374

number of design cases that the designer agent has done so far is given in the third row.
Design cases differ in the design approach that is used or in the values of the input param-
eters. Finally, the fourth and the fifth rows show what designers provided the inputs and

what designers used the outputs of this designer.

D.2 Project Data File Reading

D.2.1 CurrentProject

RD (RobotDesigner) reads the name of the current project and the path to the directory
that contains the data files of this project from a file nan@drentProject (in ~/
Java/Thesis/RobotDesignerProjects/). The name of different data files are
constructed by taking the name of the project and adding extensions spaf asvhich

is explained in the following section. Having the name of the project and the data files path

separated makes it possible to use the same data files for different projects.

Block: CURRENT_PROJECT

{
PROJECT_NAME : default
project_data file_directory : /users/cirrus/Java/Thesis/
RobotDesignerProjects/de-
fault/ProjectData/
}

D.2.2 default.pref

This file containts the parameters that determine whether the file or GUI reporting is
needed or what should be the size of report buffers..

This file contains the preferences for the project

Block: PROJECT_REPORTING

{
MESSAGE_REPORTING_NEEDED :: false

375

MESSAGE_LOG_FILES_NEEDED :: false
GUI_MESSAGE_REPORTING_NEEDED :: false
GUI_SHOWING_NEEDED :: false

}

Block: DESIGN_REQUIREMENTS_SOURCE

{
READ_DESIGN_REQUIREMENTS_FROM_FILE :: true

}

Block: BUFFERS_SIZE LIMIT

{
TEXT_AREA_BYTE_SIZE_LIMIT = 10000
LOG_FILES_BUFFER_SIZE = 10000

}

D.3 Log Files

Each agent in RD generates the following log filesiEESSAGE_LOG_FILES_NEEDED

attribute indefault.pref file is set tarue:

ignoredMessagesLogFile

processingReportLogFile

pendingMessagesLogFile

receivedMessagesLogFile

processedMessagesLogFile

sentMessagesLogFile

processingMessagesLogFile

Also, the following log files are generated BYD in order to record the traces of the system:
» console : contains the report of the system as sent to the standard output;

» trace :contains the summary of the design project trace;

376

» DesignersApproach : contains the list of design approaches taken ineach design

cycle;

» DesignConstraints : contains the boundaries of the acceptable values for the con-

straints in each design cycle;

» DesignParameters : contains the values of every design parameter in each design

cycle;

» RDSpecific : contains specific information about, date and time of the run, memory

usage, total messages exchanged, total number of design cycles, etc.

D.4 A Sample Project: Project 61

D.4.1 Input Files

D.4.1.1 CurrentProject

Block: CURRENT_PROJECT

{
PROJECT_NAME : default

project_data_file_directory : /users/cirrus/Java/Thesis/
RobotDesignerProjects/default/ProjectData/

}
D.4.1.2 default.pref

This file contains the preferences for the project

Block: PROJECT_REPORTING

{
MESSAGE_REPORTING_NEEDED :: true
MESSAGE_LOG_FILES_NEEDED :: true
GUI_MESSAGE_REPORTING_NEEDED :: false
GUI_SHOWING_NEEDED :: false

}

Block: DESIGN_REQUIREMENTS_SOURCE

{

READ_DESIGN_REQUIREMENTS_FROM_FILE :: true

377

}

Block: BUFFERS_SIZE_LIMIT

{
TEXT_AREA_BYTE_SIZE_LIMIT = 10000
LOG_FILES_BUFFER_SIZE = 10000

}

D.4.1.3 default.requirements

This file contains the requirements for the project
Block: DESIGN_REQUIREMENTS

{
workspace =[[0.5 0.75 0.75 0.75 1.0 1.0 1.25 1.25 1.25 1.5
1.51.751.752.0][0.50.250.75
1.751.015051.252.00.751.51.01.751.5]]
workload = 1.0
settling_time = 3.0
maximum_overshoot = 50

}
Block: PROJECT _ID
{

project id =61
}

D.4.1.4 default.constraints

This file contains the constraints boundaries or parametrs

Block: DESIGN_CONSTRAINTS_DATA

{
minLinklLength = 0.0
maxLinklLengthToWorkspacelLengthRatio = 1.0
minLink2Length = 0.0
maxLink2LengthToLinklLengthRatio = 1.0

minThetalMin = -3.141592653589793
maxThetalMax = 3.141592653589793
minTheta2Min = -3.141592653589793
maxTheta2Max = 3.141592653589793

minLink1Dimension = 0.0
maxLinklDimensionToLinklLengthRatio = 0.1
minLink2Dimension = 0.0
maxLink2DimensionToLink2LengthRatio = 0.1

minLink1ThicknessToLinkl1DimensionRatio = 0.05

378

maxLink1ThicknessToLinklDimensionRatio = 0.25
minLink2ThicknessToLink2DimensionRatio = 0.05
maxLink2ThicknessToLink2DimensionRatio = 0.25

minAccessibleRegionArea = 0.0
maxAccessibleRegionAreaToWorkspaceAreaRatio = 1.0

minTipDeflection = 0.0
maxTipDeflectionToLinkLengthsSumRatio = 0.01

minProportionalGainl = 0.0
maxProportionalGainl = 1000
minDerivativeGainl = 0.0
maxDerivativeGainl = 1000
minProportionalGain2 = 0.0

maxProportionalGain2 = 1000
minDerivativeGain2 = 0.0
maxDerivativeGain2 = 1000

}
D.4.2 Output Files

D.4.2.1 console

Block: FILE_ATTRIBUTES
path_name : /export/home/shakeri/Java/Thesis/RobotDesigner-
Projects/default/ProjectData/
file_name : default.constraints
Block: DESIGN_CONSTRAINTS_DATA
maxAccessibleRegionAreaToWorkspaceAreaRatio = 1.0
minProportionalGain2 = 0.0
minProportionalGainl = 0.0
maxLink2LengthToLinklLengthRatio = 1.0
maxThetalMax = 3.141592653589793
minAccessibleRegionArea = 0.0
maxLink2DimensionToLink2LengthRatio = 0.1
maxLink1lDimensionToLinklLengthRatio = 0.1
minLinkllLength = 0.0
minDerivativeGain2 = 0.0
minDerivativeGainl = 0.0
maxDerivativeGain2 = 1000.0
maxDerivativeGainl = 1000.0
minTipDeflection = 0.0
minTheta2Min = -3.141592653589793
maxLink2ThicknessToLink2DimensionRatio = 0.25
minLink2ThicknessToLink2DimensionRatio = 0.05
maxLink1ThicknessToLink1DimensionRatio = 0.25
minLink1ThicknessToLinklDimensionRatio = 0.05
maxProportionalGain2 = 1000.0

379

maxProportionalGainl = 1000.0
minLink2Dimension = 0.0

minLink1Dimension = 0.0

maxTheta2Max = 3.141592653589793
minLink2Length = 0.0

minThetalMin = -3.141592653589793
maxLinklLengthToWorkspacelLengthRatio = 1.0
maxTipDeflectionToLinkLengthsSumRatio = 0.01

Block: DESIGN_REQUIREMENTS

maximum_overshoot = 50.0

workspace = [[0.5 0.75 0.75 0.75 1.0 1.0 1.25 1.25 1.25 1.5
15175175 20][050.25 0.75 1.75 1.0 1.5 0.5 1.25 2.0 0.75
151.01.7515]]

settling_time = 3.0

workload = 1.0
Block: FILE_ ATTRIBUTES

path_name : /export/home/shakeri/Java/Thesis/RobotDesigner-
Projects/default/ProjectData/

file_name : default.requirements
Block: PROJECT_ID

project_id =61.0

new design state group was added at: 0
>> design state: 0 with parent ID: -1 at depth: 0 was created
new design state group was added at: 1
>> design state: 1 with parent ID: 0 at depth: 1 was created
new design state group was added at: 2
>> design state: 2 with parent ID: 1 at depth: 2 was created
new design state group was added at: 3
>> design state: 3 with parent ID: 2 at depth: 3 was created

- index of rejected path: 0

- unresolved constraints are:
constraint constraint_1 4 1 of type numeric_continuous_b<x<=c:
0.0 < accessible_region_area (2.820110874804171) <= 2.625
constraint constraint_ 3 1 1 of type numeric_continuous_b<x<=c:
0.0 < proportional_gainl (1375.245122855074) <= 1000.0
>>>>creating new backtracking session because the collection is
empty
>> design state: 4 with parent ID: 1 at depth: 2 was created
>> design state: 5 with parent ID: 4 at depth: 3 was created

- index of rejected path: 1
- unresolved constraints are:

constraint constraint_1 4 1 of type numeric_continuous_b<x<=c:
0.0 < accessible_region_area (2.820110874804171) <= 2.625

380

>>>>even though current session is not null, creating new back-
tracking session because the collection does not match the violated
constraints

>> design state: 6 with parent ID: 1 at depth: 2 was created

>> design state: 7 with parent ID: 6 at depth: 3 was created

- index of rejected path: 5

- unresolved constraints are:
constraint constraint_1_4 1 of type numeric_continuous_b<x<=c:
0.0 < accessible_region_area (2.9909553613956126) <= 2.625
>> design state: 8 with parent ID: 0 at depth: 1 was created
>> design state: 9 with parent ID: 8 at depth: 2 was created
>> design state: 10 with parent ID: 9 at depth: 3 was created

- index of rejected path: 9

- unresolved constraints are:
constraint constraint_ 1 4 1 of type numeric_continuous_b<x<=c:
0.0 < accessible_region_area (2.805439246655777) <= 2.625
>> design state: 11 with parent ID: 8 at depth: 2 was created

>> design state: 12 with parent ID: 11 at depth: 3 was created
- index of rejected path: 13

- unresolved constraints are:
constraint constraint_ 1 4 1 of type numeric_continuous_b<x<=c:
0.0 < accessible_region_area (3.614846500459787) <= 2.625
>> design state: 13 with parent ID: O at depth: 1 was created
>> design state: 14 with parent ID: 13 at depth: 2 was created
>> design state: 15 with parent ID: 14 at depth: 3 was created

- index of rejected path: 17

- unresolved constraints are:
constraint constraint_1 4 1 of type numeric_continuous_b<x<=c:
0.0 < accessible_region_area (3.0194741798453535) <= 2.625
>> design state: 16 with parent ID: 13 at depth: 2 was created
>> design state: 17 with parent ID: 16 at depth: 3 was created

- index of rejected path: 21

- unresolved constraints are:
constraint constraint_ 1 4 1 of type numeric_continuous_b<x<=c:
0.0 < accessible_region_area (4.225362012380889) <= 2.625
>> design state: 18 with parent ID: -1 at depth: O was created
>> design state: 19 with parent ID: 18 at depth: 1 was created
>> design state: 20 with parent ID: 19 at depth: 2 was created
>> design state: 21 with parent ID: 20 at depth: 3 was created

381

- index of rejected path: 385

- unresolved constraints are:

constraint constraint_1_4 1 of type numeric_continuous_b<x<=c:

0.0 < accessible_region_area (3.2318251863236065) <= 2.625
constraint constraint_3_1 1 of type numeric_continuous_b<x<=c:

0.0 < proportional_gainl (1301.9890850434604) <= 1000.0

>> design state: 22 with parent ID: -1 at depth: 0 was created

>> design state: 23 with parent ID: 22 at depth: 1 was created

>> design state: 24 with parent ID: 23 at depth: 2 was created

>> design state: 25 with parent ID: 24 at depth: 3 was created

- index of rejected path: 2

- unresolved constraints are:
constraint constraint_1_4 1 of type numeric_continuous_b<x<=c:
0.0 < accessible_region_area (2.820110874804171) <= 2.625
>> design state: 26 with parent ID: -1 at depth: 0 was created
>> design state: 27 with parent ID: 26 at depth: 1 was created
>> design state: 28 with parent ID: 27 at depth: 2 was created
>> design state: 29 with parent ID: 28 at depth: 3 was created

- index of rejected path: 390

- unresolved constraints are:
constraint constraint_ 1 4 1 of type numeric_continuous_b<x<=c:
0.0 < accessible_region_area (2.8756172456197544) <= 2.625
>> design state: 30 with parent ID: 26 at depth: 1 was created
>> design state: 31 with parent ID: 30 at depth: 2 was created
>> design state: 32 with parent ID: 31 at depth: 3 was created

- index of rejected path: 394

- unresolved constraints are:
constraint constraint_1_4 1 of type numeric_continuous_b<x<=c:
0.0 < accessible_region_area (4.090869074405497) <= 2.625
>> design state: 33 with parent ID: 30 at depth: 2 was created
>> design state: 34 with parent ID: 33 at depth: 3 was created

