[EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 1i, NOVEMBER 31985

1361

Understanding and Automating Algorithm Design

ELAINE KANT

{Invited Paper})

Abstract—Algorithm design is a challenging intellectual activity that
provides a rich source of observation and a test domain for a theory of
problem-solving behavior. This paper describes a theory of the algo-
rithm design process based on observations of human design and also
ocutlines a framework for automatic design. The adaptation of the the-
ory of human design to a framework for autemation in the DESIGNER

system helps us understand human design better, and the implemen-
tation process helps validate the framework. Issues discussed in this
paper include the problem spaces used for design, the loci of knowledge
and problem-solving power, and the relationship to other methods of
algorithm design and to autematic programming as a whole.

Index Terms—Automatic programming, automating algorithm de-
sign, human problem solving, program synthesis, protocoi analysis.

I. TuE ALcoriTHM DEsiGN Task
A. Design as an Intellectual Activity

LGORITHM design is the process of coming up with
a sketch, in a very high level language, of a compu-

tationally feasible technique for accomplishing a specified

behavior. The design process combines cleverness in prob-
lem solving, knowledge of specific algorithm design prin-
ciples, and knowledge of the subject matter of the algo-
rithm (e.g., geometry, graph theory, physics). When
people design algorithms, their design repertoire includes
discovery and visual reasoning in addition to the (ideally)
disciplined application of problem-solving techniques.

Human design is a rich source of ideas for a framework
for automatic algorithm design. Observing the human de-
sign process and attempting to capture the basic ideas in
an automated system both helps us understand how people
structure and use their knowledge about design and also
validates our observations and framework. The DE-
SIGNER project included such a study. of human design
and an initial version of an automated system [16]-[18],
[27]. The goal of the project is to create an automatic de-
sign system that can apply existing design principles as
well as exhibit some creativity. The observations of human
design are to be incorporated, but the automatic system
should take the strengths and weaknesses of both com-
puters and people into account. We are not trying to model
human problem-solving behavior as an end in itself.

The next section of this paper (I-B) presents a sample
algorithm design problem (finding the convex hull) and
identifies some questions to be addressed for a theory of
the design process. Section II summarizes our observa-

Manuscript received June 3, 1985; revised June 27, 1985. This work was
performed while the author was at Camegle—Me]lon University and was
supported in part by the Defense Advanced Research Projects Agency un-
der Contract F336 15-81-K-1539 and in part by the National Science Foun-
dation under Grant DCR-8412139.

The author is with Schlumberger-Doll Research, Ridgefield, CT 06877,
on leave from Carnegie-Mellon University, Pittsburgh, PA 15213,

tions of human designers working on the convex hull and
other algorithms. Section HI then takes a different cut at
the observations of design. Rather than concentrating on
the theory of human design, it lays out a framework for
automated design and discusses where the problem-solv-
ing power in the framework lies. Several sources of power
are identified: the ability to search in multiple spaces (re-
lying on knowledge from the domain as well as knowledge
about algorithm design), the ability to recognize antici-
pated and unanticipated but useful results, knowledge
about the time performance of different operatjons and al-
gorithms (efficiency knowledge), and the ability to execute
partial algorithm descriptions on examples. In Section IV,
the status of the DESIGNER implementation is summa-
rized. Finally, this framework for design is compared in
Section V with other approaches to automating algorithm
design and with automatic programming as a whole.

B. A Challenge: The Convex Hull Problem

Consider the problem of finding a convex hull, which
has applications, for example, in algorithms for vision and
graphics. The input to the problem is a set of points (in a
plane). The desired output is the smallest-area convex
polygon that encloses the input points (its vertices are a
subset of the input points).

If you were shown some points on a blackboard or piece
of paper, you would probably have no trouble sketching
their convex huli. {(And in fact a picture such as the one
in Fig. 1 helps many people to understand the problem.)
Suppose instead you, or an automatic design system, were
asked to create an algorithm suitable for (later) encoding
as a computer program in a conventional high-level lan-
guage. The goal is to sketch out an algorithm in the terms
you would use for describing it to a colleague or to a pro-
grammer, without worrying about the low-level imple-
mentation details.

To understand the questions that must be addressed by
a theory of algorithm design, you might observe your
problem-solving behavior as you work on this problem.
For example, how do you make sure you understand the
problem? Does a picture help? Do you write down any
formal problem descriptions? If so, in what language? Do
you create a variety of examples or counier-examples?

What pracess do you use in coming up with an algo-

- rithm? Do you draw analogies to other algorithms? Draw

on general knowledge of algerithm design principles? How
do you decide when your algerithm is complete and at a

sufficient level of detail?

Once you have an algorithm, how do you convince your-

0098-5589/85/1100-1361$01.00 © 1985 IEEE

1362

self that it is correct? Did you design it by applying cor-
reciness-preserving transformations? Did you use geo-
metric or other mathematical theorems? Find proofs for
conjectures? Will you test your algorithm on sample data?
Explain the algorithm to yourself or a friend in words?
Write pseudocode?

Some related questions concern the quality of the al-
gorithm. How do you decide when it is good enough? What
does it mean to be a good algorithm? Do you know what
the run-time or space performance of your algorithm will
be? Did you worry about what the distribution of data
would be in creating the algorithm? In determining per-
formance?

The next section describes how some human designers
solved the convex hull problem, with observations that at-
tempt to answer the types of questions asked here. The
goal of the section following that one is to'incorporate the
observations of human design into a framework for artifi-
cial intelligence programs that could perform the same
feat. Since the design of complex algorithms is currently
best accomplished by human beings, observing their per-
formance would appear to be a profitable starting point for
automating the design process. However, since the talents
of computers are not those of people, it is reasonable to
search for a different method if the goal is total automation
of design or a novel mixture of human and machine de-
sign. This issue is discussed in Section V.

II. METHODS FOR DESIGNING ALGORITHMS

The theory of human design presented here is based on
the analysis of a set of protocols from approximately 15
sessions with computer science faculty, graduate students,
and undergraduates. (A methodology for protocol analysis
is described elsewhere [8], [21].) Our designers were in-
dependenily given the task of creating algorithms to find
convex hulls, closest pairs of points, and intersecting line
segments. Several protocols have been analyzed in great
detail while the others have been gone over more lightly
and used primarily as confirming evidence.

Before summarizing the features of human design, some
caveats on the general applicability of the observations are
in order. 1) We observed the design of individual algo-
rithms whose complexity is due to a requirement for clev-
erness rather than to the information processing overload
of combining an overwhelming number of small but
straightforward parts. 2) The algorithms depend on apply-
ing an appropriate set of operations rather than on design-
ing a specialized data structure. 3) Our study did not in-
clude any interaction between people and design aids other
than pencil and paper or blackboard. (However, no one
volunteered any feelings that a calculator, computer, or
any other automated device would have been of any help
in designing their algorithm.) 4) The design sessions we
observed were on the scale of hours rather than thc months
spent by research algorithm designers. Other processes
than those we observed may take place in such long time
periods. '

Our observations may be at least partially valid in a
wider context despite the caveats. Other researchers have
studied the design process in software engineering and

{EEE TRANSACTIONS ON SOFTWARE ENGINEERING,

YOL. SE-11, NO. 11, NOVEMBER 1985

have made observations similar to ours [1], [13]. Also,
there is anecdotal evidence that similar problem-solving
techniques are used in the design of algorithms that are
highly dependent on clever representations.

We observed several major classes of behavior in our
designers. In addition to understanding these processes
(behaviors), there is an issue of control—how the pro-
cesses are ordered, including how problems are selected
and the role of evaluation. After the different processes
are discussed, the issue of control will be considered.

The processes that we observed our designers draw upon
include the following.

1) Understand the problem.

2y Plan a solution around a kernel] idea and refire or
elaborate the kernel stucture.

