
Account Lockouts: Characterizing and
Preventing Account Denial-of-Service Attacks

Yu Liu1, Matthew R. Squires1, Curtis R. Taylor1,2,
Robert J. Walls1, and Craig A. Shue1

{ylu25, mrsquires, crtaylor, rjwalls, cshue}@wpi.edu

1 Worcester Polytechnic Institute, Worcester, MA 10609
2 Oak Ridge National Laboratory, Oak Ridge, TN 37830

Abstract. To stymie password guessing attacks, many systems lock an
account after a given number of failed authentication attempts, prevent-
ing access even if proper credentials are later provided. Combined with
the proliferation of single sign-on providers, adversaries can use relatively
few resources to launch large-scale application-level denial-of-service at-
tacks against targeted user accounts by deliberately providing incorrect
credentials across multiple authentication attempts.
In this paper, we measure the extent to which this vulnerability exists
in production systems. We focus on Microsoft services, which are used
in many organizations, to identify exposed authentication points. We
measure 2,066 organizations and found between 58% and 77% of orga-
nizations expose authentication portals that are vulnerable to account
lockout attacks. Such attacks can be completely successful with only 13
KBytes/second of attack traffic. We then propose and evaluate a set of
lockout bypass mechanisms for legitimate users. Our performance and
security evaluation shows these solutions are effective while introducing
little overhead to the network and systems.

Keywords: Account Lockout · Denial-of-Service (DoS) Attack · Single Sign-On
· Middleboxes · Measurement

1 Introduction

In an attempt to gain unauthorized access to a system, attackers may try to guess
the credentials associated with a legitimate user’s account. These attackers may
vary in sophistication, from brute-forcing passwords on default usernames to us-
ing a list of known usernames at an organization and lists of most commonly
used passwords. Prior analysis of password data sets has shown that end-users
often select weak passwords that are vulnerable to such attacks [37]. Further,
many organizations consider usability and memorability to be key goals in user-
name generation. As a result, usernames are often generated that match email
addresses and use parts of a user’s real name [38].

Given this threat, many systems implement an account lockout mechanism
in which all authentication attempts are denied after a certain number of failed

2 Y. Liu et al.

attempts in a predetermined time window. NIST, which sets standards for US
government systems, recommends an attempt threshold of 100 attempts or less
with a lockout period of between 30 seconds and 60 minutes [2]. The SANS
institute recommends a threshold of five attempts with a 30 minute lockout
period [30]. To be PCI compliant, which is required for organizations handling
consumer payment information, accounts must be locked out for 30 minutes after
six failed attempts [26].

This account lockout mechanism can be used by attackers to create a denial-
of-service (DoS) attack that prevents legitimate users from gaining access to their
accounts [22]. Such an attack is easy to launch: an attacker can issue authenti-
cation attempts at a rate that would keep an account perpetually locked. With
the aforementioned thresholds, such an attack would consume minimal attacker
bandwidth and computational resources. Even if simple IP address blocking is
used for repeated failed attempts, an attacker could use a network of compro-
mised machines to distribute the attempts.

With the deployment of single-sign-on (SSO) services, account lockouts can
transform from a simple nuisance to a crippling attack. Recent work has ex-
plored web-based SSO systems and the relationships between identity providers
that authenticate users and other websites, called relying parties, that use those
identity providers to authenticate their own users [10]. In one example, a single
identity provider was used by 42, 232 relying parties. Further, recent reports [28]
estimate that Active Directory—Microsoft’s prominent SSO identity provider—
is used in more than 90% of companies in the Fortune 1000. With an account
lockout attack on a single identity provider, a targeted user could be denied
access to thousands of other services.

In this paper, we ask two key research questions: To what extent are orga-
nizations vulnerable to account lockout attacks? What countermeasures can be
effectively deployed to address these attacks in a way that supports even legacy
systems and devices? Given its widespread deployment and integral nature at
organizations, we focus our investigation on Microsoft’s Active Directory service.
In doing so, we make the following contributions:

1. Vulnerability Measurements: We examine 2,066 organizations, including
Fortune 1000 companies and universities, to determine the extent to which
attackers can systematically identify vulnerable authentication portals and
lock accounts. We find that roughly 58% of the universities and roughly 77%
of the companies examined expose a vulnerable authentication portal. Lock-
outs targeting these portals can potentially deny users access to thousands
of applications [23].

2. A Suite of Proposed Countermeasures: Rather than relying on changes
to Active Directory, we propose countermeasures that can be deployed im-
mediately on legacy architectures. The suite of options, based on the concept
of distinct authentication pools, includes mechanisms that work across de-
vices with end-user involvement to completely transparent options, such as
those using web browsers or modified home routers.