- index of rejected path: 398

- unresolved constraints are:
constraint constraint_1 4 1 of type numeric_continuous_b<x<=c:
0.0 < accessible_region_area (2.9563297381314446) <= 2.625
>> design state: 35 with parent ID: 26 at depth: 1 was created
>> design state: 36 with parent ID: 35 at depth: 2 was created
>> design state: 37 with parent ID: 36 at depth: 3 was created

- index of rejected path: 402

382

- unresolved constraints are:
constraint constraint_ 1 4 1 of type numeric_continuous_b<x<=c:
0.0 < accessible_region_area (4.981729006637212) <= 2.625
>> design state: 38 with parent ID: 35 at depth: 2 was created

>> design state: 39 with parent ID: 38 at depth: 3 was created
- index of rejected path: 406

- unresolved constraints are:
constraint constraint_1_4 1 of type numeric_continuous_b<x<=c:

0.0 < accessible_region_area (3.4933335588362864) <= 2.625
>> design state: 40 with parent ID: -1 at depth: 0 was created
>> design state: 41 with parent ID: 40 at depth: 1 was created
>> design state: 42 with parent ID: 41 at depth: 2 was created
>> design state: 43 with parent ID: 42 at depth: 3 was created
> terminating the program--the reason is success in the design pro-
cess
clean up at: DatabaseCoordinator completed
clean up at: DesignRequirements completed
clean up at: DesignState completed
clean up at: DesignProduct completed
clean up at: DesignConstraints completed
clean up at: DesignersCoordinator completed
clean up at: Designer_1_1 completed
clean up at: Designer_1_ 2 completed
clean up at: Designer_1_3 completed
clean up at: Designer_1 4 completed
clean up at: Designer_2_1 completed
clean up at: Designer_2_2 completed
clean up at: Designer_2_3 completed
clean up at: Designer_2_4 completed
clean up at: Designer_2_5 completed
clean up at: Designer_3 1 completed
clean up at: Evaluator completed
clean up at: DependencyProvider completed
total number of active threads: 4
waiting for thread: Processor_2896 to joine
thread: Processor_ 2896 joined
waiting for thread: Processor_2897 to joine
clean up at: ExceptionHandler completed
thread: Processor_2897 joined
waiting for thread: Processor_2898 to joine
clean up at: Tracer completed
thread: Processor_ 2898 joined
clean up at: Coordinator completed
current thread: Processor_2837 is about to stop too
> wrap up completed--the program will stop

383

D.4.2.2 trace

DESIGN REQUIREMENTS

{

Parameter: operational_plane, Value: horizontal, Owner:
Agent: DesignRequirements, ID: 2

Parameter: workspace, Value: [0.5, 0.75, 0.75, 0.75, 1.0,
1.0, 1.25, 1.25, 1.25, 1.5, 1.5, 1.75, 1.75, 2.0,][0.5, 0.25,
0.75, 1.75, 1.0, 1.5, 0.5, 1.25, 2.0, 0.75, 1.5, 1.0, 1.75, 1.5,
], Owner: Agent: DesignRequirements, ID: 2

Parameter: workload, Value: 1.0, Owner: Agent: DesignRequire-
ments, ID: 2

Parameter: settling_time, Value: 3.0, Owner: Agent. DesignRe-
quirements, ID: 2

Parameter: maximum_overshoot, Value: 50.0, Owner: Agent:
DesignRequirements, ID: 2

}

DESIGN CONSTRAINTS

{

constraint constraint_1 2 1 of type
numeric_continuous_b<x<=c: 0.0 < linkl_length (1.5567951410224505)
<=1.75

constraint constraint_ 1 2 2 of type
numeric_continuous_b<x<=c: 0.0 < link2_length (0.7783975705112253)
<=1.5567951410224505

constraint constraint_1_ 3 1 of type
numeric_continuous_b<=x<c: -3.141592653589793 <= thetal min (-
2.4580611917887825) < -1.370467760770914

constraint constraint_1 3 2 of type
numeric_continuous_b<x<=c: -2.4580611917887825 < thetal max (-
1.370467760770914) <= 3.141592653589793

constraint constraint_1_ 3 3 of type
numeric_continuous_b<=x<c: -3.141592653589793 <= theta2_min (0.0)
< 2.8573894984143893

constraint constraint_1 3 4 of type
numeric_continuous_b<x<=c: 0.0 < theta2_max (2.8573894984143893)
<= 3.141592653589793

constraint constraint_2_1 1 of type
numeric_continuous_b<x<=c: 0.0 < link1_cross_section_dimension
(0.05071617460646335) <= 0.15567951410224506

constraint constraint 2 1 2 of type
numeric_continuous_b<x<=c: 0.0 < link2_cross_section_dimension
(0.024905129862261795) <= 0.07783975705112253

constraint constraint_2_1 3 of type
numeric_continuous_b<=x<=c: 0.0025358087303231675 <=
linkl_cross_section_thickness (0.005071617460646335) <=
0.012679043651615837

384

constraint constraint_ 2 _1 4 of type
numeric_continuous_b<=x<=c: 0.0012452564931130898 <=
link2_cross_section_thickness (0.0024905129862261796) <=
0.006226282465565449

constraint constraint_1_4 1 of type
numeric_continuous_b<x<=c: 0.0 < accessible_region_area
(2.5830343986674387) <= 2.625

constraint constraint 2 5 1 of type
numeric_continuous_b<=x<=c: 0.0 <= tip_deflection
(0.009120385595540107) <= 0.02335192711533676

constraint constraint_3_1 1 of type
numeric_continuous_b<x<=c: 0.0 < proportional_gainl
(362.90360496525614) <= 1000.0

constraint constraint_ 3 1 2 of type
numeric_continuous_b<x<=c: 0.0 < derivative_gainl
(33.69220551656433) <= 1000.0

constraint constraint_3_1 3 of type
numeric_continuous_b<x<=c: 0.0 < proportional_gain2
(17.756563493544025) <= 1000.0

constraint constraint_3 1 4 of type
numeric_continuous_b<x<=c: 0.0 < derivative_gain2
(1.648530844849792) <= 1000.0

}

DESIGNER TRACES
{

Designer_1_1: depth: O, # of approaches: 6, current approach:
2 (base_at_right_above_midway_workspace_length), # of design cas-
es: 5, # of suppliers: 1 (DesignRequirements,) , # of consumers:
2 (Designer_1_2, Designer_1 3,)

Designer_1 2: depth: 1, # of approaches: 3, current approach:
0 (link_lengths_ratio_0.5), # of design cases: 9, # of suppliers:
2 (DesignRequirements, Designer_1_1,), # of consumers: 5
(Designer_1_3, Designer_2_1, Designer_1_4, Designer_2_5,
Designer_3_1,)

Designer_1_3: depth: 2, # of approaches: 2, current approach:
0 (thetal is_alphal minus_alpha2), # of design cases: 15, # of sup-
pliers: 3 (DesignRequirements, Designer_1 1, Designer_ 1 2,) ,#
of consumers: 1 (Designer_1_4,)

Designer_1_4: depth: 3, # of approaches: 1, current approach:
O (default), # of design cases: 15, # of suppliers: 2 (Designer_1_2,
Designer_1 _3,), # of consumers: 0

Designer_2_1: depth: 2, # of approaches: 4, current approach:
2 (dimention_min_ratio_2), # of design cases: 15, # of suppliers:
5 (Designer_1_2, Designer_2_4, Designer_2_2, DesignRequirements,
Designer_2_3,) , # of consumers: 2 (Designer_2 5, Designer_3_1,)

Designer_2_2: depth: 0, # of approaches: 2, current approach:
0 (steel_stainless_AISI_302_annealed), # of design cases: 5, # of

385

suppliers: 0, # of consumers: 3 (Designer_2_1, Designer_2_5,
Designer_3 1,)

Designer_2_ 3: depth: 0, # of approaches: 4, current approach:
0 (safety_factor_3), # of design cases: 5, # of suppliers: 0, # of
consumers: 1 (Designer_2_1,)

Designer_2_4: depth: 0, # of approaches: 2, current approach:
0 (hollow_round), # of design cases: 5, # of suppliers: 0, # of
consumers: 3 (Designer_2_1, Designer_2 5, Designer_3 1,)

Designer_2 5: depth: 3, # of approaches: 1, current approach:
0 (default), # of design cases: 15, # of suppliers: 5 (Designer_1_2,
Designer_2_4, Designer_2_2, DesignRequirements, Designer_2_1,) ,
of consumers: 0

Designer_3_1: depth: 3, # of approaches: 1, current approach:
0 (default), # of design cases: 15, # of suppliers: 5 (Designer_1 2,
Designer_2 4, Designer_2 2, DesignRequirements, Designer 2 1,) ,
of consumers: 0

}

DESIGN PRODUCT

{

Parameter: linkl_length, Value: 1.5567951410224505, Owner:
Agent: Designer_1_2,1D: 8

Parameter: link2_length, Value: 0.7783975705112253, Owner:
Agent: Designer_1 2,1D: 8

Parameter: linkl_cross_section_dimension, Value:
0.05071617460646335, Owner: Agent: Designer_2 1, 1D: 11

Parameter: link2_cross_section_dimension, Value:
0.024905129862261795, Owner: Agent: Designer_2_1, ID: 11

Parameter: linkl_cross_section_thickness, Value:
0.005071617460646335, Owner: Agent: Designer_2 1,1D: 11

Parameter: link2_cross_section_thickness, Value:
0.0024905129862261796, Owner: Agent: Designer_2 1, ID: 11

Parameter: proportional_gainl, Value: 362.90360496525614,
Owner: Agent: Designer_3_1, ID: 16

Parameter: derivative_gainl, Value: 33.69220551656433, Owner:
Agent: Designer_3 1, 1D: 16

Parameter: proportional_gain2, Value: 17.756563493544025,
Owner: Agent: Designer_3_1, ID: 16

Parameter: derivative_gain2, Value: 1.648530844849792, Owner:
Agent: Designer_3_1, ID: 16

Parameter: workspace, Value: [0.5, 0.75, 0.75, 0.75, 1.0,
1.0, 1.25, 1.25, 1.25, 1.5, 1.5, 1.75, 1.75, 2.0,][0.5, 0.25,
0.75, 1.75, 1.0, 1.5, 0.5, 1.25, 2.0, 0.75, 1.5, 1.0, 1.75, 1.5,
], Owner: Agent: DesignRequirements, ID: 2

Parameter: accessible_region_area, Value:
2.5830343986674387, Owner: Agent: Designer_1 4, 1D: 10

Parameter: base_location, Value: [2.75, 1.125,], Owner:
Agent: Designer_1 1,1D: 7

386

Parameter: thetal array, Value: [-1.841743177133317, -
2.234645941276905, -2.1030228587442052, -1.5803360074509354, -
2.101691900266075, -1.808417716248621, -2.4580611917887825, -
2.000640459862265, -1.5075116724748197, -2.3849331973654104, -
1.8020196084096765, -2.1393342274091958, -1.5200267188657943, -
1.370467760770914,], Owner: Agent: Designer_1_3, ID: 9

Parameter: theta2_array, Value: [0.0, 0.7722645770738099,
1.094542932510318, 0.9744725044399294, 1.5507376751335993,
1.4991016848920589, 1.7319514332910713, 1.8914492237267633,
1.576527017187388, 2.1499047363494395, 2.1499047363494395,
2.5516014242815754, 2.313412773511665, 2.8573894984143893,],
Owner: Agent: Designer_1_3,1D: 9

Parameter: thetal min, Value: -2.4580611917887825, Owner:
Agent: Designer_1 3,1D: 9

Parameter: thetal max, Value: -1.370467760770914, Owner:
Agent: Designer_1_3, ID: 9

Parameter: theta2_min, Value: 0.0, Owner: Agent:
Designer_1_3,1D: 9

Parameter: theta2_max, Value: 2.8573894984143893, Owner:
Agent: Designer_1 3,1D: 9

Parameter: material_name, Value:
steel_stainless_AISI_302_annealed, Owner: Agent: Designer_2_2, ID:
12

Parameter: material_mass_density, Value: 7920.0, Owner:
Agent: Designer_2 2,1D: 12

Parameter: material_yield_stress, Value: 2.6E8, Owner: Agent:
Designer_2 2,1D: 12

Parameter: material_elasticity_modulus, Value: 1.9E11, Owner:
Agent: Designer_2_2, ID: 12

Parameter: workload, Value: 1.0, Owner: Agent: DesignRequire-
ments, ID: 2

Parameter: tip_deflection, Value: 0.009120385595540107, Own-
er. Agent: Designer_2 5, ID: 15

Parameter: structural_safety factor, Value: 3.0, Owner:

Agent: Designer_2_3, ID: 13

Parameter: settling_time, Value: 3.0, Owner: Agent: DesignRe-
guirements, ID: 2

Parameter: maximum_overshoot, Value: 50.0, Owner: Agent:
DesignRequirements, ID: 2