3) Execute the partially specified algorithm.

4) Notice and formulate any dlﬂicultles Or opportuni-
ties.

5) Verify that the structure is a solution (i.e., meets its
specifications).

6) Evaluate the solution (e.g., for eﬂicxency)

The explanations of these processes draw on all of our
observations and those of qur colleagues ‘who have studied
the design process in software engineering. However, il-
lustrations are taken primarily from the stories of two par-
ticular designers from our study, D1 and D2, who tried to
solve the convex hull problem. Each part of a story is pre-
faced by an abbreviated form of the designer’s name and
a sequence number for future reference. For example the
first step of DeSJgner 1’s story is labeled IDL.1].

A. Understand the Problem

In classical discussions of problem solving [23], one im-
portant problem-solving process ‘is understanding the
problem (perhaps by listing properties of the objects in
question) and considering reformulations of the problem.
Some of our designers (but not D1 or D2) did draw a pic-
ture of a convex hull (or whatever) early on, which may
have led to some unverbalized observation of or reasoning
about properties of convex hulls and seemed to have con-
vinced them that they understood the problem.

[D6.1] D6 drew the picture shown in Fig. 1.

[D3.1] D3 wondered whether using polar coordinates
might not be a useful way to think about the problem.

B. Plan and Refine the Solution

Agsuming that a problem specification has been under-
stood, design begins with a kernel idea or solution plan,
quickly selected from those known to the designer. De-
pending on the demgner s background the idea may vary
in sophistication from generate and test to more complex
strategles such as divide and conquer or dymamic pro-
gramming. The designer lays out the basic steps of the
chosen idea and follows through with it unless the ap-
proach proves completely infeasible. ' '

[D1.1] D1 had the initial idea that the algorithm should
be one that generated all points in the input in some ar-
bitrary order and tested each to determine whether it was
on the hull. This had the potential of running in linear
time {(proportional to the number of input points).

KANT: UNDERSTANDING AND AUTOMATING ALGORITHM DESIGN

Fig. 1. Initial example drawn by D6.

{D2.1] D2 decided to try a divide and conquer algo-
rithm (the special form of divide and conquer in which the
inputs are divided into subsets, the algorithm is recur-
sively applied to each, and the results are merged back
together).

At this early stage it is not clear which kernel idea will
lead to a better algorithm.

After formulating a plan, the designer refines the basic
steps of the kernel idea. By and large, this elaboration pro-
ceeds by stepwise refinement. The designer may lay down
the major components, effectively decomposing the prob-
lem into subparis, or may add new inputs or assertions
about details of the structure. The refinement steps 1) may
be suggested by knowledge appropriate to the problem and
task domain or 2) may be a natural result of attempting to
execute an algorithm.

[D2.2] An example of the application of appropriate
knowledge about algorithm design principles is D2’s ex-
pansion of the notion of using a divide and conquer algo-
rithm into a sequence of specific steps: divide the input
point sets into subproblems, find the convex hulls recur-
sively, merge the subsolutions back into a convex hull.

[D2.3] Furthermore, B2 recognized from previous ex-
perience with geometric algorithms that a likely possibil-
ity for the divide step of the divide-and-conquer algorithm
was to sort the points along one of the coordinates and use
the median as a dividing line.

In the absence of the knowledge that suggests the proper
refinements, the designers search by trial and error: they
hypothesize algorithm steps and try them out by executing
the partially specified algorithm.

[D1.2] D1 had no idea how to test whether a point was
on the hull and decided to try the proposed algorithm on
a specific figure to find the test.

[D1.3] D1 then drew the picture shown in Fig. 2.

The refinement process is hardly one of pure top-down
design.

[D1.4] Such a point-on-hull test did not reveal itself,
but another related test did, and D1 proceeded to modify
the hypothesized algorithm to exploit the new test.

D1 was able to proceed with the new test because it was
closely related to the old. The new test, described in Sec-
tion II-D [D1.7], was a test for whether line segments
rather than points were on the hull. Since polygons can be
specified by sequences of either points or segments,

1363

L]
D

Fig. 2. Initial example drawn by DI.

changing the test might seem to be only a matter of chang-
ing the view of polygons used in the problem.

Most design falls somewhere between having the cor-
rect knowledge and searching. At some steps the designer
knows what to do and knows what the implications of the
refinement step are: other times, search is required.

[D2.4] D2 did not find the merge step as obvious as the .
divide step. Most people do not.

C. Execute and Analyze the Algorithm

Trial execution of algorithms is often used as a tech-
nique for making inferences about the algorithm devel-
oped so far. We observed two extemes of execution of par-
tially specified algorithms—one on concrete data (which
we call test-case execution) and the other on symbolic ex-
emplars (which we call symbolic execution). Both forms
of trial execution help elaborate the algorithm description
by exposing difficuities and opportunities. We found it
useful to view execution as a technique for selectively
propagating constraints (which we call assertions) by
moving them around in the order in which steps of the
algorithm are executed. This Iimits the reasoning that
might otherwise be necessary to find contradictions and
make inferences. A more detailed description of some dif-
ferent types of execution and static analysis, collectively
referred to as developmental evaluation, is available else-
where [27].

D. Notice Difficulties and Opporunities

Designers notice problems both in their algorithms as
described abstractly and in pictures that they draw to help
them design. While executing the proposed algorithm, dif-
ficulties (missing steps, inconsistencies between parts of
the algorithm) may arise, leading the designer to further
refinements. Thus, we say that the designer’s refinement
process is difficulty driven.

[[21.5] In D1’s algorithm, a difficulty arose when the
test involving line segments was combined with the gen-
erator of points and D1 had to modify the algorithm to
accommodate this.

Here one assertion propagated by the execution process
(that a point is produced by generating over the input set)
contradicts another assertion (that a line segment should
be the input to the test rather than the point it is handed).

[D1.6] D1 eventually changed the kernel idea from
generate and test to a greedy algorithm that attempted to
generate the hull points in the order they occurred on the
hull polygon, using backup to handle guessing failures.
This could also be thought of as generating the hull seg-
ments in order. .

Algorithm execution also can expose opportunities for
improvement or modification of an algorithm.

1364

[D2.5] After working on a sample problem, D2 real-
ized that the merge step would be easier if the two sub-
solutions shared a common point and went back and mod-
ified the divide step to ensure that that would happen.

Most people draw example figures during algorithm de-
sign. The examples are used initially for understanding the
problem, and later for reasoning about the task domain
(using visual reasoning in at least the geometric domain)
and in trying out the partially developed algorithms in test-
case execution. Often, the designers notice things about
the sample figures that they were not looking for. When
what the designers notice turns out to be useful in devel-
oping their algorithm, we say that they have made a dis-
COVEFy.

[D1.7] In looking at Fig. 3, D1 realized that if a line
segment had points on both sides of it, that segment could
not be on the convex hull. D1 actually was executing an
algorithm with a test for points being on the hull or not;
the line segment in the figure was recording the fact that
the points A and B had been generated so far. _

[D2.6]1 D2 created Fig. 4 in attempting to find a merg
step by considering all segments that could connect ver-
tices of the two hulls and testing which were in the merged
hull. D2 knew that this brute force search would be too
expensive, but had no other ideas. The picture reminded
D2 of another unrelated algorithm (for finding a minimal
cost tour) in which a shorter path replaced two adjacent
segments. D2 then applied a similar idea to the merge step,
replacing segments a-d and d-e by segment a-e (D2’s pic-
ture was not actually labeled). The generalization D2 made
was that a concave angle in the merged hulls was to be
replaced by a segment connecting the two end points of
the angle.

The discoveries are described in more detail in a pre-
vious paper {17].

Some other observations the designers made would have
aliowed only small optimijzations.