Account Lockouts: Characterizing and Preventing 3

3. Evaluation of the Countermeasures: We evaluate the security effec-
tiveness and performance of the proposed countermeasures. We find that
each has clear availability advantages while introducing minimal performance
costs. Notably, we find that existing authentication mechanisms—such as
multi-factor authentication—are insufficient to stop account lockout attacks
because the root problem lies with the lockout policy, not the mechanism.

2 Background and Related Work

The combination of a username and password is a ubiquitous method of user
authentication. Attackers try to obtain such sensitive information to infiltrate
computer systems. The sophistication of theses attempts vary. The most basic
attack, a brute force attack, exhaustively enumerates all possible character com-
binations until a valid sequence allows access. The success rate of brute force
attacks is dependent upon the underlying strength of user passwords [39].

Other approaches are more sophisticated and use information about end-user
behavior to increase success rates [12]. Dictionary attacks, for example, form the
password guesses by using a large database of popular passwords or words in
a targeted language’s dictionary. Prior research has found that many end-users
select passwords that could easily be discovered by a dictionary attack [37].
Further, discovered passwords from a compromised service may be used to guess
passwords for the same user at other sites due to password reuse [14].

To combat password guessing attacks, standard bodies recommend account
lockout thresholds [2, 26, 30]. After a specified number of failed login attempts,
the account lockout approach denies access to a given account even if valid cre-
dentials are provided [8]. This simple mechanism makes brute force password
guessing infeasible and limits the rate at which attackers can make attempts
using dictionaries. Unfortunately, account lockouts provide a natural avenue for
denial-of-service attacks: an adversary can simply make numerous failed authen-
tication attempts for a given username, causing the account to lock, and thereby
preventing the legitimate account user from authenticating, as shown in Figure 1.

Other techniques attempt to limit malicious authentication attempts without
using a lockout. A common approach is a form of automated Turing test before
each login attempt that will purportedly distinguish a human from an automated
adversary. A prominent approach is the CAPTCHA [27], which requires a user to
decode an image or audio signal in a way that is challenging for computers to do.
Such approaches may help deter dictionary attacks, but they do impose usability
costs upon users [3]. Unfortunately, with innovations in machine learning, some
previously-effective CAPTCHAs may be defeated automatically [36]. Further,
hardware or legacy systems may be unable to support CAPTCHAs.

Aura et al. [4] propose the use of client-side puzzles to defend against denial-
of-service (DoS) attacks by slowing the attack rate. Each time the client makes
a request to the server, it is asked to solve a cryptographic puzzle provided by
the server. These puzzles must require significant client effort to solve and are
unpredictable. The verification of the result should be inexpensive. Dean et al. [6]

4 Y. Liu et al.

Attacker email proxy Exchange
Server - email

AD ServerLegitimate
Users

1. Attacker initiates 100
login attempts with
incorrect passwords

2. Forward malicious
login requests

3. Forward malicious
login requests

4. Failed login
requests hit
threshold. Lock
this account 5. Legitimate user

sends login request

6. Forward normal
login requests

Other
Applications

7. Account locked
out. Reply failure.

8. Forward response
of failed login

9. Login failed.

Fig. 1. In an account lockout attack, the attacker selects a username and tries to
authenticate with invalid passwords. Each failed attempt causes the server to increment
the failed attempt counter for that specific account. When the legitimate user attempts
to authenticate, the account may already be locked.

incorporate cryptographic puzzles into the TLS protocol to protect servers from
DoS attacks. Koh et al. [15] evaluated a high performance puzzle algorithm.

Unfortunately, puzzle-based defenses may not be compatible with some ex-
isting systems and applications. For example, the use of a CAPTCHA may not
be feasible when logging into a legacy video conferencing system. Some prior ver-
sions of mail software, such as Outlook 2010, not support tools like CAPTCHAs
when authenticating. Similar limitations may occur for Skype for Business and
applications without a browser-based interface.

2.1 Other Application-Layer Availability Attacks

Most denial-of-service (DoS) availability attacks target a bottleneck resource and
overwhelm it to prevent legitimate user access. Network-based flooding attacks,
for example, attempt to saturate the bottleneck bandwidth between the Internet
and a targeted victim. Application-layer DoS attacks exploit a bottleneck in the
host software to deny access. Moore et al. [24] describe an application-layer
threat between an HTTP sever and a backend database resource. The account
lockout attack is a variant of an application-level availability attack [22].