}

D.4.2.3 DesignersApproach
3 3 Designer_1 1: 0 Designer_1 2: 0 Designer_1_3: 0 Designer_1_4:

0 Designer_2 1: 0 Designer_2_2: 0 Designer_2_3: 0 Designer_2 4: 0
Designer_2_5: 0 Designer_3_1: 0 unsuccessful

387

5 3 Designer_1 1: 0 Designer_1 2: 0 Designer_1 3: 0 Designer_1 4:

0 Designer 2 1: 1 Designer_2 2: 0 Designer_ 2 3: 0
Designer_2 5: 0 Designer_3_1: 0 unsuccessful

7 3 Designer_1 1: 0 Designer_1 2: 0 Designer_1_3:
0 Designer_2 1: 1 Designer_2_2: 0 Designer_2_3: 0
Designer_2_5: 0 Designer_3_1: 0 unsuccessful

10 3 Designer_1 1: 0 Designer_1 2: 1 Designer_1 3:
0 Designer_2 1: 1 Designer_2 2: 0 Designer_ 2 3: 0
Designer_2 5: 0 Designer_3_1: 0 unsuccessful

12 3 Designer_1_1: 0 Designer_1 2: 1 Designer_1_ 3:
0 Designer_2 1: 1 Designer_2_2: 0 Designer_2_3: 0
Designer_2_5: 0 Designer_3_1: 0 unsuccessful

15 3 Designer_1 1: 0 Designer_1 2: 2 Designer_1 3:
0 Designer 2 1: 1 Designer_2 2: 0 Designer_ 2 3: 0
Designer_2 5: 0 Designer_3_1: 0 unsuccessful

17 3 Designer_1_1: 0 Designer_1 2: 2 Designer_1_3:
0 Designer_2 1: 1 Designer_2_2: 0 Designer_2_3: 0
Designer_2_5: 0 Designer_3_1: 0 unsuccessful

21 3 Designer_1 1: 1 Designer_1 2: 0 Designer_1 3:
0 Designer_2 1: 1 Designer_2 2: 0 Designer_ 2 3: 0
Designer_2 5: 0 Designer_3_1: 0 unsuccessful

25 3 Designer_1_1: 0 Designer_1_2: 0 Designer_1_3:
0 Designer_2 1: 2 Designer_2_2: 0 Designer_2_3: 0
Designer_2_5: 0 Designer_3_1: 0 unsuccessful

29 3 Designer_1 _1: 1 Designer_1 2: 0 Designer_1_3:
0 Designer_2 1: 2 Designer_2 2: 0 Designer_ 2 3: 0
Designer_2 5: 0 Designer_3_1: 0 unsuccessful

32 3 Designer_1_1: 1 Designer_1_2: 1 Designer_1_3:
0 Designer_2 1: 2 Designer_2_2: 0 Designer_2_3: 0
Designer_2_5: 0 Designer_3_1: 0 unsuccessful

34 3 Designer_1 1: 1 Designer_1 2: 1 Designer_1 3:
0 Designer_2 1: 2 Designer_2 2: 0 Designer_ 2 3: 0
Designer_2 5: 0 Designer_3_1: 0 unsuccessful

37 3 Designer_1_1: 1 Designer_1_2: 2 Designer_1_3:
0 Designer_2 1: 2 Designer_2_2: 0 Designer_2_3: 0
Designer_2_5: 0 Designer_3_1: 0 unsuccessful

39 3 Designer_1 _1: 1 Designer_1 2: 2 Designer_1 3:
0 Designer_2 1: 2 Designer_2 2: 0 Designer_ 2 3: 0
Designer_2 5: 0 Designer_3_1: 0 unsuccessful

43 3 Designer_1 _1: 2 Designer_1 2: 0 Designer_1_3:
0 Designer_2 1: 2 Designer_2_2: 0 Designer_2_3: 0
Designer_2_5: 0 Designer_3_1: 0 successful

D.4.2.4 DesignConstraints

DesignConstraints

each active constraints as they change during the design process. The report includes any

388

Designer_ 2 4: 0

1 Designer_1_4:
Designer_2 _4: 0

0 Designer_1 _4:
Designer_2 4: 0

1 Designer_1_4:
Designer_2 4: 0

0 Designer_1 _4:
Designer_ 2 4: 0

1 Designer_1_4:
Designer_2 4: 0

0 Designer_1 4:
Designer_2 4: 0

0 Designer_1_4:
Designer_2 _4: 0

1 Designer_1 4:
Designer_2 4: 0

0 Designer_1_4:
Designer_2 _4: 0

1 Designer_1 4:
Designer_2 4: 0

0 Designer_1_4:
Designer_2 4: 0

1 Designer_1 4:
Designer_2 4: 0

0 Designer_1_4:
Designer_2 4: 0

file contains the boundaries and the value for the argument of

design cycle in which the design has not been successful—that is, a constraint violation has
happened. If the design process succeeds in finding a satisfactory design, the resulted
values for the argument and the boundaries of the constraints are reporte®astge-
Constraints file as the last line.The two fields at the beginning of each report for a
design cycle are the design cycle ID and the depth of the corresponding design state in the
dependency graph. The rest of the fields include the name of the design parameter and the

value assigned. Tow adjacent fields are separeted from each other by a semicolon *;'.

3 ; 3 ; 0.0 < linkl_length (1.5206906325745548) <= 1.75 ; 0.0 < link2_length
(0.7603453162872774) <= 1.5206906325745548 ; -3.141592653589793 <= thetal_min
(0.4992720772603446) < 1.8263830771681904 ; 0.4992720772603446 < thetal max
(1.8263830771681904) <= 3.141592653589793 ; -3.141592653589793 <= theta2_min
(0.0) < 2564106837681789 ; 0.0 < theta2 max (2.564106837681789) <=
3.141592653589793 ; 0.0 < link1_cross_section_dimension (0.12873882479062435) <=
0.1520690632574555 ; 0.0 < link2_cross_section_dimension (0.049265974918586156)
<= 0.07603453162872775 ; 0.006436941239531218 <= link1l_cross_section_thickness
(0.012873882479062435) <= 0.032184706197656086 ; 0.002463298745929308 <=
link2_cross_section_thickness (0.004926597491858616) <= 0.012316493729646539 ;
0.0 < accessible_region_area (2.820110874804171) <= 2.625 ; 0.0 <= tip_deflection
(0.0011051471277170148) <= 0.022810359488618325 ; 0.0 < proportional_gainl
(1375.245122855074) <= 1000.0 ; 0.0 < derivative_gainl (127.67864711435413) <=
1000.0 ; 0.0 < proportional_gain2 (29.61009191218797) <= 10000 ; 0.0 <
derivative_gain2 (2.749020093546075) <= 1000.0 ; unsuccessful

5 ; 3 ; 0 .0 < linkl_length (1.5206906325745548) <= 175 ; 0.0 <
link2_length (0.7603453162872774) <= 1.5206906325745548 ; -3.141592653589793 <=
thetal _min (0.4992720772603446) < 1.8263830771681904 ; 0.4992720772603446 <
thetal_max (1.8263830771681904) <= 3.141592653589793 ; -3.141592653589793 <=
theta2_min (0.0) < 2.564106837681789 ; 0.0 < theta2_max (2.564106837681789) <=
3.141592653589793 ; 0.0 < link1_cross_section_dimension (0.08529699024103615) <=
0.1520690632574555 ; 0.0 < link2_cross_section_dimension (0.03694948118893962) <=
0.07603453162872775 ; 0.0042648495120518074 <= linkl_cross_section_thickness
(0.008529699024103615) <= 0.021324247560259038 ; 0.0018474740594469812 <=
link2_cross_section_thickness (0.0036949481188939624) <= 0.009237370297234905 ;
0.0 < accessible_region_area (2.820110874804171) <= 2.625 ; 0.0 <= tip_deflection
(0.002602398618321901) <= 0.022810359488618325 ; 0.0 < proportional_gainl
(706.8546566810312) <= 1000.0 ; 0.0 < derivative_gainl (65.62484372542369) <=
1000.0 ; 0.0 < proportional_gain2 (22.104360987620353) <= 1000.0 ; 0.0 <
derivative_gain2 (2.0521831776196673) <= 1000.0 ; unsuccessful

7 ; 3; 0.0 < linkl_length (1.5206906325745548) <= 1.75 ; 0.0 < link2_length
(0.7603453162872774) <= 1.5206906325745548 ; -3.141592653589793 <= thetal_min
(1.4056476493802699) < 2.8131560547429113 ; 1.4056476493802699 < thetal_max
(2.8131560547429113) <= 3.141592653589793 ; -3.141592653589793 <= theta2_min (-
2.564106837681789) < 0.0 ; -2.564106837681789 < theta2_max (0.0) <=
3.141592653589793 ; 0.0 < link1_cross_section_dimension (0.08529699024103615) <=
0.1520690632574555 ; 0.0 < link2_cross_section_dimension (0.03694948118893962) <=
0.07603453162872775 ; 0.0042648495120518074 <= link1l_cross_section_thickness
(0.008529699024103615) <= 0.021324247560259038 ; 0.0018474740594469812 <=
link2_cross_section_thickness (0.0036949481188939624) <= 0.009237370297234905 ;

389

0.0 < accessible_region_area (2.9909553613956126) <= 2.625 ; 0.0 <= tip_deflection
(0.002602398618321901) <= 0.022810359488618325 ; 0.0 < proportional_gainl
(706.8546566810312) <= 1000.0 ; 0.0 < derivative_gainl (65.62484372542369) <=
1000.0 ; 0.0 < proportional_gain2 (22.104360987620353) <= 1000.0 ; 0.0 <
derivative_gain2 (2.0521831776196673) <= 1000.0 ; unsuccessful

10 ; 3 ; 00 < link1_length (1.3034491136353328) <= 1.75 ; 0.0 <
link2_length (0.9775868352264996) <= 1.3034491136353328 ; -3.141592653589793 <=
thetal_min (0.20863343229332243) < 1.5288401366019233 ; 0.20863343229332243 <
thetal max (1.5288401366019233) <= 3.141592653589793 ; -3.141592653589793 <=
theta2_min (0.0) < 2.3018677747641307 ; 0.0 < theta2_max (2.3018677747641307) <=
3.141592653589793 ; 0.0 < link1_cross_section_dimension (0.09164457471547738) <=
0.1303449113635333 ; 0.0 < link2_cross_section_dimension (0.04189922992805236) <=
0.09775868352264996 ; 0.004582228735773869 <= linkl_cross_section_thickness
(0.009164457471547737) <= 0.022911143678869345 ; 0.002094961496402618 <=
link2_cross_section_thickness (0.004189922992805236) <= 0.01047480748201309 ; 0.0
< accessible_region_area (2.805439246655777) <= 2.625 ; 0.0 <= tip_deflection
(0.002288904138117323) <= 0.022810359488618325 ; 0.0 < proportional_gainl
(683.6900561763787) <= 1000.0 ; 0.0 < derivative_gainl (63.47422722497149) <=
1000.0 ; 0.0 < proportional_gain2 (46.96085698845915) <= 10000 ; 0.0 <
derivative_gain2 (4.359876350747827) <= 1000.0 ; unsuccessful

12 ; 3 ; 00 < link1_length (1.3034491136353328) <= 1.75 ; 0.0 <
link2_length (0.9775868352264996) <= 1.3034491136353328 ; -3.141592653589793 <=
thetal _min (1.4056476493802699) < 3.106751884890758 ; 1.4056476493802699 <
thetal max (3.106751884890758) <= 3.141592653589793 ; -3.141592653589793 <=
theta2_min (-2.3018677747641307) < 0.0 ; -2.3018677747641307 < theta2_max (0.0)
<=3.141592653589793 ; 0.0 < link1_cross_section_dimension (0.09164457471547738)
<= 0.1303449113635333 ; 0.0 < link2_cross_section_dimension (0.04189922992805236)
<= 0.09775868352264996 ; 0.004582228735773869 <= linkl_cross_section_thickness
(0.009164457471547737) <= 0.022911143678869345 ; 0.002094961496402618 <=
link2_cross_section_thickness (0.004189922992805236) <= 0.01047480748201309 ; 0.0
< accessible_region_area (3.614846500459787) <= 2.625 ; 0.0 <= tip_deflection
(0.002288904138117323) <= 0.022810359488618325 ; 0.0 < proportional_gainl
(683.6900561763787) <= 1000.0 ; 0.0 < derivative_gainl (63.47422722497149) <=
1000.0 ; 0.0 < proportional_gain2 (46.96085698845915) <= 10000 ; 0.0 <
derivative_gain2 (4.359876350747827) <= 1000.0 ; unsuccessful