[D1.8] D1 noticed that points are always on the same
side of the (directed) line segments of the hull.

While discovery is not a voluntary process that can be
planned as a design step, it does arise from the process of
making observations of more than the immediate symbolic
representation of the current algorithm description. The
discoveries in our study all occurred when the designer
was looking at-a sample figure created for one reason and
then recognized a geometric property, ot key step from
another algorithm, that would solve an outstanding goai.
That goal was not the one the designer was currently wor-
rying about (finding a test for a point being on the hull;
finding a way to tell if a segment was on the merged hull),
but it was usually not completely unrelated (finding a seg-
ment test rather than a point test; finding a different type
of merge step). Thus, discovery could be characterized as
serendipitously satisfied goals.

Both key observations in the problem domain and
knowledge of design principles are usually necessary for
clever design. Most algorithms published in papers or
given as exam problems have at least one good observation
or trick that 1s novel at the time of the design; otherwise
we would probably say the algorithm is “obvious™ or is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 11, NOVEMBER 1985

h
Fig. 4. D2’s discovery of a merge operation.

“just™ a brute-force algorithm. Each of the tricks must be
stumbled upon as a discovery unless it is already known
to the designer. Good tricks are eventually refined into
principles, but everything is a trick the first time each de-
signer encounters it.

Although there is an element of chance in the discov-
eries, there is no lack of readiness on the part of the de-
signer. The designer can be prepared both with immediate
goals to exploit the observations and with a good under-
standing of design principles to fit the discovery into an
overall algorithm. The more experienced ‘and disciplined
the designers, the better prepared they are for the discov-
ery. An “experienced” designer is one with knowledge
not only about algorithm design but also about problem
domains. Domain knowledge can be derived either from
past attempts at the problem or from experience with sim-
ilar algorithms and similar domains (or from different do-
mains but with the ability to reformulate problems in terms
of other domains).

E. Verify Correctness

Our designers determined whether their algorithms were
correct primarily by testing them on specific examples and
observing whether there were any difficuities. Develop-
mental evaluation can in fact be made to do the job of
formal verification (if termination is also checked). To do
this, the algorithm is executed on symbolic objects and all
assertions are propagated to determine whether the results
of the algorithm (and its subparts) match the specifica-
tions. If a specification includes performance constraints,
then verification must also include an evaluation (see Sec-
tion HI-F) to determine whether the solution is efficien
enough (in time or space complexity) according to the ex:
pectations.

During the initial algorithm design, the designers ig
nored ““details™ such as base cases, initializations, bound
ary conditions, degenerate inputs, and unresolved note
to themselves, but they were more careful about this i

KANT: UNDERSTANDING AND AUTOMATING ALGORITHM DESIGN

they were attempting to determine if the algorithm was
complete or correct.

[D1.9} When D1 was asked for an algorithm summary
during a pause, the response was that it was not an algo-
rithm yet because the case of the first point not being on
the hull had not yet been tested.

The heuristic that many designers follow is to get an
algorithm for the general case first, then worry later about
modifying the algorithm to take the exceptions into ac-
count. Althowgh some methodologies claim to eliminate
the concern with special cases (for example, [12]) they
require that the specification or invariant be precisely
stated before design begins. This is often difficult to ac-
complish. For more complex algorithms, handling the ex-
ceptions can itself require a major problem-solving activ-
ity and may yield new insights into the problem or solution.

F. Evaluate Plans, Refinements, and Solutions

The descriptions of the processes used in design did not
detail how plans, refinement steps, and overall solutions
are evaluated. Evaluation can be based on specific knowl-
edge about the algorithm design principles being applied
or on an analysis of the cost of the algorithm and its sub-
parts.

If the designer has the appropriate rules about the al-
gorithm design principle(s) and the domain, then the re-
finement process can be smooth and top down. For in-
stance, the appropriateness of the kernel ideas selected by
the designers depends on the quality of their knowledge of
algorithm design principles. One can really observe here
what expert-systems researchers call domain-specific
knowledge. Generate and test is usually the fall-back idea,
which is sometimes very efficient (linear in the input size)
and sometimes not. After an algorithm based on a kernel
approach is sketched out, or after the approach seems to
be failing, some designers go on to an alternative ap-
proach.

[D1.10] After completing the revised algorithm for
generating segments and testing whether they were on the
hull, D1 determined that the run time of the algorithm was
proportional to the cube of the number of input points.
Declaring that this algorithm was only a ““first shot,” D1
went on to consider a dynamic programming approach and
eventually to try divide and conquer.

[D4.1] In another problem involving finding intersec-
tions of line segments, another designer, D4, noted that
there was a straightforward approach having to do with
considering all pairs of segments, which was N squared.
However, D4 felt that there ought to be some way to use
sorting in the solution to get an N log N algorithm.

When experts (people with a strong background in al-
gorithms and in the subject matter of the problem) design,
they consider a variety of alternative refinements, select
the best (remembering the rest for possible later use), and
apply it to advance the design with one more level of detail
in the refinement process. What is ““best” is based on ef-
ficiency in the cases of algorithm design we studied, but
is based on ease of implementation or modification in other
cases. In expert design, the breadth-first process tends to
be followed for all aspects of the design at a given level,

£365

Fig. 5. A worst-case input for divide and conquer.

with interactions between the different parts of the design
predicted and taken into account.

In contrast, if the designer’s idea is naive {(e.g., use
sorting somechow), then the technique of executing hy-
pothesized algorithm parts is more likely to be followed in
a depth-first search from which the designer may never
successfully return, (The idea may not have been wrong,
but the designer may not have had the knowledge to carry
it through,) Experts as well as novices are prone to a sa-
tisficing style of design when they are under pressure and
do not have time for more exploratory design. Of course
they are better at it since they have more experience, can
make better predictions {¢.g., about what kernel ideas will
work or about interactions among different parts of the
algorithm), and guess right more often.

Even when performance constraints are not explicitly
specified, the designer often evaluates an algorithm or al-
gorithm step’s performance relative to other alternatives
or to known or estimated lower bounds. Extreme cases of
inputs may be tested to estimate worst case performance.
Complexity analysis may be carried out in parallel with
execution and verification by more experienced designers,
or may be an explicit subtask of a conscious evaluation.

[D2.7] After discovering the way to merge by remov-
ing concave angles, D2 estimated the run time of the di-
vide and conquer algorithm by arguing that even for the
worst possible input, the merge time was linear in the
number of points on the two subhulls and therefore the
overall run time was acceptable.

[D5.1] Although D2 did not draw an additional figure
to analyze the worst case, both D1 and another designer,
D5, did. Even though their algorithms differed from that
of D2 and from each other, they were both concerned with
the same potential problem and drew similar pictures (see
Fig. 5).

D2’s final design was an N log N divide-and-conquer
algorithm. It had ‘a prepass step to sort all the points ac-
cording to their X coordinates. The basic algorithm was to
divide the input through the point closest to the median,
recursively find the convex hulls of the two resulting point
sets, and merge the solutions back together by eliminating
concave angles (starting from the shared point). The base
case is two- or three-point input sets, which can be made
into convex hulls immediately.

G. Control Issues

The design processes described in the preceding sec-
tions do not always run to completion and do not take place

1366

in any fixed order. Evaluations within each step, as de-
scribed in Section II-F, may cause the designer to termi-
nate one approach and go on to another. The ordering of
the design processes (including when they begin and end)
seems to arise naturally out of the mechanisms of trial
execution.