Source IP address filtering tries to mitigate a DoS attack by blocking the
machines originating the attack. Unfortunately, modern attackers have botnets
with millions of machines. By strategically cycling the attack machines, IP black-
listing techniques can be rendered useless since an attacker would have a large
supply of previously-unseen machines that could trigger a lockout.

2.2 Active Directory (AD)

Active Directory (AD) is a service from Microsoft for managing user accounts
and system resources belonging to an organization. It groups users, worksta-
tions, servers, and policies and organizes them into hierarchies that facilitate
management. This service allows user management to be logically centralized
by an organization in a set of domain controllers. Application servers may au-
thenticate users via these domain controllers rather than managing accounts and

Account Lockouts: Characterizing and Preventing 5

 Active
Directory AD FS Proxy User/Devices

Azure AD

Other Applications:
email Online, Office 365,
Skype for Business, etc

Sync

Application
Server

Application
Proxy

1. Login request
12. Submit Token

2. Require Token
13. Grant access

3. Request Token
5. User/pass resposne 6. Forward response

4. Issue user/pass
challenge
11. Forward Token

7. Forward response

8. Verify and issue
Token if passed.
d. Verify and send
result

9. Forward Token 10. Forward Token

a. Direct Login requestb. Forward requestc. Forward request

e. Receive result and
grant access

f. Forward grant g. Forward grant

Fig. 2. This diagram depicts the components and interactions between an on-site AD
domain controller, an Azure AD domain controller, and the ADFS connector.

passwords locally, as shown in Figure 2. For example, Microsoft’s email server,
Exchange, uses an AD server for authentication.

Organizations may host their AD domain controllers on-site, host them in
the cloud through Microsoft’s Azure AD service, or use a hybrid of both options.
The Azure AD service is essential for Microsoft-hosted online services like Office
365 and Skype for Business Online. Those Azure-based services communicate
directly with the Azure AD domain controllers rather than using the on-premise
servers. In hybrid deployments, on-site AD domain controllers may configure a
unidirectional synchronization channel with the Azure AD servers. For the pur-
poses of account lockouts, an account locked by an on-site domain controller will
result in a lock in all domain controllers and, depending upon the configured set-
tings, may propagate to Azure domain controllers. In contrast, an account locked
by an Azure domain controller will not propagate to on-site domain controllers.

Microsoft also provides an Active Directory Federation Services (ADFS) in-
terface for applications to interact with Active Directory when they cannot use
the integrated Windows authentication service. ADFS has its own account lock-
out mechanism, but that lockout only affects ADFS services.

For an attacker to maximize the impact of an account lockout, the best option
would be to target a service that authenticates to an on-site domain controller,
if such a domain controller exists, in addition to targeting an Azure AD domain
controller. An account lockout in ADFS or in an Azure AD domain controller
may result in a lockout that affects only a subset of the organization’s services.
However, in some attack scenarios, a subset may be acceptable to an attacker if
it includes a critical service the attacker wishes to make unavailable.

6 Y. Liu et al.

2.3 Middleboxes for Security

Middleboxes, such as firewalls, intrusion detection systems, and proxies, have
regularly been used for security purposes in the enterprise. Recent techniques
have leveraged the cloud for enterprise security [31].

Other work has extended middlebox techniques to residential networks, in-
cluding for whole-home proxies [35], validating TLS connections [34], and verify-
ing IoT device communication [16]. As demonstrated by Taylor et al. [33], these
residential middleboxes are feasible in countries like the United States since most
residential users are within 50 milliseconds of a public cloud data center, causing
middleboxes to only incur minor latency costs.

Our work shows how middleboxes can address account lockouts on an enter-
prise network in a backwards-compatible manner. We further show that middle-
boxes at the home (e.g. via a modified home router) can further enable robust
account lockout protections.

3 System Overview

Active Directory is inherently flexible and scalable, which can lead to deploy-
ments that vary greatly in terms of complexity and redundancy. In the simplest
case, an Active Directory setup involves a primary domain controller, one or
more dependent application servers, and a set of client machines that wish to
use the application server. Organizations may deploy other infrastructure, such
as secondary domain controllers, proxy servers, and middleboxes, to support
legacy systems or to achieve resiliency or security goals. Such infrastructure has
little impact on the account lockout threat and we omit it for simplicity.

3.1 Assumptions and Threat Model

In the context of this work, the goal of the adversary is to deny a legitimate
user access to services and resources through an account lockout attack. These
adversaries may perform reconnaissance on an organization ahead of an attack
to obtain email addresses, usernames, or to locate public-facing authentication
portals. With the availability of botnets, an adversary may have significant com-
putational and network resources. These resources afford the attacker significant
flexibility in devising her attack strategy. For example, the attacker may send
a high-volume of authentication requests from geographically-diverse machines
and rapidly switch between IP addresses to avoid IP-based blacklisting.