15 ; 3 ; 00 < link1_length (1.1405179744309162) <= 1.75 ; 0.0 <
link2_length (1.1405179744309162) <= 1.1405179744309162 ; -3.141592653589793 <=
thetal _min (-0.015281376429308269) < 1.4056476493802699 ; -0.015281376429308269 <
thetal max (1.4056476493802699) <= 3.141592653589793 ; -3.141592653589793 <=
theta2_min (0.0) < 2.257037398547587 ; 0.0 < theta2_max (2.257037398547587) <=
3.141592653589793 ; 0.0 < link1_cross_section_dimension (0.09746653452047076) <=
0.11405179744309163 ; 0.0 < link2_cross_section_dimension (0.04577063421833817)
<= 0.11405179744309163 ; 0.004873326726023538 <= linkl_cross_section_thickness
(0.009746653452047076) <= 0.02436663363011769 ; 0.0022885317109169086 <=
link2_cross_section_thickness (0.004577063421833817) <= 0.011442658554584543 ;

0.0 < accessible_region_area (3.0194741798453535) <= 2.625 ; 0.0 <= tip_deflection
(0.0023009346396080143) <= 0.022810359488618325 ; 0.0 < proportional_gainl
(688.5486322528478) <= 1000.0 ; 0.0 < derivative_gainl (63.925300571850855) <=
1000.0 ; 0.0 < proportional_gain2 (77.9986007314333) <= 1000.0 ; 00 <
derivative_gain2 (7.2414405640844794) <= 1000.0 ; unsuccessful

17 ; 3 0; 0 < linkl_length (1.1405179744309162) <= 1.75 ; 0.0 <
link2_length (1.1405179744309162) <= 1.1405179744309162 ; -3.141592653589793 <=
thetal _min (-3.0445985812993093) < 3.0131010733886336 ; -3.0445985812993093 <
thetal max (3.0131010733886336) <= 3.141592653589793 ; -3.141592653589793 <=
theta2_min (-2.257037398547587) < 0.0 ; -2.257037398547587 < theta2_max (0.0) <=
3.141592653589793 ; 0.0 < link1_cross_section_dimension (0.09746653452047076) <=
0.11405179744309163 ; 0.0 < link2_cross_section_dimension (0.04577063421833817)
<= 0.11405179744309163 ; 0.004873326726023538 <= linkl_cross_section_thickness

390

(0.009746653452047076) <= 0.02436663363011769 ; 0.0022885317109169086 <=
link2_cross_section_thickness (0.004577063421833817) <= 0.011442658554584543 ;

0.0 < accessible_region_area (4.225362012380889) <= 2.625 ; 0.0 <= tip_deflection
(0.0023009346396080143) <= 0.022810359488618325 ; 0.0 < proportional_gainl
(688.5486322528478) <= 1000.0 ; 0.0 < derivative_gainl (63.925300571850855) <=
1000.0 ; 0.0 < proportional_gain2 (77.9986007314333) <= 1000.0 ; 0.0 <
derivative_gain2 (7.2414405640844794) <= 1000.0 ; unsuccessful

21 ;3 ;00 < link1_length (1.75) <= 1.75 ; 0.0 < link2_length (0.875) <=
1.75 ; -3.141592653589793 <= thetal_min (-1.100195808110164) < 0.0 ; -
1.100195808110164 < thetal_max (0.0) <= 3.141592653589793 ; -3.141592653589793 <=
theta2_min (0.0) < 2.734731173047627 ; 0.0 < theta2_max (2.734731173047627) <=
3.141592653589793 ; 0.0 < link1_cross_section_dimension (0.09834270010059333) <=
0.17500000000000002 ; 0.0 < link2_cross_section_dimension (0.039545791119743025)
<= 0.08750000000000001 ; 0.004917135005029667 <= link1l_cross_section_thickness
(0.009834270010059334) <= 0.024585675025148333 ; 0.0019772895559871514 <=
link2_cross_section_thickness (0.003954579111974303) <= 0.009886447779935756 ;
0.0 < accessible_region_area (3.2318251863236065) <= 2.625 ; 0.0 <= tip_deflection
(0.003367425157030643) <= 0.02625 ; 0.0 < proportional_gainl (1301.9890850434604)
<= 1000.0 ; 0.0 < derivative_gainl (120.87750916061464) <= 1000.0 ; 0.0 <
proportional_gain2 (33.339936976502194) <= 1000.0 ; 0.0 < derivative_gain2
(3.0953013228654953) <= 1000.0 ; unsuccessful

25 ; 3 ; 00 < link1_length (1.5206906325745548) <= 1.75 ; 0.0 <
link2_length (0.7603453162872774) <= 1.5206906325745548 ; -3.141592653589793 <=
thetal _min (0.4992720772603446) < 1.8263830771681904 ; 0.4992720772603446 <
thetal_max (1.8263830771681904) <= 3.141592653589793 ; -3.141592653589793 <=
theta2_min (0.0) < 2.564106837681789 ; 0.0 < theta2_max (2.564106837681789) <=
3.141592653589793 ; 0.0 < link1_cross_section_dimension (0.04963495688385445) <=
0.1520690632574555 ; 0.0 < link2_cross_section_dimension (0.024632987459293078)
<= 0.07603453162872775 ; 0.0024817478441927225 <= link1_cross_section_thickness
(0.004963495688385445) <= 0.012408739220963612 ; 0.001231649372964654 <=
link2_cross_section_thickness (0.002463298745929308) <= 0.0061582468648232695 ;

0.0 < accessible_region_area (2.820110874804171) <= 2.625 ; 0.0 <= tip_deflection
(0.008766542738009385) <= 0.022810359488618325 ; 0.0 < proportional_gainl
(332.8892198101605) <= 1000.0 ; 0.0 < derivative_gainl (30.905650576732263) <=
1000.0 ; 0.0 < proportional_gain2 (16.743124612929197) <= 1000.0 ; 0.0 <
derivative_gain2 (1.5544425233865187) <= 1000.0 ; unsuccessful

29 ; 3 ;00 < linkl_length (1.75) <= 1.75 ; 0.0 < link2_length (0.875) <=
1.75 ; -3.141592653589793 <= thetal_min (-0.1684102529634819) <
0.8105232774602644 ; -0.1684102529634819 < thetal max (0.8105232774602644) <=
3.141592653589793 ; -3.141592653589793 <= theta2_min (-2.734731173047627) < 0.0 ;
-2.734731173047627 < theta2_max (0.0) <= 3.141592653589793 ; 0.0 <
link1_cross_section_dimension (0.05680396263726892) <= 0.17500000000000002 ; 0.0
< link2_cross_section_dimension (0.02636386074649535) <= 0.08750000000000001
0.002840198131863446 <= link1_cross_section_thickness (0.005680396263726892) <=
0.01420099065931723 ; 0.0013181930373247677 <= link2_cross_section_thickness
(0.0026363860746495354) <= 0.006590965186623838 ; 0.0 < accessible_region_area
(2.8756172456197544) <= 2.625 ; 0.0 <= tip_deflection (0.01105592332430511) <=
0.02625 ; 0.0 < proportional_gainl (568.7736692745627) <= 1000.0 ; 0.0 <
derivative_gainl (52.80531550366831) <= 1000.0 ; 0.0 < proportional_gain2
(23.980702322073615) <= 1000.0 ; 0.0 < derivative_gain2 (2.2263839212735537) <=
1000.0 ; unsuccessful

32 ; 3;00«< linkl_length (1.5) <= 1.75 ; 0.0 < link2_length (1.125) <=
15 ; -3.141592653589793 <= thetal min (-1.3926362806486803) < 0.0 ; -
1.3926362806486803 < thetal_max (0.0) <= 3.141592653589793 ; -3.141592653589793
<=theta2_min (0.0) < 2.4049686515706643 ; 0.0 < theta2_max (2.4049686515706643)
<= 3.141592653589793 ; 0.0 < link1_cross_section_dimension (0.058845025683956616)
<= 0.15000000000000002 ; 0.0 < link2_cross_section_dimension
(0.030261681468808716) <= 0.1125 ; 0.002942251284197831 <=

391

link1_cross_section_thickness (0.005884502568395662) <= 0.014711256420989154 ;
0.0015130840734404359 <= link2_cross_section_thickness (0.0030261681468808717) <=
0.007565420367202179 ; 0.0 < accessible_region_area (4.090869074405497) <= 2.625

;7 0.0 <= tip_deflection (0.010195070649215895) <= 0.02625 ; 0.0 <
proportional_gainl (553.0202499656973) <= 1000.0 ; 0.0 < derivative_gainl
(51.342757861140285) <= 1000.0 ; 0.0 < proportional_gain2 (48.23124298809619) <=
1000.0 ; 0.0 < derivative_gain2 (4.477819809009244) <= 1000.0 ; unsuccessful

34 ; 3;00 < link1_length (1.5) <= 1.75 ; 0.0 < link2_length (1.125) <=
15 ; -3.141592653589793 <= thetal_min (0.0) < 1.0064101236192153 ; 0.0 <
thetal_max (1.0064101236192153) <= 3.141592653589793 ; -3.141592653589793 <=
theta2_min (-2.4049686515706643) < 0.0 ; -2.4049686515706643 < theta2_max (0.0)
<= 3.141592653589793 ; 0.0 < linkl_cross_section_dimension (0.058845025683956616)
<= 0.15000000000000002 ; 0.0 < link2_cross_section_dimension
(0.030261681468808716) <= 0.1125 ; 0.002942251284197831 <=
link1_cross_section_thickness (0.005884502568395662) <= 0.014711256420989154 ;
0.0015130840734404359 <= link2_cross_section_thickness (0.0030261681468808717) <=
0.007565420367202179 ; 0.0 < accessible_region_area (2.9563297381314446) <= 2.625
;0 0.0 <= tip_deflection (0.010195070649215895) <= 0.02625 ; 0.0 <
proportional_gainl (553.0202499656973) <= 1000.0 ; 0.0 < derivative_gainl
(51.342757861140285) <= 1000.0 ; 0.0 < proportional_gain2 (48.23124298809619) <=
1000.0 ; 0.0 < derivative_gain2 (4.477819809009244) <= 1000.0 ; unsuccessful

37 ; 3 ; 0.0 < linkl_length (1.3125) <= 1.75 ; 0.0 < link2_length (1.3125)
<= 1.3125 ; -3.141592653589793 <= thetal_min (-1.6959077469403279) < 0.0 ; -
1.6959077469403279 < thetal max (0.0) <= 3.141592653589793 ; -3.141592653589793
<=theta2_min (0.0) < 2.3535232653876097 ; 0.0 < theta2_max (2.3535232653876097)
<=3.141592653589793 ; 0.0 < link1_cross_section_dimension (0.06150337501251079)
<= 0.13125 ; 0.0 < link2_cross_section_dimension (0.03342265575891957) <= 0.13125
; 0.0030751687506255397 <= link1l_cross_section_thickness (0.006150337501251079)
<= 0.015375843753127698 ; 0.0016711327879459785 <= link2_cross_section_thickness
(0.003342265575891957) <= 0.008355663939729892 ; 0.0 < accessible_region_area
(4.981729006637212) <= 2.625 ; 0.0 <= tip_deflection (0.010030399962673136) <=
0.02625 ; 0.0 < proportional_gainl (570.2584810235578) <= 1000.0 ; 0.0 <
derivative_gainl (52.94316638725306) <= 1000.0 ; 0.0 < proportional_gain2
(77.7232311714316) <= 1000.0 ; 0.0 < derivative_gain2 (7.215875075944809) <=
1000.0 ; unsuccessful

39 ; 3 ; 0.0 < linkl_length (1.3125) <= 1.75 ; 0.0 < link2_length (1.3125)
<= 1.3125 ; -3.141592653589793 <= thetal min (0.0) < 1.1892199349229913 ; 0.0 <
thetal_max (1.1892199349229913) <= 3.141592653589793 ; -3.141592653589793 <=
theta2_min (-2.3535232653876097) < 0.0 ; -2.3535232653876097 < theta2_max (0.0)
<=3.141592653589793 ; 0.0 < link1_cross_section_dimension (0.06150337501251079)
<= 0.13125 ; 0.0 < link2_cross_section_dimension (0.03342265575891957) <= 0.13125
; 0.0030751687506255397 <= link1l_cross_section_thickness (0.006150337501251079)
<= 0.015375843753127698 ; 0.0016711327879459785 <= link2_cross_section_thickness
(0.003342265575891957) <= 0.008355663939729892 ; 0.0 < accessible_region_area
(3.4933335588362864) <= 2.625 ; 0.0 <= tip_deflection (0.010030399962673136) <=
0.02625 ; 0.0 < proportional_gainl (570.2584810235578) <= 1000.0 ; 0.0 <
derivative_gainl (52.94316638725306) <= 1000.0 ; 0.0 < proportional_gain2
(77.7232311714316) <= 1000.0 ; 0.0 < derivative_gain2 (7.215875075944809) <=
1000.0 ; unsuccessful