Selecting a problem to work on is a natural consequence
of the problems exposed by trial execution. The character
of the elaboration process appears to be an progressive
deepening that takes each of the constructs in the algo-
rithm a littie further, sometimes backing up to higher lev-
els to keep the overall picture in mind. However, the de-
velopment of the different parts of the algorithm is not
always even. If one aspect of the algorithm is a potential
problem (i.e., other parts of the design depend on it and
the outcome is uncertain), then it is more likely to be ex-
panded to ensure that the algerithm as a whole is feasible.
If it has an obvious solution or refinement and the impli-
cations of that decision seem well understood, at least at
the current level of detail, it is not considered further. (Of
course the assumptions may be wrong.} New components
of the design are refined in the order they are executed,
‘subject to the two previous considerations.

Verification and complexity analysis also seem to be
achieved in part by propagating assertions during execu-
tion. Thus, other processes that contribute to control fit
in nicely with this basic mechanism and can occur at the
same time.

In short, design processes are applied as appropriate.
Control is not a special source of intelligence. It comes
out of responding to the data and out of the problems and

_opportunities arising during execution.

1. LoCATING THE PROBLEM-SOLVING POWER

An important question to ask about any agent that ex-
hibits intelligent behavior is where the knowledge and
problem-solving power lie. Knowing the loci of intelli-
gence gives us some clues for how to produce similar be-
havior automatically. Thus, we have attempted to formal-
ize the problem-solving behavior we observed in our
designers in terms of concepts that lend themselves to au-
tomation.

One common view of problem-solving behavior is that
it is basically search in a problem space, with knowledge
used to limit search. A problem space [21] is a set of states
for describing problems and (partial) solutions. There are
also operators that can be applied to a state to produce a
new state. Starting from some initial state, the problem
solver tries to discover a state that contains 2 solution by
searching—by trying out different sequences of operator
applications. In difficult problems, the problem solver may
not have enough knowledge to proceed directly to a solu-
tion state and may try various paths, some of which lead
to dead ends, and may return to earlier remembered or
reconstructed states. Often, the probiem solver does have
search control knowledge that guides the selection of
which operators to apply. In short, the problem solver
gradually explores the space, acquires knowledge about it,
and eventually may proceed down an appropriate path.

Given this view, we can ask more specifically where the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 1l, NOVEMBER 1985

problem-solving power in algorithm design is located.
Sections III-A to TII-E discuss several sources of power:
the ability to search, the availability of multiple problem
spaces, the ability to recognize relevant information, the
ability to execute partially specified algorithms, and the
use of knowledge about the efficiency of algorithms.

Some power lies in the knowledge carried by the prob-
lem spaces themselves—in what objects and operators they
have available and in the heuristics they have for when and
how to apply the operators. In one problem-space view,
problem solving is a process of repeatedly changing a con-
text by selecting a goal to achieve, a problem space to
work in to attack that goal, a state within that space to
work on, and an operator (and instantiations of its argu-
ments) to transform the state [19]. Different types of
knowledge can be associated with the selection process for
each element of the context. Sections HI-F to III-I illus-
trate the different types of knowledge available in several
problems spaces related to design.

A. The Power of Search

In design, as in most tasks requiring intelligence, both
search and knowledge are needed. Search is the backup
for missing knowledge and can never be completely elim-
inated. It can take place at the very high level, such as
searching for a kernel idea for an algorithm, or at the very
low level, such as deciding how to instantiate an operator
argument. Although at any level knowledge limits search
when possible and gives clues about how to explore the
problem spaces in a reasonable way, the ability to search
is, in itself, a source of power.

In design, for example, search permits the creation of
algorithms by trial and error in the absence of complete
knowledge. Algorithm components can simply be hypoth-
esized and then the algorithm as a whole tested to see if
the specifications are satisfied. If only the objects and op-
erators that formally specify and manipulate algorithm de-
scriptions are available (i.e., there is no other model of
the problem domain), the designing an algorithm requircs
the use of formal definitions of the concepts used in the
problem specification and, recursively, of its subcompo-
nents. However, more power than this is available to hu-
man designers and can be made available for automated
design through the use of multiple problem spaces.

B. The Power of Multiple Problem Spaces

From our observations we conclude that each designer
works in several different problem spaces during design

-(similar observations are described for other tasks [21]).

The details of the problem spaces differ from designer to
designer, but there is a remarkable consistency in the types
of problem spaces used. The spaces used by our designers
seem useful for a mechanical designer as well, so we in-
clude them in our framework for automatic design.

We observed our designers working in four spaces, two
of which are extensions of another space. The two main
spaces were 1) an algorithm design space that carries the

_knowledge of what is achievable in standard computer sys-

tems and of domain-independent algorithm design prin-
ciples, and 2) an application domain space, such as one

KANT: UNDERSTANDING AND AUTOMATING ALGORITHM DESIGN

for geometric and visual reasoning. (The algorithm design
space is also a domain space relative to design as a whole.)
The two extension spaces have the same objects as the first
two spaces plus additional objects and/or different sets of
operators. They are described as scparate spaces because
the functions they perform are so different from the main
spaces that they require a substantial number of new op-
erators and because only the results of searches in those
spaces, not the internal details, are available to the origi-
nal spaces. 3) An algorithm execution space is an exten-
sion of the algorithm design space that has as new objects
data items that carry information-in the form of assertions
about their éxecution history and has new operators that
execute components in the design. 4) An example gener-
ation space is an augmentation of a task domain space in
which figures arc marked as standard examples degener-
ate cases, counter-examples and the like, and in which
there are new operators to produce the examples

The necessity for-different problem spaces is a result of
the requirements of different types of knowledge. For ex-
ample, what is possible or efficient in the domain (problem
space)} of algorithms for conventional digital computers is
sometimes quite different from the way people reason vi-
sually or from what can be done with analog devices.
{Consider solving the convex hull problem by pounding
nails into a board to represent the input points and then
stretching a rubber band over the nails and letting go.) The
problem spaces that express such knowledge differ in the
objects and operators included, the properties of objects
or relationships between objects, and heuristics for how to
control the applications of operators.

Having knowledge represented in a domain space as
well as in an algorithm space gives the designer the power
to create algorithms even in the absence of formal axioms
about specification concepts such as being inside a poly-
gon. The problem can be solved by generating constructs
in the algorithm space and testing the proposed algorithms
on examples to see if they work. This technique relies on
the ability to generate examples to use as test cases. Ex-
ample generation depends on knowledge of the domain
space as well as knowledge of the goals in the algorithm
space (say to determine whether a typical or degenerate
example is desired). If a domain concept is not formally
axiomatized, the designer cannot do any formal symbolic
reasoning such as full verification or correctness-preserv-
ing derivation. However, by making some conjectures
about the domain and validating them with test-case exe-
cution, the designer can reason formaily about the rest of
the algorithm.

{D2.8] Having knowledge from the domain space of
what line segments were on the merged hull allowed D2
the hope of finding an operation that would test whether
proposed segments were correct,

For each of the problem spaces relevant to design, we
can ask what knowledge is available for recognizing when
context elements should change: how does a system rec-
ognize when goals are satisfied or when new goals should
be attempted, when the problem space should be changed
to work on the different type of goals, what state to expand
within a problem space, and what operator to apply and

1367

how to instantiate the operator. Examples of the different
types of knowledge contained in problem spaces will be
given in Sections III-F through HI-L.

First, some aspects of problem-solving power that cut
across problem spaces are discussed. This power can be
cast as knowledge that allows the designer to avoid search.

C. The Power of Recognition Knowledge

The ability to recognize objects and to recognize the
applicability of operators is a major source of power in
problem solving. The search process is not driven by an
algorithm that selects context elements in a fixed order but
rather by recognition rules that observe when some con-
text element should change: for example, when a goal has
been satisfied or when an operator would help change the
state in a desired way. The conditions for recognition can
be symbols in the algorithm design space or visual images
from the domain space. These clues can involve goals,
points of view, or (if the recognition ‘rule ‘was learned)
other objects in the problem-solving context whose inclu-
sion as a clue was only accidental to the formation of the
recognition rule. A very large number of recognition rules
may be present. However, the conditions that are moni-
tored must be computationally simple, involving only
straightforward matching.