This work does not consider attempts to compromise the Active Direc-
tory server, its dependent servers, or other hardware such as the organization’s
switches and routers. If these servers fall under the control of the adversary, it
would be impossible for an organization to guarantee the accuracy of a user’s
identity or the availability of authentication services. Similarly, we assume an
adversary lacks valid user credentials.

The defender’s goal is to provide legitimate users with the ability to authen-
ticate even under an ongoing lockout attack. For our proposed countermeasures,
we assume that the organization’s IT staff can insert one or more middleboxes

Account Lockouts: Characterizing and Preventing 7

into an organization’s infrastructure, but they cannot modify the Active Direc-
tory server or the services that authenticate against Active Directory.

4 Characterizing the Account Lockout Problem

In this section, we explore the following research questions:

1. Can attackers feasibly exploit public authentication portals to launch ac-
count lockouts? With the help of a cooperating organization, we use only
public data to effect an account lockout on a test account in a production
environment using Microsoft’s Active Directory service. Since that organiza-
tion follows industry best practices and standards, this experiment is likely
representative of many other organizations.

2. Can attackers automatically discover organizations’ authentication portals
for lockout attacks? Using an Internet measurement study, we show that
authentication portals can be easily discovered by attackers.

4.1 Case Study: Identifying the Attack Surface in Production

We contacted a multinational organization with over 5,000 employees that uses
Active Directory extensively and gained their approval to assess the impact of
account lockouts across their environment. This organization used Active Direc-
tory for authentication for the vast majority of their IT services. From this case
study, we created an Internet measurement strategy to characterize the risks at
other organizations to determine the broader applicability of our findings.

Our partnering organization made an Active Directory administrator avail-
able to provide feedback on our tests, but the organization required anonymity
as part of their participation. The organization created a test account for our
use which was modeled after a standard employee account at the organization.
The organization set a secure password on the account and ensured it was not
shared with the authors performing the authentication attempts.

In our testing, we independently gathered information that was available
publicly without use of organizational insider knowledge. In our experiments,
we found that the organization used mail.[organization domain] to forward
to a themed Outlook Web App (OWA) portal, which is a Microsoft-provided
interface for web-based email. Since the portal used IP addresses that were not
associated with Microsoft, we determine that the OWA portal was not Azure-
hosted and thus was not using an Azure AD server for authentication.

With many Office 365 services, Microsoft provides a centralized authentica-
tion portal that leverages the user’s email address to determine the appropriate
Azure AD server to use to process the authentication. That authentication page
compares the host portion of the email address to its list of registered organi-
zation domains. Accordingly, we went to the Office 365 authentication page [21]
and entered a randomly constructed username, followed by the ‘@’ character,
and then the organization’s domain name. The website redirected to the or-
ganization’s account authentication page, where we were prompted to enter a

8 Y. Liu et al.

password. This interface appeared to be Azure-hosted, indicating that login at-
tempts would be directed to an Azure AD server. Account lockouts generated on
this service would likely only affect services authenticating against the Azure AD
server while not affecting user access via the OWA page we previously discovered.

We then examined Skype for Business (SFB, formerly known as Microsoft
Lync). Based on Microsoft’s documentation, the lyncdiscover.[organization
domain] host name is typically used for this service. We performed a CNAME query
on that host and the response indicated that the organization was not using an
Azure-hosted SFB service. We then performed a DNS A record query, which
returned a valid IP address that is not associated with Microsoft’s Azure data
centers, which suggests that the organization uses an on-site SFB service.

4.2 Case Study: Testing Account Lockouts in Production

After identifying the attack surfaces of the measured organization, we began test-
ing account lockouts. Microsoft’s documentation for Windows Server 2012 [17]
and 2016 [18] recommends an account lockout of 10 attempts with a lockout pe-
riod of 15 minutes. For Azure’s AD service, Microsoft’s documentation indicates
a threshold of 10 attempts with a 1 minute lockout period. The most generous
lockout policy was suggested by NIST with up to 100 attempts and a lockout
period as short as 30 seconds. Based on these thresholds, we created an attack
that would try authenticating as our test account with randomly-generated pass-
words around 200 times per minute. This attack is relatively low bandwidth at
only 13 KBytes/second, which poses little burden on the attacker or on the or-
ganization’s infrastructure. However, under the most conservative guidance, the
attack would keep the targeted account perpetually locked.

We first targeted our attack at the organization’s OWA portal. Our orga-
nization contact confirmed that the attack caused the account to be locked at
the organization, preventing the account from logging into the organization’s
resources for the duration of the attack. We discontinued the attack and the
organization contact removed the account lockout.