43 ; 3 ; 00 < link1_length (1.5567951410224505) <= 1.75 ; 0.0 <
link2_length (0.7783975705112253) <= 1.5567951410224505 ; -3.141592653589793 <=
thetal_min (-2.4580611917887825) < -1.370467760770914 ; -2.4580611917887825 <
thetal_max (-1.370467760770914) <= 3.141592653589793 ; -3.141592653589793 <=
theta2_min (0.0) < 2.8573894984143893 ; 0.0 < theta2_max (2.8573894984143893) <=
3.141592653589793 ; 0.0 < link1_cross_section_dimension (0.05071617460646335) <=
0.15567951410224506 ; 0.0 < link2_cross_section_dimension (0.024905129862261795)
<= 0.07783975705112253 ; 0.0025358087303231675 <= linkl_cross_section_thickness
(0.005071617460646335) <= 0.012679043651615837 ; 0.0012452564931130898 <=

392

link2_cross_section_thickness (0.0024905129862261796) <= 0.006226282465565449 ;
0.0 < accessible_region_area (2.5830343986674387) <= 2.625 ; 0.0 <= tip_deflection
(0.009120385595540107) <= 0.02335192711533676 ; 0.0 < proportional_gainl
(362.90360496525614) <= 1000.0 ; 0.0 < derivative_gainl (33.69220551656433) <=
1000.0 ; 0.0 < proportional_gain2 (17.756563493544025) <= 1000.0 ; 0.0 <
derivative_gain2 (1.648530844849792) <= 1000.0 ; successful

D.4.2.5 DesignParameters

The report on the values of each design parameter during the design process is given in
DesignParameters file. The report includes any design cycle in which the design has
not been successful—that is, a constraint violation has happened. If the design process suc-
ceeds in finding a satisfactory design, the resulted values for the design parameters are
included in theDesignParameters file as the last line. The two fields at the beginning

of each report for a design cycle are the design cycle ID and the depth of the corresponding
design state in the dependency graph. The rest of the fields include the name of the design

parameter and the value assigned. Tow adjacent fields are separeted from each other by a

semicolon *;’.
3 ; 3 ; base_location: [-0.25, 1.125,] ; link1_length:
1.5206906325745548 ; link2_length: 0.7603453162872774 ; thetal_ array: |

1.8263830771681904, 1.7660965980901309, 1.445493514101444, 0.4992720772603446,
1.148799562275311, 0.7558123379402226, 1.481769289557572, 0.9797513603926523,
0.590231429395585, 1.3474065484141704, 0.9252198819686772, 1.295316288057006,
0.9881006072902687, 1.4056476493802699,] ; theta2_array: [2.564106837681789,

2.0788600827515014, 2.429133701286048, 2.276603865067832, 2.1743447682918706,
2.1100707391131763, 1.679116133310014, 1.8444700645133778, 1.5167159151807206,
1.4352464794149695, 1.4352464794149695, 1.0627325708382909, 0.8649887885219596,

0.0,] ; thetal_min: 0.4992720772603446 ; thetal_max: 1.8263830771681904 ;
theta2_min: 0.0 ; theta2_max: 2.564106837681789 ; accessible_region_area:
2.820110874804171 ; link1_cross_section_dimension: 0.12873882479062435 ;
link2_cross_section_dimension: 0.049265974918586156 ;
link1l_cross_section_thickness: 0.012873882479062435 ;
link2_cross_section_thickness: 0.004926597491858616 ; material_name:
steel_stainless_AISI_302_annealed ; material_mass_density: 7920.0 ;
material_yield_stress: 2.6E8 ; material_elasticity_modulus: 1.9E11 ;
structural_safety factor: 3.0 ; link_cross_sectional_shape: hollow_round ;

tip_deflection: 0.0011051471277170148 ; proportional_gainl: 1375.245122855074 ;
proportional_gain2: 29.61009191218797 ; derivative_gainl: 127.67864711435413 ;
derivative_gain2: 2.749020093546075 ; unsuccessful

5 ; 3 ; base_location: [-0.25, 1.125,] ; link1_length:
1.5206906325745548 ; link2_length: 0.7603453162872774 ; thetal_array: [
1.8263830771681904, 1.7660965980901309, 1.445493514101444, 0.4992720772603446,

393

1.148799562275311,
0.590231429395585,

2.0788600827515014,
2.1100707391131763,

0.7558123379402226,
1.3474065484141704,
0.9881006072902687, 1.4056476493802699,]
2.429133701286048,

1.679116133310014,

1.481769289557572,

0.9252198819686772,

0.9797513603926523,
1.295316288057006,

; theta2_array: [2.564106837681789,

2.276603865067832,
1.8444700645133778,

2.1743447682918706,
1.5167159151807206,

thetal_max: 1.8263830771681904 ;

1.4352464794149695, 1.4352464794149695, 1.0627325708382909, 0.8649887885219596,
0.0,] ; thetal_min: 0.4992720772603446 ;
theta2 min: 0.0 ; theta2 max: 2.564106837681789 ;

2.820110874804171

; linkl_cross_section_dimension:

link2_cross_section_dimension:
link1_cross_section_thickness:

link2_cross_section_thickness:

steel_stainless_AISI_302_annealed ;

material_yield_stress:

structural_safety factor:
tip_deflection: 0.002602398618321901 ;
proportional_gain2: 22.

2.6E8 ;
3.0 ;

104360987620353 ;

accessible_region_area:
0.08529699024103615 ;

0.03694948118893962
0.008529699024103615 ;

0.0036949481188939624 ;
material_mass_density:
material_elasticity _modulus:
link_cross_sectional_shape:
proportional_gainl: 706.8546566810312 ;
derivative_gainl: 65.62484372542369 ;

derivative_gain2: 2.0521831776196673 ; unsuccessful

7 5, 3
1.5206906325745548

base_location: [
; link2_length:

-0.25, 1.125,]

0.7603453162872774

material_name:
7920.0 ;
1.9E11 ;

hollow_round ;

; link1_length:
thetal_array: [

2.7046861288150095, 2.8131560547429113, 2.4136404800294935, 1.5251219456423235,

2.192130396296806,
1.4952123273414886,
1.5477223095495816,
-2.0788600827515014,
2.1743447682918706,
1.8444700645133778,
1.4352464794149695,

1.8028667266938365,
2.216372771621116,
1.4056476493802699,
-2.429133701286048,
-2.1100707391131763,
-1.5167159151807206,
-1.0627325708382909,
thetal_min: 1.4056476493802699 ;

2.449405603431744,
1.794186105175623,

1.9955588294202582,
1.9711139855247022,

] ; theta2_array: [-2.564106837681789,

-0.8649887885219596,
thetal_max: 2.8131560547429113 ;

-2.276603865067832,
-1.679116133310014,
-1.4352464794149695,

0.0,] ;
theta2_min: -

2564106837681789 theta2_max: 0.0 ; accessible_region_area: 2.9909553613956126
link1_cross_section_dimension:

I|nk2 _cross_section_dimension:

link1_cross_section_thickness:

link2_cross_section_thickness:

steel_stainless_AISI_302_annealed ;

material_yield_stress:

structural_safety factor:
0.002602398618321901 ;

tip_deflection:

0.08529699024103615

0.03694948118893962
0.008529699024103615 ;

0.0036949481188939624 ;

material_name:

material_mass_density: 7920.0 ;
2.6E8 ; material_elasticity_modulus: 1.9E11 ;
3.0 ; link_cross_sectional_shape: hollow_round ;

proportional_gain2: 22.104360987620353 ;
derivative_gain2: 2.0521831776196673 ; unsuccessful

0 ; 3 ;
1.3034491136353328

base_location: [
; link2_length:

-0.25, 1.125,]

0.9775868352264996

proportional_gainl: 706.8546566810312 ;
derivative_gainl: 65.62484372542369 ;

; link1_length:
thetal_array: [

1.424317321092442, 1.5288401366019233, 1.1019842048851936, 0.20863343229332243,
0.5110397779965163, 1.3201063897994902, 0.7907317942585098,
1.2192495168197963, 0.7970628503743032, 1.2080711506977486,
] ; theta2_array: [2.3018677747641307,

0.8875495067908978,
0.4516272023620346,
0.9193315561019147,
1.9271388340635636,
1.9534390483677553,
1.353884122857439,
00, 1 ;
theta2_min: 0.0 ;
2.805439246655777

theta2_max:

1.4056476493802699,
2.206935311932865,

1.576301860113302,
1.353884122857439,

thetal min: 0.20863343229332243 ;
2.3018677747641307 ;
; linkl_cross_section_dimension:

link2_cross_section_dimension:
link1_cross_section_thickness:

link2_cross_section_thickness:

steel_stainless_AISI_302_annealed ;

material_yield_stress:

structural_safety factor:

2.089777814761733,
1.7240481573006552,
1.0074315214662204,

2.0069125658978155,
1.4286767467902144,
0.8214215182898781,

thetal max: 1.5288401366019233 ;
accessible_region_area:
0.09164457471547738 ;

0.04189922992805236

0.009164457471547737 ;
0.004189922992805236 ; material_name:
material_mass_density: 7920.0 ;
2.6E8 ; material_elasticity_modulus: 1.9E11 ;
3.0 ; link_cross_sectional_shape: hollow_round ;

394

tip_deflection: 0.002288904138117323 ; proportional_gainl: 683.6900561763787 ;
proportional_gain2: 46.96085698845915 ; derivative_gainl: 63.47422722497149 ;
derivative_gain2: 4.359876350747827 ; unsuccessful

12 ; 3 ; base_location: [-0.25, 1.125,] ; link1_length:
1.3034491136353328 ; link2_length: 0.9775868352264996 ; thetal_array: [
3.106751884890758, 3.050412516231119, 2.757149789245744, 1.815760590609346,
2.4533804517812197, 2.047639286637543, 2.611068503189826, 2.184578395554401,
1.6338165543750391, 2.34452980321549, 1.9223431367699968, 2.0583591228839597,
1.6164913607379354, 1.4056476493802699,] ; theta2_array: [-2.3018677747641307,
-1.9271388340635636, -2.206935311932865, -2.089777814761733, -
2.0069125658978155, -1.9534390483677553, -1.576301860113302, -
1.7240481573006552, -1.4286767467902144, -1.353884122857439, -1.353884122857439,
-1.0074315214662204, -0.8214215182898781, 0.0,] ; thetal_min:
1.4056476493802699 ; thetal_max: 3.106751884890758 ; theta2_min: -
23018677747641307 theta2_max: 0.0 ; accessible_region_area: 3.614846500459787

link1_cross_section_dimension: 0.09164457471547738
I|nk2 cross_section_dimension: 0.04189922992805236
link1l_cross_section_thickness: 0.009164457471547737
link2_cross_section_thickness: 0.004189922992805236 ; material_name:
steel_stainless_AISI_302_annealed ; material_mass_density: 7920.0 ;
material_yield_stress: 2.6E8 ; material_elasticity_modulus: 1.9E11 ;
structural_safety factor: 3.0 ; link_cross_sectional_shape: hollow_round ;
tip_deflection: 0.002288904138117323 ; proportional_gainl: 683.6900561763787 ;
proportional_gain2: 46.96085698845915 ; derivative_gainl: 63.47422722497149 ;
derivative_gain2: 4.359876350747827 ; unsuccessful

15 ; 3 ; base_location: [-0.25, 1.125,] ; link1_length:
1.1405179744309162 ; link2_length: 1.1405179744309162 ; thetal_array: [
1.1370159037178065, 1.3406659269527652, 0.8460329207423041, -
0.015281376429308269, 0.6829069715921305, 0.3176379961234216,

1.1876970727287808, 0.6375115785982658, 0.3372431634147429, 1.1131630073599905,
0.6909763409144974, 1.1351434646514271, 0.8616629222248777, 1.4056476493802699,
] ; theta2_array: [2.257037398547587, 1.8979207989275113, 2.16706815264633,