An example of the role of recognition is its use in dis-
covery, a key process in algorithm design. Discovery de-
pends on generating examples to work with and then no-
ticing propemes about them or reasoning about them. The
recognition processes usually take place in the domain
space, but what is noticed depends on the goa]s of the
problem solving (and the content of the recognition
knowledge).

Recognition is also important in example generation,
which is constrained by the goals of the problem solving
(is it to be an average case, degenerate case, initial or base
value, counter-example, used by efficiency analysis, etc.)
but depends on knowledge of the domain and recognition
of successful construction of the example in terms of do-
main properties.

[DL.11] D1 first generated points 4, C, D, and E in
Fig. 2 as an initial test-case example, then noticed that the
example was degenerate, since all points were on the hull,
and added a fifth point (B) in the center to remedy the
difficulty. The points were not labeled at that time.

Nonsymbolic recognition and processing {such as visual
reasoning) is clearly important in designing computational
geometry algorithms, but it is really important in all do-
mains, such as that of algebraic problem solving? At least
for some people, it is. Built-in visual operators are better
at some types of processing and prov1de another perspec-
tive on a problem. They may suggest approximations or
fortuitously counterpose objects that would not be related
by a general symbolic reasoning process. Unfortunately,
the process of visual reasoning is not well understood at
this time.

D. The Power of Execution Knowledge

Trial execution in algorithm design serves the purposes
of controlling the order of the refinement process (see Sec-

1368

tion II-C) and limiting the inferences made as well as being
a vehicle for the more usual functions of debugging and
verification (see Sectjon II-E and [6]).

The nature of creative algorithm design requires some
mechanism for inference, whether it is a2 full theorem
prover, small set of simplification rules, or something in
between. Making all possible inferences during algorithm
design would be very expensive computationally. Execu-
tion is a way to focus attention on certain assertions in the
algorithm description space and on certain parts of pic-
tures in the domain space so that inference and recogni-
tion only have to take place over a smaller set. The exe-
cution techniques limit the inferences and constraint
propagations to those most likely to be useful for the cur-
rent stage of the design. Avoiding the extensive search of
theorem proving or uncontrolled inferencing through ex-
ecution is a form of knowledge about design. This topic
is discussed more thoroughly in other papers [7], [27].

E. The Power of Efficiency Knowledge

Efficiency knowledge serves as an evaluation function
throughout the algorithm design process, not just as an
evaluation of complete designs. Information about poten-
tial run time or space use serves as a rough guideline in
the selection of a kernel idea (illustrated in [D1.1]"), in
the evaluation of refinements (D2 knew that the merge step
had to be linear to get the desired overall performance
[D2.6, D2.7}), and after an algorithm sketch is complete
(D1 decided that cubic performance was probably not the
best possible [D1.10]).

Efficiency knowledge can take many forms, including
assertions about the run time of specific operations or ai-
gorithms, assertions about the intrinsic complexity of
problems, rules for how to analyze algerithms and com-
bine the run times of the individual operations, and rules
for setting constraints on what performance must be
reached on a subpart of an algorithm to guarantee overall
performance. Efficiency knowledge is generally contained
in an algorithm design space, but some of it is specific to
particular application domains. Also, some information
about operation costs, and in fact, some heuristics about
what design principles or implementation choices are best,
are built around assumptions about a cost model for the
target architecture.

F. The Algorithm Design Space

In algorithm design, it is sometimes dlfﬁcult to come
up with any reasonably effective solution,? although some
problems have simple brute force solutions. (Consider the
problem of finding the closest pair of points in a point sef.
You can probably see a simple algorithm for solving prob-
lem immediately.) Since algorithm design involves search-
ing in a space not dense in solutions, dead ends are a se-
rious problem, and knowledge of what design principles
and domain facts are relevant is almost a necessity (as is
the ability to reason and recognize in other spaces). Such

'In the remainder of this paper, labels following descriptions of bits of
knowledge refer back to parts of the design story where they are used.

2See Section V-D or [2] for a comparisen to the search problem in pre-
gram synthesis.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, YOL. SE-11, NO. 11, NOVEMBER 1985

knowledge can help decompose the problem or select and
instantiate operators in the problem space.

Designers have variants of the algorithm design space
that depend on their assumptions about the target archi-
tecture as well as on their overall knowledge of design
principles. If the algorithms were to be programmed on
an architecture with pipelined or distributed processing or
associative retrieval, the representations for algorithms
and heuristics for how to design might be greatly different.
Some designers make (at least implicit) assumptions about
the target. architecture from the beginning of an algorithm
design, but it is preferable to stay independent of the target
as long as possible.

The knowledge in the algorithm description space in-
cludes facts about mathematics, logic, arithmetic, and al-
gorithm design principles. The knowledge can be in the
form of both object descriptions and operators on those
objects. Other knowledge can be represented by rules
about when to change the problem-solving context.

1) Objects and Operators: The basic objects for de-
scribing algorithms in the algoerithm design space are com-
ponents that specify fundamental types of processing.
These components may test whether a property holds,
generate the elements of a set one at a time, achieve an
input/output relationship, apply a domain operator, select
a subpart of a compound object, or modify a2 memory of
objects. '

The algorlthm components are connected by links that
allow flows of data and/or control. Components may be
augmented with assertions about their propertles oF about
their relationship to other objects or operators in any of
the problem spaces. These assertions specify exactly what
property to test, what set to generate over, what operator
to apply, and so on. For example, a selection criterion
might be to pick the bottom, left point from a set of points.
New components can be defined in terms of old ones by
adding additional standard inputs or outputs or by adding
assertions, or a component can be defined as configuration
of other components.

The assertions associated with components may also in-
clude information about the types of data objects expected
as inputs or outputs or other preconditions or postcondi-
tions of processing, the ordering constraints on a genera-
tor, the initialization of a memory, expectations or conclu-
sions about the time complexity of the algorithm
(component), constraints on the order of execution of the
algorithm components, and notes about the algorithm
(such as it has not yet been tested for the initial point lying
inside the hull).

Since algorithms usually manipulate some sort of data,
there are also representations for the common mathemat-
ical concepts such as numbers or symbols and of se-
quences or sets of other objects. Assertions about these
objects can be attached to descriptions of the object type
or to items that represent specific data.

The number of combinations of pairs from a set of ele-
ments is proportional to N squared. [D4.1]

Divide and congquer algorithms can often have run time
of N log N. [D2.7, D1.11]

The operators in the algorithm description space are

KANT: UNDERSTANDING AND AUTOMATING ALGORITHM DESIGN

simple (syntactic) editing operations that add or modify
components, links betweeén components, and assertions.
The knowledge is all located in the rules that suggest in-
stantiations of the type of components to create, the spe-
cific components to link, and the details of the assertions
to be added. '

2) Operator Selection: Selecting an operator (and in-
stantiating it by selectinig values for its arguments} can be
made more effective through the use of knowledge about
general algorithm design principles and about algorithms
in a particular domain of application. This knowledge will
be expressed here as rules. Other such knowledge, for ex-
ample how to handle specific problems raised during exe-
cution (the equivalent a difference table for means-ends
analysis), also limits the amount of search necessary for
operator selection.

The following set of rules about operator selection and
instantiation is merely a rtepresentative sample of the
knowledge that an algorithm designer (human or other-
wise) might have (not every designer has the same knowl-
edge, of course). Many other rules also would add their
suggestions and vetoes about what te do. If there is no
consensus about what operator to apply, the fall back is
search through the suggested possibilities.

If a component needs 1o be refined and its ouiput is a
subser of its input, refine the component to an element-
by-element generate-and-test algorithm. [D1.1}

If a component needs to be refined and its output is a
structure that must satisfy certain constraints, refine it to
an algorithm that builds a minimal structure and then adds
units of structure until the constraints are satisfied. [D1.6]
{An instance of this rule is suggested in [3].)