2.054956775761285, 1.9751160153878562, 1.923403072387216, 1.5557807475317544,
1.7002870326163788, 1.4109574299075878, 1.337453305315305, 1.337453305315305,
0.9961433442788543, 0.8124970723900948, 0.0,] ; thetal_min: -
0.015281376429308269 ; thetal _max: 1.4056476493802699 ; theta2_min: 0.0 ;
theta2_max: 2.257037398547587 ; accessible_region_area: 3.0194741798453535 ;

linkl_cross_section_dimension: 0.09746653452047076 ;
link2_cross_section_dimension: 0.04577063421833817 ;
link1l_cross_section_thickness: 0.009746653452047076
link2_cross_section_thickness: 0.004577063421833817 ; material_name:
steel_stainless_AISI_302_annealed ; material_mass_density: 7920.0 ;
material_yield_stress: 2.6E8 ; material_elasticity _modulus: 1.9E11 ;
structural_safety factor: 3.0 ; link_cross_sectional_shape: hollow_round ;

tip_deflection: 0.0023009346396080143 ; proportional_gainl: 688.5486322528478 ;
proportional_gain2: 77.9986007314333 ; derivative_gainl: 63.925300571850855
derivative_gain2: 7.2414405640844794 ; unsuccessful

17 ; 3 base location: [-0.25, 1.125,] ; link1_length:
1.1405179744309162 ; link2_length: 1.1405179744309162 ; thetal_array: [-
2.8891320049141926, -3.0445985812993093, 3.0131010733886336, 2.0396753993319763,
2.6580229869799865, 2.2410410685106377, 2.7434778202605354, 2.337798611214645,
1.7482005933223306, 2.450616312675296, 2.0284296462298026, 2.131286808930281,
1.6741599946149726, 1.4056476493802699, | ; theta2_ array: [-2.257037398547587,
-1.8979207989275113, -2.16706815264633, -2.054956775761285, -1.9751160153878562,
-1.923403072387216, -1.5557807475317544, -1.7002870326163788, -
1.4109574299075878, -1.337453305315305, -1.337453305315305, -0.9961433442788543,
-0.8124970723900948, 0.0,] ; thetal_min: -3.0445985812993093 ; thetal max:
3.0131010733886336 ; theta2 min: -2.257037398547587 ; theta2 max: 0.0 ;

395

accessible_region_area: 4.225362012380889 ; link1_cross_section_dimension:

0.09746653452047076 ; link2_cross_section_dimension: 0.04577063421833817 ;
link1l_cross_section_thickness: 0.009746653452047076 ;
link2_cross_section_thickness: 0.004577063421833817 ; material_name:
steel_stainless_AISI_302_annealed ; material_mass_density: 7920.0 ;
material_yield_stress: 2.6E8 ; material_elasticity_modulus: 1.9E11 ;
structural_safety factor: 3.0 ; link_cross_sectional_shape: hollow_round ;

tip_deflection: 0.0023009346396080143 ; proportional_gainl: 688.5486322528478 ;
proportional_gain2: 77.9986007314333 ; derivative_gainl: 63.925300571850855 ;
derivative_gain2: 7.2414405640844794 ; unsuccessful

21 ; 3 ; base_location: [1.25, -0.625,] ; link1_length: 1.75 ;
link2_length: 0.875 ; thetal_array: [-1.100195808110164, -0.8698819755295635, -
0.8712940501598057, -0.4772567274755424, -0.6704736106568384, -
0.5248007342188962, -0.4399759547909189, -0.48276592332573415, 0.0, -
0.33802344229706194, -0.29058324508516703, -0.21352541428790528, -
0.06226427460513628, -0.023058374852110985,] ; theta2_array: [

2.2824160139785437, 2.734731173047627, 2.1543828616858436, 0.8319041739002149,
1.9469512385592467, 1.323381881327229, 2.5620892507176984, 1.673015058430811,
0.0, 2.229693048804815, 1.323381881327229, 1.881913585692951, 0.8319041739002149,
1.1503551299650279,] ; thetal _min: -1.100195808110164 ; thetal_max: 0.0 ;

theta2_min: 0.0 ; theta2_max: 2.734731173047627 ; accessible_region_area:
3.2318251863236065 ; linkl_cross_section_dimension: 0.09834270010059333
link2_cross_section_dimension: 0.039545791119743025 ;
link1l_cross_section_thickness: 0.009834270010059334 ;
link2_cross_section_thickness: 0.003954579111974303 ; material_name:
steel_stainless_AISI_302_annealed ; material_mass_density: 7920.0 ;
material_yield_stress: 2.6E8 ; material_elasticity_modulus: 1.9E11 ;
structural_safety factor: 3.0 ; link_cross_sectional_shape: hollow_round ;

tip_deflection: 0.003367425157030643 ; proportional_gainl: 1301.9890850434604 ;
proportional_gain2: 33.339936976502194 ; derivative_gainl: 120.87750916061464 ;
derivative_gain2: 3.0953013228654953 ; unsuccessful

25 ; 3 ; base_location: [-0.25, 1.125,] ; link1_length:
1.5206906325745548 ; link2_length: 0.7603453162872774 ; thetal_array: [
1.8263830771681904, 1.7660965980901309, 1.445493514101444, 0.4992720772603446,
1.148799562275311, 0.7558123379402226, 1.481769289557572, 0.9797513603926523,
0.590231429395585, 1.3474065484141704, 0.9252198819686772, 1.295316288057006,
0.9881006072902687, 1.4056476493802699,] ; theta2_array: [2.564106837681789,
2.0788600827515014, 2.429133701286048, 2.276603865067832, 2.1743447682918706,
2.1100707391131763, 1.679116133310014, 1.8444700645133778, 1.5167159151807206,
1.4352464794149695, 1.4352464794149695, 1.0627325708382909, 0.8649887885219596,
0.0,] ; thetal_min: 0.4992720772603446 ; thetal max: 1.8263830771681904 ;

theta2_min: 0.0 ; theta2_max: 2.564106837681789 ; accessible_region_area:
2.820110874804171 ; linkl cross_section_dimension: 0.04963495688385445 ;
link2_cross_section_dimension: 0.024632987459293078 ;
link1l_cross_section_thickness: 0.004963495688385445 ;
link2_cross_section_thickness: 0.002463298745929308 ; material_name:
steel_stainless_AISI_302_annealed ; material_mass_density: 7920.0 ;
material_yield_stress: 2.6E8 ; material_elasticity_modulus: 1.9E11 ;
structural_safety factor: 3.0 ; link_cross_sectional_shape: hollow_round ;

tip_deflection: 0.008766542738009385 ; proportional_gainl: 332.8892198101605 ;
proportional_gain2: 16.743124612929197 ; derivative_gainl: 30.905650576732263 ;
derivative_gain2: 1.5544425233865187 ; unsuccessful

29 ; 3 ; base_location: [1.25, -0.625,] ; link1_length: 1.75 ;
link2_length: 0.875 ; thetal_array: [-0.07580939898497163, -0.1684102529634819,
0.1737520429919912, 0.06226427460513628, 0.36517495386630794,
0.29058324508516703, 0.4399759547909189, 0.48276592332573415, 0.0,

0.6977304418820188, 0.5248007342188962, 0.8105232774602644, 0.4772567274755424,
0.7016436037602003,] ; theta2_array: [-2.2824160139785437, -2.734731173047627,

396

-2.1543828616858436, -0.8319041739002149, -1.9469512385592467, -
1.323381881327229, -2.5620892507176984, -1.673015058430811, 0.0, -
2.229693048804815, -1.323381881327229, -1.881913585692951, -0.8319041739002149, -
1.1503551299650279,] ; thetal _min: -0.1684102529634819 ; thetal max:
0.8105232774602644 ; theta2_min: -2.734731173047627 ; theta2_max: 0.0 ;
accessible_region_area: 2.8756172456197544 ; link1_cross_section_dimension:
0.05680396263726892 ; link2_cross_section_dimension: 0.02636386074649535 ;
linkl_cross_section_thickness: 0.005680396263726892 ;
link2_cross_section_thickness: 0.0026363860746495354 ; material_name:
steel_stainless_AISI_302_annealed ; material_mass_density: 7920.0 ;
material_yield_stress: 2.6E8 ; material_elasticity_modulus: 1.9E11 ;
structural_safety factor: 3.0 ; link_cross_sectional_shape: hollow_round ;
tip_deflection: 0.01105592332430511 ; proportional_gainl: 568.7736692745627 ;
proportional_gain2: 23.980702322073615 ; derivative_gainl: 52.80531550366831 ;
derivative_gain2: 2.2263839212735537 ; unsuccessful

32 ; 3 ; base_location: [1.25, -0.625,] ; link1_length: 1.5 ;
link2_length: 1.125 ; thetal_array: [-1.3926362806486803, -1.3671005125019788, -
1.1272751934818368, -0.5430906798841296, -0.8789827928117926, -0.63961211611278,
-0.8410686705679303, -0.6435011087932843, 0.0, -0.6146562790145749, -
0.4053946269790508, -0.4094122604468562, -0.12809822701372353, -
0.1190991371835603,] ; theta2_array: [2.0943951023931953, 2.4049686515706643,
1.9904097103647405, 0.7901993345727791, 1.8139252921554911, 1.2505347847626034,
2.3005239830218627, 1.5707963267948966, 0.0, 2.052131395668969,
1.2505347847626034, 1.7570566303714525, 0.7901993345727791, 1.0894612579208243,
] ; thetal_min: -1.3926362806486803 ; thetal max: 0.0 ; theta2_min: 0.0 ;
theta2_max: 2.4049686515706643 ; accessible_region_area: 4.090869074405497 ;
link1_cross_section_dimension: 0.058845025683956616 ;
link2_cross_section_dimension: 0.030261681468808716 ;
linkl_cross_section_thickness: 0.005884502568395662 ;
link2_cross_section_thickness: 0.0030261681468808717 ; material_name:
steel_stainless_AISI_302_annealed ; material_mass_density: 7920.0 ;
material_yield_stress: 2.6E8 ; material_elasticity_modulus: 1.9E11 ;
structural_safety factor: 3.0 ; link_cross_sectional_shape: hollow_round ;
tip_deflection: 0.010195070649215895 ; proportional_gainl: 553.0202499656973 ;
proportional_gain2: 48.23124298809619 ; derivative_gainl: 51.342757861140285 ;
derivative_gain2: 4.477819809009244 ; unsuccessful

34 ; 3 ; base_location: [1.25, -0.625,] ; link1_length: 1.5 ;
link2_length: 1.125 ; thetal_array: [0.21663107355354483, 0.32880828400893347,
0.42973318631402224, 0.12809822701372353, 0.5736841360212621,
0.4053946269790508, 0.8410686705679303, 0.6435011087932843, 0.0,
0.9743632785995318, 0.63961211611278, 1.0064101236192153, 0.5430906798841296,
0.7976843660916495,] ; theta2_array: [-2.0943951023931953, -
2.4049686515706643, -1.9904097103647405, -0.7901993345727791, -
1.8139252921554911, -1.2505347847626034, -2.3005239830218627, -
1.5707963267948966, 0.0, -2.052131395668969, -1.2505347847626034, -
1.7570566303714525, -0.7901993345727791, -1.0894612579208243,] ; thetal_min:
0.0 ; thetal _max: 1.0064101236192153 ; theta2_min: -2.4049686515706643 ;
theta2_max: 0.0 ; accessible_region_area: 2.9563297381314446 ;
linkl_cross_section_dimension: 0.058845025683956616 ;
link2_cross_section_dimension: 0.030261681468808716 ;
link1l_cross_section_thickness: 0.005884502568395662 ;
link2_cross_section_thickness: 0.0030261681468808717 ; material_name:
steel_stainless_AISI_302_annealed ; material_mass_density: 7920.0 ;
material_yield_stress: 2.6E8 ; material_elasticity_modulus: 1.9E11 ;
structural_safety factor: 3.0 ; link_cross_sectional_shape: hollow_round ;

tip_deflection: 0.010195070649215895 ; proportional_gainl: 553.0202499656973 ;
proportional_gain2: 48.23124298809619 ; derivative_gainl: 51.342757861140285 ;
derivative_gain2: 4.477819809009244 ; unsuccessful

397

37 ; 3 ; base_location: [1.25, -0.625,] ; link1_length: 1.3125 ;
link2_length: 1.3125 ; thetal_array: [-1.6176994043853186, -1.6959077469403279,

-1.3283565971082436, -0.5983223570106451, -1.0466081901196598, -
0.7349915458796219, -1.1278852827212578, -0.7751933733103613, 0.0, -
0.8295129353380343, -0.5007740567458927, -0.5677499767558721, -
0.18332990414023892, -0.19923532829879925,] ; theta2_array: [