~ If an algorithm looks at parr of the input many times to

do the same kinds of tests, try saving information rather
than recomputing, say Wwith dynamic programming.
[D1.10]

If the characteristics of subproblems produced by the
divide step of a divide-and-conquer algorithm are un-
known, than add the assertion that they are two equal-
sized subproblems.

If the characteristics of subproblems produced by the
divide step of a divide-and-conquer algorithm are un-
known, and if the set being divided is a set of points in
two dimensions, then refine the divide step to split the
points into the two sets defined by a line through the me-
dian of the points sorted on one axis. [D2.3] This rule has
a bit of domain-specific knowledge although it is in the
algorithm space.

X a component is missing a link to a required input,
look for a component that has an output with the same
type (or having that type as a subpart or superpart) and
connect the two components. This rule would be used only
if there were no suggestions for more specific inputs.

3) Changing State: The state in a problem space con-
text changes primarily as a direct result of the successful
application of an operator that modifies the algorithm de-
scription. If the operator application fails, and if there
were competing suggestions about what operator to apply,
then alternative operators still apply and another will be
tried. In addition to either failing or succeeding, an op-

1369

eratof may return a difficulty or opportunity. This be-
comes another goal to be worked on, perhaps in a different
problem space. After processing of the new goal is com-
plete (which may change the state of objects visible from
the algorithm description problem space), the rules that
caused the original operator to be selected may or may not
be retriggered. If they are, the operator application can be
retried.

4) Changing Problem Spaces: One of the benefits of
having multiple problem spaces is the ability to reduce
search by working toward the same goal in a different
space. Some examples of rules that can canse space
changes are as follows.

. If a component needs to bé refined, and its output is a
construct in space X, create examples of it and notice their
properties. If this rule is applied, it will cause a transfer
first to the cxample generation space and then to the do-
main space X. {D1.2]

If a configuration of components has not been shown to
achieve the specifications of the component of which it is
a refinement, then symbolically execute it. [D1.9]

If a configuration of components has not been shown to
achieve the specifications of the component of which it is
a refihement, and if symbolic execution has already been
tried or is known in advarice to be too complex to be in-
formative, then execiite the configuration on a concrete
example. [D1.2]

5} Goal Satisfaction and Creation: Recognition of
when goals have been achieved or nearly achieved, of when
to give up on a goal and declare failure, of when to create
new goais, and so om, is crucial to enabling discoveries.
Strict enforcement of hierarchical subgoaling would not
allow the same flexibility and creativity in goal satisfac-
tion and creation as recognition allows. This sort of goal
change knowledge can also serve as design heuristics. For
example, some rules that express this knowledge are as
follows.

If an exponential algorithm is created, try to improve it
or find an alternative unless it can be shown that the prob-
lem is itself exponential. [D2.6]

If all bbjects added to a set have a common assertion,
hypothesize that that property holds for all elements in the
set and try to substantiate the hypothesis.

If a component is defined by assertions that are appro-
priate for the level of detail currently desired (however
that is determined!), then consider the componem ac-
ceptable.

If a camponent s not cons:a’ered to be refined to an
acceptable level of detail, then create g goal to refine it.

G. The Application Domain Space

Algorithm designers need knowledge about their task
domain as well as about algorithm design in general. As
an éxample of a problem space describing a task domain,
consider the knowledge about geometry that can be used
in solving the convex hull problem.

Objects that are manipulable in the geometric domain
include points, lines, segments, angles, and polygons.
Special properties of object types or of specific objects
may also be recorded. For example, the degenerate case

1370

of the object type polygon could be a point or line seg-
merit, and a triangle would be the boundary case. For a
specific geometric object, properties would include being
convex or being above or below a line.

The operators in the geometric domain include accom-
plishing such functions as drawing a line segment between
two points and recognizing that a polygon is convex.

Any symbolic descriptions of the objects in a figure and
assertions about the objects or their relationships are avail-
able to the other spaces. For example, in the algorithm
space assertions may serve as test predicates, comparison
or ordering relationships, or criteria for extraction from a
compound object. Operators are available by reference for
execution, say to build a polygon in the example genera-
tion space or assomated with a component in the algorithm
space and run during test-case execution, but their inter-
nal workings are not available.

The domain space also incliides recognition knowiedgc
expressed here in the form of rules. If these rules are ap-
plied to a figure in the current focus of attention, they may
cause recognition and/or the construction of a new object
just as an operator application might. For example,

If two line segments share @ common end point, per-
ceive the figure defined by that pair of segments as an
angle. [D2.6]

H. The Execution Space

The problem space in which execution occurs is an aug-
mentation of the algorithm description space. The execu-
tion space is responsible for avmdmg the blind search that
might result from arbitrary suggestions for operator in-
stantiations. Because the partizl algorithm descriptions are
checked frequently by execution, meaningless guesses are
not allowed to propagate and waste search time.

In the execution space, the object type item represents
the data processed by the algorithm that flow over the links
between components. The items can represent either spe-
cific objects from the domain space (point 4) o symbolic
objects (*“a point™). Items can be augmented by proper-
ties that are known to be true of them at a given poist in
the algorithin execution history. Somne example properties
are that a point has been determiried to be on or off the
hull, or that point is the one most recently added to a
memory.

The operators in this space control the sequencing of
component exécution and carry out component execution.
If assertions needed to carry out the operators are missing,
a difficulty is returned and a rew goal to handle the diffi-
culty is created.

Some instances of ruies that suggest new goals to work
on are as follows.

If the input for test-case execution is uninstantiated, set

up a goal to get an example input. This will cause a trans-

fer to the example generation space. A particular point set
would be an example input for the convex hull problem.
[D1.3] '

If test-case execution shows that applying some opera-
tion will make progress toward a solution of the problem

IEEE TRANSACTIONS ON SOFFWARE ENGINEERING, VOL. SE-11, NO. 11, NOVEMBER 1985

but not solve it completely, try modifying the description
in the algorithm design space to apply the operation re-
peatedly, perhaps inside a loop.

1. The Example Generation Space

The example generation space is also an augmentation
of another space, the domain space. Objects must be aug-
mented by properties that describe their typical instances,
degenerate instances, boundary cases, and so on, if such
information is not already present in the domain space.
For instance; sequences consisting of repeated copies of
the sime element are not typical instanceés. Some sample
operators are those that add and remove elements from
examples. Some samiple rules are as follows.

Wher creating an input set for a generate-and-test al-
gorithm, if all elements currently in the set satisfy the test,
then add another element. {D1.10]

When creating an example for test-case execution of an
algorithm that has riot yet been checked for correctness,
pick nondegenerate objects and constructors.

IV. Tue DESIGNER IMPLEMENTATION

To test the ideas in the design framework described here,
a preliminary version of the DESIGNER system has been
implemented. This system covered the representation and
execiition of algorithms {the algonthm design and execu-
tion problein spaces), a simple vérsion of the geometric -
domain problem space, and some simple rules for gener-
ating examples and changing probiern spaces. The system
included some simple knowledge about generadte and test
and divide conqguer, but did not have a sophisticated un-
derstanding of algorithm design principles. Some simple
knowledge about estimating algorithm efficiency was also
represented. Although DESIGNER is capable of approx-
imating some pieces of the designs of the convex hull al-
gorithiris described in this paper, it is far from being an
1ndependent automatic designer. Much was not attempted
in the initial system. Qur ideas on viswal reasoning and
complex récognition are still in flux and have not yet been
implemented. The handling of large databases of algo-
rithms and principles, reasoning by analogy, and learning
have not been addressed.