2.0593936016755015, 2.3535232653876097, 1.9591711870486728, 0.7816522611508834,
1.787917723448789, 1.2357656026255144, 2.255770565442515, 1.5503867466207224,
0.0, 2.018732870261025, 1.2357656026255144, 1.7324978166841027,
0.7816522611508834, 1.0770558855056875,] ; thetal_min: -1.6959077469403279 ;
thetal max: 0.0 ; theta2_min: 0.0 ; theta2_max: 2.3535232653876097 ;
accessible_region_area: 4.981729006637212 ; link1_cross_section_dimension:
0.06150337501251079 ; link2_cross_section_dimension: 0.03342265575891957 ;
linkl_cross_section_thickness: 0.006150337501251079 ;
link2_cross_section_thickness: 0.003342265575891957 ; material_name:
steel_stainless_AISI_302_annealed ; material_mass_density: 7920.0 ;
material_yield_stress: 2.6E8 ; material_elasticity_modulus: 1.9E11 ;
structural_safety factor: 3.0 ; link_cross_sectional_shape: hollow_round ;
tip_deflection: 0.010030399962673136 ; proportional_gainl: 570.2584810235578 ;
proportional_gain2: 77.7232311714316 ; derivative_gainl: 52.94316638725306 ;
derivative_gain2: 7.215875075944809 ; unsuccessful

39 ; 3 ; base_location: [1.25, -0.625,] ; link1_length: 1.3125 ;
link2_length: 1.3125 ; thetal_array: [0.4416941972901832, 0.6576155184472824,
0.6308145899404292, 0.18332990414023892, 0.7413095333291294, 0.5007740567458927,

1.1278852827212578, 0.7751933733103613, 0.0, 1.1892199349229913,
0.7349915458796219, 1.1647478399282312, 0.5983223570106451, 0.8778205572068885,
] ; theta2_array: [-2.0593936016755015, -2.3535232653876097, -
1.9591711870486728, -0.7816522611508834, -1.787917723448789, -
1.2357656026255144, -2.255770565442515, -1.5503867466207224, 0.0, -
2.018732870261025, -1.2357656026255144, -1.7324978166841027, -
0.7816522611508834, -1.0770558855056875,] ; thetal_min: 0.0 ; thetal_max:
1.1892199349229913 ; theta2_min: -2.3535232653876097 ; theta2_max: 0.0 ;
accessible_region_area: 3.4933335588362864 ; link1_cross_section_dimension:
0.06150337501251079 ; link2_cross_section_dimension: 0.03342265575891957 ;
linkl_cross_section_thickness: 0.006150337501251079 ;
link2_cross_section_thickness: 0.003342265575891957 ; material_name:
steel_stainless_AISI_302_annealed ; material_mass_density: 7920.0 ;
material_yield_stress: 2.6E8 ; material_elasticity_modulus: 1.9E11 ;
structural_safety factor: 3.0 ; link_cross_sectional_shape: hollow_round ;

tip_deflection: 0.010030399962673136 ; proportional_gainl: 570.2584810235578 ;
proportional_gain2: 77.7232311714316 ; derivative_gainl: 52.94316638725306 ;
derivative_gain2: 7.215875075944809 ; unsuccessful

43 ; 3 base_location: [2.75, 1.125,] ; link1_length:
1.5567951410224505 ; link2_length: 0.7783975705112253 ; thetal_array: [-
1.841743177133317, -2.234645941276905, -2.1030228587442052, -1.5803360074509354,
-2.101691900266075, -1.808417716248621, -2.4580611917887825, -2.000640459862265,
-1.5075116724748197, -2.3849331973654104, -1.8020196084096765, -
2.1393342274091958, -1.5200267188657943, -1.370467760770914,] ; theta2_array:

[0.0, 0.7722645770738099, 1.094542932510318, 0.9744725044399294,
1.5507376751335993, 1.4991016848920589, 1.7319514332910713, 1.8914492237267633,
1.576527017187388, 2.1499047363494395, 2.1499047363494395, 2.5516014242815754,
2.313412773511665, 2.8573894984143893,] ; thetal min: -2.4580611917887825 ;
thetal _max: -1.370467760770914 ; theta2_min: 0.0 ; theta2_max: 2.8573894984143893

; accessible_region_area: 2.5830343986674387 ; linkl_cross_section_dimension:
0.05071617460646335 ; link2_cross_section_dimension: 0.024905129862261795 ;
linkl_cross_section_thickness: 0.005071617460646335 ;
link2_cross_section_thickness: 0.0024905129862261796 ; material_name:
steel_stainless_AISI_302_annealed ; material_mass_density: 7920.0 ;

398

material_yield_stress: 2.6E8 ; material_elasticity _modulus: 1.9E11
structural_safety factor: 3.0 ; link_cross_sectional_shape: hollow_round
tip_deflection: 0.009120385595540107 ; proportional_gainl: 362.90360496525614 ;
proportional_gain2: 17.756563493544025 ; derivative_gainl: 33.69220551656433 ;
derivative_gain2: 1.648530844849792 ; successful

D.4.2.6 RDSpecific

The fields are separeted by commas ;" and are ordered as follow:

date and time of starting the project;

» date and time of finishing the project;

* the time spent during the run time;

» the memory available to Java interpreter at the beginning of the project;

» the memory available to Java interpreter at the end of the project;

» the amount of memory spent for the project in kilo bytes;

 the total number of design cycles generated during the project;

 the total number of ticks of the counter of the message events;

 the total number of messages exchanged during the project;

» the report of any exception that might have occured,

the total number of paths (design approach combinations) that were tried in the project.

28-0Oct-98 5:25:07 AM , 28-Oct-98 5:25:53 AM , 0:0:46 , 1048568 ,
2424824 ,1376.0 K, 43, 18087 , 2899, no exception , 15

399

	Discovery of Design Methodologies for the Integration of Multi-disciplinary Design Problems
	Copyright ” 1998
	Abstract
	Discovery of Design Methodologies for the Integration of Multi-disciplinary Design Problems
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 A Methodology Discovered
	Figure 1-1. An Example of the Design of a 2-DOF Planar Robot.
	Figure 1-2. A Methodology Discovered.

	1.3 Motivation
	1.4 Problem
	1.5 Goal and Objectives
	1.6 Approach
	1.7 Significance
	1.8 Outcome and Potential Applications
	1.9 Outline of the Dissertation

	2 Design of a 2-DOF Robot
	2.1 Introduction
	2.2 Robot Design
	2.3 Design of a 2-DOF Robot
	2.3.1 Design Parameters
	Figure 2-1. Design Parameters of a 2-DOF Planar Robot.

	2.4 Kinematics
	2.4.1 Kinematic Design Algorithms
	(2-1)
	(2-2)
	(2-3)
	Figure 2-2. Kinematics Design Equations.
	Figure 2-3. Two Solutions for Kinematics Design.

	2.4.2 Calculating Accessible Region Area
	Figure 2-4. Calculating the Accessible Region of A 2-DOF Robot.

	2.5 Structural Mechanics
	2.5.1 Structural Design
	2.5.1.1 Stress Analysis
	(2-4)
	(2-5)
	(2-6)
	(2-7)
	(2-8)
	(2-9)
	(2-10)
	(2-11)
	(2-12)
	(2-13)

	2.5.1.2 Deflection Analysis
	(2-14)
	(2-15)
	(2-16)
	(2-17)

	2.6 Dynamics and Controls
	(2-18)
	(2-19)
	(2-20)
	2.6.1 Position Control Design
	(2-21)
	(2-22)
	(2-23)

	3 Multi-disciplinary Design
	3.1 Introduction
	3.2 Survey of Related Work
	3.3 Characteristics of Multi-disciplinary Design
	3.3.1 Different Points of View
	3.3.2 Departmentalization of Disciplines Over Time
	3.3.3 Built-in Goals
	3.3.4 Focused Expertise of the Disciplines
	3.3.5 Need for Broad Range of Expertise
	3.3.6 Disciplinary Design in Big Chunks
	3.3.7 Complexity of Interactions
	3.3.8 Large Number of Iterations
	3.3.9 Counter-Intuitive Behavior

	3.4 Integration in Multi-disciplinary Design

	4 Knowledge-Based Design
	4.1 Introduction
	4.2 Design Process
	4.2.1 Models of Design Process
	4.2.1.1 Knowledge-based Design
	4.2.1.2 Systems Science Approach
	4.2.1.3 Problem Solving Approach
	4.2.1.4 Algorithmic Approach
	4.2.1.5 Axiomatic Approach

	4.2.2 Classes of Design
	Table 4-1. Classes of Design.
	Figure 4-1. Classification of Designs.

	4.3 Design Methodology
	4.3.1 Better Design Methodology

	4.4 Design Methods
	4.4.1 Granularity of Design Methods.
	4.4.2 Design Approach

	4.5 Knowledge-based Design Systems
	Figure 4-2. Knowledge-based Approach to Generating Design Methodologies.

	4.6 Strategies for a Knowledge-based Design System
	4.6.1 Small Design Knowledge
	Figure 4-3. Integration by Breaking up the Knowledge into Smaller Segments.

	4.6.2 Opportunistic Problem Solving
	Figure 4-4. The Opportunistic Strategy in Activating Design Methods.

	4.6.3 Cooperative Problem-Solving
	4.6.4 Least Commitment
	4.6.5 Inductive Learning
	4.6.6 Means-Ends-Analysis
	4.6.7 Concurrency

	4.7 Design Dependencies
	Figure 4-5. The Type of Relationship between Design Methods
	4.7.1 Sequencing Design Tasks
	Figure 4-6. Sequencing of Design Tasks. After [Eppinger 90].

	4.7.2 Dependencies and Decomposition
	Figure 4-7. Categories of Organized matrices. After [Kusiak 93].
	4.7.2.1 Decomposition of Module-Activity Matrix
	Figure 4-8. Decomposition of Module-Activity Matrix for a Vehicle. After [Kusiak 93].
	Figure 4-9. Module-activity Incidence Matrix. After [Kusiak 93].
	Figure 4-10. Rearranged Module-activity Incidence Matrix. After [Kusiak 93].

	4.7.3 Building the Dependency Graph

	4.8 Conflict Resolution

	5 Multi-Agent Systems (MAS)
	5.1 Introduction
	5.2 Characteristics of Multi-agent Systems
	5.3 Developing MAS
	5.3.1 Message Sequence Chart (MSC)
	Figure 5-1. Basic Elements of MSC language

	5.3.2 Model Development Cycle

	5.4 Multi-agent Design Systems (MADS)
	5.4.1 Interoperability
	5.4.2 Information Flow
	5.4.3 Adaptability
	5.4.4 Concurrency
	5.4.4.1 Consistency
	Figure 5-2. The Design Cycle.

	5.4.4.2 Information Update
	5.4.4.3 Event Notifications
	5.4.4.4 Update Intervals
	5.4.4.5 Merging Multiple Partial Designs

	5.4.5 Strategic Control
	5.4.5.1 Interactions

	5.5 A Proposed Framework for MADS
	Figure 5-3. The Architecture of the Multi-agent Design System
	5.5.1 Agent Dependencies
	5.5.2 Information Routing

	6 Discovering Methodologies
	6.1 Introduction
	6.1.1 Design Problem
	6.1.2 Design Project
	6.1.3 Design Path
	Figure 6-1. Different Design Paths.

	6.1.4 Traces
	6.1.5 Clusters
	6.1.6 Requirements versus Constraints

	6.2 Mapping Problem Space to Design Space
	Figure 6-2. Mapping from Requirements to Designs.
	Figure 6-3. Different Constraints Produces Different Designs and Traces.
	Figure 6-4. Same Trace Gets Used in More than One Project.
	Figure 6-5. Different Scenarios in Mapping Requirements to Designs.

	6.3 Machine Learning
	6.3.1 Supervised Learning versus Unsupervised Learning
	6.3.2 Agglomerative Formation of Concept Hierarchies

	6.4 Representation of Methodologies

	7 Robot Designer (RD)
	7.1 Introduction
	7.2 Design Methods for Robot Design
	7.2.1 Kinematic Design Methods
	7.2.1.1 Design Method K-1
	Figure 7-1. Kinematic Design Method 1
	Figure 7-2. Different Locations for the Base of the Robot.

	7.2.1.2 Design Method K-2
	Figure 7-3. Kinematic Design Method 2

	7.2.1.3 Design Method K-3
	Figure 7-4. Kinematic Design Method 3

	7.2.1.4 Design Method K-4
	Figure 7-5. Kinematic Design Method 4

	7.2.2 Structural Design Methods
	7.2.2.1 Design Method S-1
	Figure 7-6. Structural Design Method 1

	7.2.2.2 Design Method S-2
	Figure 7-7. Structural Design Method 2

	7.2.2.3 Design Method S-3
	Figure 7-8. Structural Design Method 3

	7.2.2.4 Design Method S-4
	Figure 7-9. Structural Design Method 4

	7.2.2.5 Design Method S-5
	Figure 7-10. Structural Design Method 5

	7.2.3 Control Design Methods
	7.2.3.1 Design Method C-1
	Figure 7-11. Control Design Method 1

	7.3 Design Process Flowchart
	Figure 7-12. Flowchart of the Design Process.
	7.3.1 Dependency Graph vs. Cycle Tree, and Design Cycle vs. Design State
	Figure 7-13. Dependency Graph

	7.3.2 Posing Design Goals

	7.4 Constraints
	7.4.1 Types of Constraints

	7.5 Backtracking
	Figure 7-14. Design Methods Produce Values for Design Parameters
	Figure 7-15. Possible Changes in Design Parameters for Fixing Constraint Violation
	7.5.1 The Effect of Smaller Design Methods
	Figure 7-16. The Effect of Smaller Design Methods in Reducing Prospective Changes
	Figure 7-17. The Effect of Changes in Producing Possible New Constraint Violations
	Figure 7-18. The Effect of Smaller Design Methods in Reducing

	7.5.2 Factors Contributing to the Complexity of Backtracking
	Figure 7-19. Factors Contributing to the Complexity of Backtracking

	8 Implementation
	8.1 Introduction
	8.2 Agents in RD
	8.2.1 Structure of an Agent
	8.2.2 Agent Object
	Figure 8-1. Interface of an Agent.