The preliminary system was implemented in a combi-
nation of MacLisp, a simple (locally designed) frame sys-
temn with several forms of inheritance, and opss [10]. The
frame system was used to represent objects in the algo-
rithrit and domain spaces and to maintain historical con-
text. For example, algorithm componeits, links, items,.
and assértions were represented as objects, as weie points
and line segmenis. The operators in the problem space
were represented by MacrLisp functions, Search control was
specified by rules about when and how to modify the prob-
lem space context (what operators to apply, how to instan-

"tiate them, etc.), which were implemented in opss. Also,

a method for recording protocols of human designers and
relating them to a history of operations in a design session
of the automatic system was implemented. More details
of the implementation are described elsewhere (18], 127].

KANT: UNDERSTANDING AND AUTOMATING ALGORITHM DESIGN

Experimentation with the preliminary system lead to a
better understanding of how to implement an avtomated
designer more effectively. Some significant revisions to the
details of the framework have been made since the original
version, and a new and cleaner implementation in a more
sophisticated programming environment is being consid-
ered.

V. DESIGN AUTOMATION STRATEGIES

This section summarizes our theory of human design
and compares the framework based on that theory to some
of the other approaches suggested for fully or partially au-
tomating algorithm design and for automatic program-
ming. It also discusses how the methods might be ex-
tended to handle the problems in other contexts, such as
interactive design.

A. Summary of Human Design

Severzl of our designers succeeded in creating convex
hull algorithms. The algorithms and key discoveries of de-
signers D1 and D2 have already been described. D1’s
generate-and-test algorithm had a disappointing worst case
run time proportional to the cube of the number of input

points. But D1 would never have been able to design the -

anticipated linear algorithm; it can be shown that the prob-
lem of finding a convex hull is related to the problem of
sorting, so under conventional assumptions it must be an
N log N problem. Eventually D1 went on to try a divide-
and-conquer approach that, with a little help from the ex-
perimenters, became a successful N log N algorithm sim-
itar to D2’s. Some other designers successfully recreated
some convex huil algorithms that they had heard or read
about but did not remember very clearly. (Many interest-
ing convex hull algorithms have been described in the 1it-
erature [20].) Still other designers failed to find any ai-
gorithm at all. We also gave our designers some other
problems. They were asked for algorithms to find the clos-
est pair of points from a given set or the intersection peints
of a set of vertical and horizontal lines. Most designers
quickly suggested brute force algorithms (which have
worst-case run time that is the square of the size of the
input) but were unable to find any of the faster algorithms.

The methods observed in human design are quite var-
ied. Selecting and sticking with a kernel idea provides a
necessary focusing of attention, and using trial execution
as an assertion propagation mechanism continues that fo-
cus and avoids the extensive search process that unlimited
inference or search through the network of all refinements
would entail. Of course if specific knowledge about the
domain or about algorithm design is available, it can be
used to limit search by suggesting refinements directly. A
powerful source of creativity is the use of visual reasoning
about specific examples, which paves the way for discov-
eries about key concepts in algorithms. Although our cur-
rent set of studies of human designers has provided many
good ideas for a theory of design, we would like to do
more studies on other types of algorithms and with even
more expert algorithm designers.

1371

In general, the designers’ successes were highly cor-
related with their interest in and background in algorithm
design. Some problems that they had stemmed from an
incomplete (or totally absent) understanding of design
principles such as divide and conquer (which is very rel-
evant to the examples we gave). Other problems seemed to
be due to impatience with methodically following a design
strategy: In some cases, the designers tried to mix aspects
of the design from two different approaches. This typi-
cally failed when they tried to mix subparts of different
types of principles but succeeded when they tried to reuse
facts or conjectures from the geometric domain that were
learned in an earlier design.

B. Automatic Programming

Automatic programming is that ever receding goal of
automating the programming of everything the user wants
with a minimal amount of specification. Automatic pro-
gramming encompasses 1) algorithm design, 2) program
synthesis, and 3) the problem of managing complexity in
programming in the large.

Algorithmn design has been defined in Section I-A as the
process of producing a computationally feasible program
sketch (that is rclatively complete and consistent) from a
specification of what is to be accomplished. We refer here
to the hour-level form of algorithm design, not research
design. This routine design often precedes program syn-
thesis.

Program synthesis is the process of choosing data struc-
tures and access functions to transform a given algorithm
specification into concrete code in a conventional pro-
gramming language. Like algorithm design, program syn-
thesis requires intelligence, especially to produce ex-
tremely efficient code, but it probably can be achieved with
more straightforward techniques.

As has been pointed out by others [2], [11], full-fledged
automatic programming requires the incorporation of do-
main knowledge as well as detailed coding knowledge.
Furthermore, programming in the large must be supported
by effective bookkeeping,

Few concrete results in the area of automatic program-
ming that encompass all three of these aspects have been
presented. Perhaps the notion of working in multiple
spaces, and in a domain space in particular, may prove
valuable in automating the entire programming process.

C. Formal Derivation

The formal derivation approach has been proposed for
both algorithm design and program synthesis [5], [22],
{26]. Formal derivation methods share with the design
methods described here a refinement strategy based on a
few, largely syntactic, transformations, but differ in that
the transformations always preserve correctness. It is as-
sumed that the specifications are correct and complete,
and since the transformations require and guarantee cor-
rectness, then the intermediate states and the results are
also correct and internally consistent: The operations of
the transformations—defining new constructs, expanding

1372

definitions (“‘unfolding’’), and noticing instances of defi-
nitions that have arisen after rearrangement and simplifi-
cation of the algorithm constituents (*folding’’)—are sim-
ilar to some of the operations that we have noted in human
design.

One way that the formal approach differs from the
framework for design described here is that it requires that
terms be defined by axioms or equations and does not al-
low the use of terms defined only in a domain space. Also,
in the formal approach, transformations are instantiated via
axioms about the domain or algorithmic constructs; in the
framework for design described here, they can be instan-
tiated by similar knowledge based on formal definitions,
by arbitrary selection, or by guesses based on observations
in the domain space. As discussed earlier, designers can
sometimes derive algorithms even if they do not have for-
mal definitions of all the concepts. They need only have
operators in the domain space that recognize the concepts,
more primitive operators in the domain space that can con-
struct the structures they want to recognize, and tech-
niques for implementing the constructive cperators in the
algorithm space. In contrast, the formal derivation ap-
proaches often have problems with controlling the search
process and with creating useful auxiliary definitions—the
“aha™ or “eureka’ steps are often definitions inserted by
human interaction. These problems result from there being

tems that do not require correctness-preserving transfor-
mations also poses a potential problem for search control.
However, the guesses are only used when no better strat-
egies are available, and the use of trial execution provides
a check on unlimited search.

Another way the formal approach, with its requirement
for consistency and completeness, differs from our frame-
work is in the handling of boundary conditions and base
cases. The formal approach requires that these be defined
early on, almost the opposite of the human approach and
our framework. Getting the details of the boundary con-
ditions right is one cause of the search problem in formal
systems—there are many ways to define these conditions,
and selecting the precise specifications or introducing
conditionals and filling out the details adds complexity.

For some people, the discipline of taking care of details

. with a standard methodology releases their creativity. On
the other hand, many people find it difficult to state invar-
iants precisely if they must be absolutely correct. Getting
the main idea of the invariant is crucial to solving the
problem, but stating it formalily to avoid such problems as
fencepost errors makes it tedious and not obviously pro-
ductive. For these people, geiting the details right imme-
diately is extremely difficult; the overhead of internalizing
this methodology is prohibitively high.

Formal derivation systems are being augmented with
more detailed knowledge about design techniques so that
the search control can be more goal oriented [9] and also
with knowledge about example generation [4]. However,
this still does not postpone settling all the details (having a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 11, NOVEMBER 1985

domain space lets you finesse formalizing them) or say
where the creative definitions come from (cross-fertiliza-
tion from domain spaces and other algorithms).

D. Program Synthesis by Refinement

The program synthesis problem is complementary to that
of algorithm design, although we would expect that many
of the same problem-solving techniques are used. The
stage at which the algorithm design process stops—when
an algorithm is “understood”-—~should provide an appro-
priate specification or starting place for program synthe-
sis.

The standard stepwise refinement paradigm in program
synthesis {141, [24] assumes a knowledge base of rules
that transform abstract constructs into more concrete and
more efficient ones. The paradigm involves search over
the space of programs defined by that knowledge; no crea-
tivity is introduced. The search problem is a bit different
since once an algorithm is well defined, the program syn-
thesis problem is usually to find a more detailed program
in a standard programming language by selecting concrete
data structures and accessing operations. Usually the
search space is dense in correct solutions that vary in ef-
ficiency, reliability, modifiability, and so on [2]. Past re-
search has investigated the control of the search by effi-

no clues in the formal approach about how to introduce - ciency (for example, [15]). Such control is not a definitive

the right interesting knowledge. The use of guesses in sys- .

solution, but many approaches have been prototyped fairly
successfully.

As in most expert systems, in stepwise refinement it is
assumed that all the knowledge about how to refine pro-
gramming constructs is present in the refinement rules. In
contrast, the design framework presented here allows the
discovery of new programming techniques and algorithms
because both the hypothesize and test method and cor-
rectness-preserving transformations can be applied. The
price paid is that more search at the lower levels and more
checking by trial execution is required, and this search is
not as easily controlled by efficiency rules as is stepwise
refinement for program synthesis.

E. Inductive Inference

Inductive inference from examples is another technigue
that has been explored, but more for the construction of
small programs than for the design of algorithms or large
systems. Unambiguously specifying the input/output be-
havior of algorithms with examples is easier than so spec-
ifying the behavior of large programs. However, the in-
ductive approaches usually rely on problem solving using
a small set of schemata, with little ability to improvise if
none of the schemata match. If the target language is a
logical equation-based language with a search mechanism
built into the interpreter, then this approach may work
[25]. But it is unlikely to produce clever algorithms in con-
ventional languages. Incorporating an inductive inference
capability into a program synthesis system makes sense;
expecting it to solve the entire program synthesis problem
does not. :

KANT: UNDERSTANDING AND AUTOMATING ALGORITHM DESIGN

F. Program Synthesis by Design

We hope that algorithm design research will result in
aids for program synthesis that avoid hand coding of all
the refinement rules. The initial knowledge base require-
ments should be simplified considerably as a result of the
more generic problem-solving abilities such as trial exe-
cution, with its low-level means—ends analysis and search,
and domain space reasoning. The operators that do not
preserve correctness, when judiciously applied, also allow
for progress in the absence of complete knowledge (the
idea of program synthesis by debugging was actually sug-
gested a decade ago [28]). Putting in more of this creativ-
ity should make the automatic programming process more
flexible and robust and may even produce better programs.

G. Imteractive Tools

An interesting question to ask is whether studies of hu-
man design suggest any other tools to aid in the design
process. Are there some interactive tools that might help
people design? Or is there some novel mix of human and
machine power that could lead to even better designs?

The conventional wisdom is that people have better in-
sight whereas machines are better at the details. Following
this wisdom, the machine could suggest the full range of
possible approaches at any one step and the person could
decide which to follow, providing the search control.

We could augment this plan by observing that execution
is a powerful technique in design. Programs are good at
methodically following algorithms for execution, but peo-
ple frequently see what they expect and miss some of the
problems. This would suggest machine support for exe-
cution of designs. The execution would expose problems
and inconsistencies that people might skip over and the
people could suggest some solutions to the problem or sug-
gest new directions to follow.

In addition, the machine support could include a set of
rules that continuously monitor simple features of the de-
sign, providing a check that preserves almost-correctness
but does not guarantee a complete validation. In effect,
this makes the machine a sounding board for human de-
sign, just as colleagues act as sounding boards. People ex-
plain their ideas to others so that they are forced to look
at their design from other perspectives (with different as-
sumptions) and go through the design one more time in
explaining it.

Building the human/machine communication interface
is the hard part of following through with these plans. The
two agents must speak the same language in terms of the
constructs used in the algorithms and evaluations of al-
gorithms and in describing the desigh process itself. Each
agent must be able to track what the other is doing, which
requires both explanation and understanding systems.
Building the interface may therefore turn out to be even
harder than full automation.

H. Other Design Tasks

There are a variety of other design tasks, such as en-
gineering design or VLSI design. Although cach of these

1373

tasks has its own unique characteristics, we anticipate that
some of the concepts discussed in this paper will be rele-
vant to these tasks.

VI. CoNCLUSIONS

The essence of the framework of design presented here
lies in its informality and its use of multiple problem
spaces, including example generation and trial execution
based on both the domain space and an algorithm design
space. These techniques provide a focus of attention to
limit search and enable the discovery of key concepts. The
framework shares problem-solving techniques with many
of the other approaches, but rather than having a single
monelithic plan of attack, it shifts techniques depending
on the knowledge available.

Several areas need further formalizing and testing. The
theories of the processes of discovery and visual reasoning
must be extended, made computationally feasible, and in-
corporated into the framework. Learning and database is-
sues should be explored further. For example, what are the
appropriate organization and retrieval techniques for large
amounts of information so that kernel plans and key ideas
in algorithms and derivations are accessible when rele-
vant? Being abie to learn automatically depends on appro-
priate accessing and on general problem-solving tech-
niques.

The interactions between search, domain knowledge,
and programming knowledge seem important in tasks of
any appreciable difficulty, including automatic program-
ming and the next generation of expert systems, but sev-
eral questions about these interactions are stil unre-
solved. For example, it is not well understood how to
determine when to stop refining at a given level, how
problem spaces are created from problems descriptions,
and so on.

Understanding the design process impacts other
branches of artificial intelligence. Those that include de-
sign tasks, discovery, visual reasoning, the use of exam-
ples, and interaction between different types of knowledge
could be compared to algorithm design in their organiza-
tion of knowledge and use of problem-solving techniques.
Answering the questions posed for design should shed
some light on the general issues in other domains. A side
effect of automation—the formalization of algorithm de-
sign, analysis, and optimization principles—could also be
useful in teaching. Our observations of human design show
that examples are useful in the absence of knowledge and
therefore probably necessary to teach the knowledge, but
having explicit principles is more efficient for the designer.

In summary, the theory of design presented here is a
good start toward understanding human algorithm design.
The attempt to define a framework for mechanical design
based on a formalization of the theory lays a substantial
part of the foundation for automation.

ACKNOWLEDGMENT

The research described here is joint work with A. New-
ell and D. Steier. Many of the ideas I draw on are theirs,

: IEEE__TRANS'ACTIONS N'-SQHWARE-'E&G_:;NEERINGQ_ vo 1_1'.' ﬂo;_' i, NQVEMEER 985"

-"‘1982 Reprmteci in ngress i Art‘:ﬁcza! Infei! L Stﬁels and J A
s . E.lhs Hotwoad 1985

: _eII D. Barstow, D; Steier; S. Greenspan and th referees:_ oo
S made valuab]e commcnts on earhe:r varsmns of this: paper.' L [22] H

“[247C. Rich: 'énd-_
apprentme i

-_."'Imtmi tEpott on’a L;sp _pr’ogrammer 3
temciwe Progmmmmg Enwronmemv, D_ R Bar-

th 'tmfm'th ties mm facts umc

271 DML Steier and B! Kagé, Th
; algomhm desxgn 2 IREE Trans: Softwarc Ertg thks ss;&ue, pp, 1375—

Regpirch Camputf_:r
apgumd usi-