	8.2.3 Coordinator Agent
	8.2.4 DesignersCoordinator Agent
	8.2.5 Designer Agents
	Table 8-1. Attributes of Designer Object.

	8.3 Implementation of Messages
	8.3.1 Message Object
	Table 8-2. Attributes of the Message object

	8.4 Implementation of Backtracking
	Figure 8-2. Flowchart of Backtracking Process.
	8.4.1 An Algorithm for Backtracking

	9 Experiments
	9.1 Range of Requirements and Constraints
	9.1.1 Sensitivity Analysis
	9.1.2 Sensitivity Analysis on Control Gains
	Figure 9-1. Sensitivity Analysis on Kp1 due to Changes in Cross Section Dimension.
	Figure 9-2. Sensitivity Analysis on Kd1 due to Changes in Cross Section Dimension.
	Figure 9-3. Sensitivity Analysis on Kp2 due to Changes in Cross Section Dimension.
	Figure 9-4. Sensitivity Analysis on Kd2 due to Changes in Cross Section Dimension.
	Figure 9-5. Sensitivity Analysis on Cross Section Dimension due to Thickness.
	Figure 9-6. Sensitivity Analysis on a Hollow Square Cross Section Dimension.
	Figure 9-7. Sensitivity Analysis on Cross Section Dimension due to Safety Factor.
	Figure 9-8. Sensitivity Analysis on Deflection of the Tip Due to Dimension of Cross Section.
	Figure 9-9. Sensitivity Analysis on Deflection of the Tip due to Cross Section Shape.
	Figure 9-10. Sensitivity Analysis on Deflection of the Tip due to Material.
	Table 9-1. Different Values for the Requirements.
	Table 9-2. The Coordinates of the Points in Each Workspace (in meter).
	Figure 9-11. Different Workspace Used as Requirements.

	9.1.3 Finding Critical Constraints by Sensitivity Analysis
	Table 9-3. Values for ‘Variables’ of the Constraints.

	9.1.4 Categorizing Projects
	Figure 9-12. Categorizing Projects Based on Requirements and Constraints.

	9.1.5 Effect of Design Approaches on Constraints
	Table 9-4. Design Approaches of the Lowest Control Gain
	Table 9-5. Design Approaches for Highest Control Gain
	Figure 9-13. Frequency of Successful Traces.

	9.2 Traces Produced by RD
	9.3 Distribution of Traces
	9.4 Generating Traces
	Figure 9-14. Frequency of Successful and Unsuccessful Projects.
	Figure 9-15. Distribution of Successful and Unsuccessful Projects.
	Figure 9-16. Frequency of Traces.
	Figure 9-17. Traces versus Projects.
	Figure 9-18. Frequency of Successful Traces.
	Figure 9-19. Correlation between Requirement Space and Trace Space.

	10 Results
	10.1 Summary of the Observations
	10.2 Dependency Graph
	Figure 10-1. Dependency Graph for Design of a 2 DOF Robot
	10.2.1 Discussion
	Table 10-1. Project 161.

	10.3 Clustering the Traces
	Table 10-2. An Example Trace Cluster
	Table 10-3. Generalized Trace for Trace Cluster of Table�10-2
	10.3.1 Goodness of a Cluster of Traces
	(10-1)
	(10-2)
	(10-3)
	(10-4)
	(10-5)
	(10-6)
	Table 10-4. Goodness of Clusters.
	(10-7)

	10.3.2 Cluster Tree
	10.3.3 Naming Convention for the Clusters

	10.4 Evaluation of Clusters
	Figure 10-2. Coverage of Clusters Generated.
	Figure 10-3. Uniformity of Clusters Generated.
	Figure 10-4. Goodness of Clusters Generated.
	Table 10-5. Clusters with highest goodness.
	Figure 10-5. Clusters with Highest Goodness Measure.

	10.5 Formulating Methodologies
	10.6 Clustering the Problems
	Table 10-6. The Goodness of Traces with Highest Frequency.
	10.6.1 Trace 0
	Table 10-7. Trace 0.
	Table 10-8. Generalized Problems that Followed Trace 0

	10.6.2 Trace 1
	Table 10-9. Trace 1.
	Table 10-10. Generalized Problems that Followed Trace 1
	Figure 10-6. Constraint Violation in Project 13.

	10.6.3 Trace 2
	Table 10-11. Trace 2.
	Table 10-12. Generalized Problems that Followed Trace 2

	10.6.4 Trace 49
	Table 10-13. Trace 49.
	Table 10-14. Generalized Problems that Followed Trace 49

	10.6.5 Trace 770
	Table 10-15. Trace 770.
	Table 10-16. Generalized Problems that Followed Trace 770

	10.7 First Set of Clusters
	Table 10-17. Goodness of First Level Clusters
	10.7.1 Cluster 1-0
	Table 10-18. Cluster 1-0. Total 9 traces covering 270 projects.
	Table 10-19. Comparing the Requirements and Constraints for Projects 44, 45, 46.
	Table 10-20. Traces taken by projects 44, 45, 46.
	Figure 10-7. Distribution of Constraints and Requirements for Projects of Cluster 1-0
	Figure 10-8. Constraints and Requirements for Projects that did not follow Cluster 1-0
	Figure 10-9. Comparing the trace of constraints and requirements with the trace of design approac...
	Figure 10-10. Methodology 1-0.
	Figure 10-11. Failure Recovery by Reducing RDCS.

	10.7.2 Cluster 1-8
	Table 10-21. Cluster 1-8. Total 4 traces covering 81 projects.
	Figure 10-12. Comparing the trace of constraints and requirements with the trace of design approa...
	Figure 10-13. Methodology 1-8.

	10.7.3 Cluster 1-16
	Table 10-22. Cluster 1-16. Total 3 traces covering 38 projects.
	Figure 10-14. Comparing the trace of constraints and requirements with the trace of design approa...
	Figure 10-15. Methodology 1-16.

	10.7.4 Cluster 1-2
	Table 10-23. Cluster 1-2. Total 8 traces covering 38 projects.
	Figure 10-16. Comparing the trace of constraints and requirements with the trace of design approa...
	Figure 10-17. Methodology 1-2.

	10.7.5 Cluster 1-5
	Table 10-24. Cluster 1-5. Total 4 traces covering 26 projects.
	Figure 10-18. Comparing the trace of constraints and requirements with the trace of design approa...
	Figure 10-19. Methodology 1-5.

	10.7.6 Cluster 1-4
	Table 10-25. Cluster 1-4. Total 4 traces covering 24 projects.
	Figure 10-20. Comparing the trace of constraints and requirements with the trace of design approa...
	Figure 10-21. Methodology 1-4.

	10.7.7 Cluster 1-6
	Table 10-26. Cluster 1-4. Total 4 traces covering 22 projects.
	Figure 10-22. Methodology 1-6.
	Figure 10-23. Comparing the trace of constraints and requirements with the trace of design approa...

	10.8 Goodness of Methodologies
	10.9 Evaluation of Methodologies

	11 Conclusions
	11.1 Review of the Problem
	Figure 11-1. Multi-disciplinary Design Processes in Intersection of Three Hard Areas.

	11.2 Revisiting the Goal
	11.3 Summary of the Results
	11.4 Evaluation of the Results
	11.5 Outcome of the Research
	11.6 Evaluation of the Outcome
	11.6.1 Return in Investment
	Figure 11-2. Return in Investment in Generating Methodologies.

	11.6.2 Type of Design
	11.6.3 Scalable
	11.6.4 Automated Extraction of Methodologies
	11.6.5 Quality of the Methodologies
	11.6.6 Quality of the Design

	11.7 Contributions of the Research
	11.7.1 Theoretical Contributions
	11.7.2 Experimental Contributions
	11.7.3 Implementation Contributions
	11.7.4 Contributions to Robot Design

	11.8 Final Conclusion
	11.9 Future Work
	11.10 Extending to Other Domains

	Bibliography
	Andeen 88
	Arciszewlski 87
	Badhrinath 96
	Breuker 94
	Brown 89
	Brown 93
	Brown 96-a
	Brown 96-b
	Brown 96-c
	Brown 97
	Clearwater 92
	Coyne 90
	Craig 86
	Cross 89
	Dasgupta 89
	Depkovich 89
	Dixon 87
	Dixon 95
	Dowlatshahi 97
	Duffy 97
	Durfee 89
	Eppinger 90
	Finin 93
	Fisher 91
	Forrester 69
	Franklin 96
	Gebala 91
	Haddadi 96
	Hale 96
	Hazelrigg 96
	Holzbock 86
	Huang 93
	Iglesias 96
	Jackson 90
	Kannapan 92
	Kauffman 80
	Klein 91
	Kroo 88
	Kroo 90
	Kusiak 93
	L’Hote 83
	Lander 92
	Lander 94
	Lander 97
	Langley 96
	Levitt 91
	Liu 94
	MacCallum 89
	Maher 95
	Marcus 92
	McLaughlin 87
	Mitchell 97
	Mittal 92
	Müller 96.
	NSF 96
	Oaks 97
	Ogata 97
	Pahl 88
	Pena-Mora 95
	Press 89
	Quinlan 93
	Reich 91
	Rich 91
	Rivin 88
	Rogers 96
	Rudolph 96
	Senge 94
	Serrano 92
	Shoham 93
	Sieger 95
	Smith 80
	Sobieszczanski- Sobieski 96
	Sobolewski 96
	Sriram 98
	Suh 95
	Sycara 90
	Torsun 95
	Tsai 81
	Tsai 89
	Wellman 95
	Wooldridge 95
	Wooldridge 97
	Wooldridge 98
	Woyak 95
	Wujek 96

	Appendix A. Extention of the Kinematics Equations
	A.1 Modification of Equations
	Figure A-1. Adjustment of q1i Angle.
	A.1.1 Calculation of Accessible Region Area
	Figure A-2. Calculating the Accessible Region of A 2-DOF Robot.
	Figure A-3. Different Covered Areas for the Same q1,max - q1,min.
	Figure A-4. Calculation of Sweep Angle.
	Figure A-5. Different Cases for Calculating Sweep Angle.
	Figure A-6. Different Cases for Calculating Gap Angle.

	Appendix B. Clusters of Traces
	Table B-1. Clusters

	Appendix C. Clusters of Problems
	C.1 Trace 0
	Table C-1. All Projects that followed trace 0. Total 52 projects.
	Table C-2. Patterns in the projects that followed “Trace 0”.

	C.2 Trace 1
	Table C-3. All Projects that followed trace 1. Total 72 projects.
	Table C-4. Patterns in the projects that followed “Trace 1”.

	C.3 Trace 2
	Table C-5. All Projects that followed trace 2. Total 64 projects.

	C.4 Trace 49
	Table C-6. All the projects that followed Trace 49. Total 33 Projects.

	C.5 Trace 770
	Table C-7. All the projects that followed Trace 770. Total 20.

	C.6 Trace 1537
	Table C-8. All projects that followed Trace 1537. Total 28.

	C.7 Trace 1545
	Table C-9. All projects that followed Trace 1545. Total 54.

	C.8 Trace 1546
	Table C-10. All projects that followed Trace 1546. Total 24.

	Appendix D. RD: User’s Guide
	D.1 Data Files Format
	D.1.1 An example of a data file:

	D.2 Project Data File Reading
	D.2.1 CurrentProject
	D.2.2 default.pref

	D.3 Log Files
	D.4 A Sample Project: Project 61
	D.4.1 Input Files
	D.4.1.1 CurrentProject
	D.4.1.2 default.pref
	D.4.1.3 default.requirements
	D.4.1.4 default.constraints

	D.4.2 Output Files
	D.4.2.1 console
	D.4.2.2 trace
	D.4.2.3 DesignersApproach
	D.4.2.4 DesignConstraints
	D.4.2.5 DesignParameters
	D.4.2.6 RDSpecific