We next performed an attack targeted at SFB. Using the fake account, we
use a tool provided by an open source project on Github named lyncsmash [25].
It provides an option to discover the SFB servers and an option to launch an
account lockout attack. We manually went to the URL found in the tool, entered
the username supplied by the organization, and entered an inaccurate password
10 times. Our organization contact then confirmed that the account was locked.
We note that the lyncsmash tool can automate these attempts.

In these tests, we used the same source IP address for each query. While a
simple IP rate limit or blacklist would stop our attack, an actual attacker could
easily perform the attempts using a botnet to ensure no IP address queried
more than once. This would easily keep the account locked without an obvious
defense. The measured organization’s contact confirmed that the organization
lacks a mechanism to combat such account lockouts.

Account Lockouts: Characterizing and Preventing 9

4.3 Characterizing the Risk with Internet Measurements

While our partner organization was vulnerable to an account lockout attack, we
now focus on determining the extent to which other organizations are likewise
vulnerable. We begin by making non-invasive measurements of the public-facing
infrastructure of a set of organizations. While we focus on Active Directory in
this work, most organizations avoid directly exposing their AD servers to the
public for security reasons. However, in many cases, these organizations expose
their application servers to boost productivity. To allow employees to access
their email outside the office, these organizations may expose Exchange email
servers or website interfaces, such as the popular Outlook Web App (OWA) that
Microsoft provides. Unified messaging services, like Microsoft Skype for Business
(SFB), allow employees, customers, and partners to instant message, call, and
join video conferences remotely. In some cases, the devices joining these calls
may be mobile phones or dedicated video conferencing hardware.

Given the popularity of email and unified messaging, our measurement study
focuses on determining the extent to which authentication portals for Microsoft-
specific email and messaging servers are exposed publicly since we know such
servers must use an AD server for authentication. We perform our measurements
by using a list of domains associated with the Fortune 1000 companies [11]
and with 1,066 universities [32]. We focus on these organizations because their
domains can be easily obtained. Further, these larger organizations likely have
need for centralized authentication services like Active Directory.

Using our list of domains, we perform a DNS MX record lookup on the provided
domain to determine the identity of the organization’s public SMTP server.
The host names of the SMTP servers provide some insight into the underlying
infrastructure. For example, host names ending with .protection.outlook.com

are indicative of an organization using Microsoft’s cloud-hosted email service.
Since these organizations necessarily use Active Directory in Microsoft’s Azure
cloud, these servers can be used to initiate an account lockout for all Azure-
hosted solutions at the organization. Other MX records may indicate that the mail
server is located on-site at the organization or is hosted by another provider.

Our second measurement uses information related to email auto-discovery [19].
We issue CNAME queries for the host autodiscover associated with the organi-
zation’s domain (e.g., autodiscover.example.com). In some cases, the CNAME

result was autodiscover.outlook.com, indicating the mail services use Mi-
crosoft’s Azure-hosted Exchange server. In the case when another host name
was returned, the mail server was not Azure-hosted. We then issued a web re-
quest on port 80 or 443 to the host name returned in the CNAME record. In some
cases, the server required valid credentials to proceed. In some cases, the cre-
dentials would be validated by an Active Directory server, enabling the account
lockout attack. However, in other cases, the authentication credentials could be
independent of a user account (e.g., a username and password shared across the
organization for relatively weak protection).

The discovered mail server’s default web page could reveal information about
the infrastructure. In some cases, the servers presented a default or themed

10 Y. Liu et al.

Exchange Email Skype For Business Extent
Organizations On-site Azure-hosted On-site Azure-hosted Vulnerable

Fortune 1000 190 339 360 345 765 (76.5%)

Universities 126 416 124 395 616 (57.8%)

Table 1. Our measurement study results show the majority of each group uses Mi-
crosoft services and has at least one exposed authentication portal, enabling account
lockout attacks. The final column shows unique organizations vulnerable, even if an
organization has multiple exposed attack surfaces.

version of Microsoft’s Outlook Web Application (OWA) page, which is commonly
associated with an on-premises Exchange server. When web servers return 403
forbidden, it means there could be a portal which requires authentication. We
simply append “/owa” or “/autodiscover” and we found half of them redirect to
an OWA login page. In other cases, the web server returned pages containing the
string “Microsoft Corporation” indicating this server runs Microsoft’s software.
These authentication portals provide an avenue for the account lockout attack.

Some domains did not use an auto-discovery service or did not provide
an obvious account authentication page. For these domains, we issued an A

record DNS query for the mail host name associated with the domain (e.g.,
mail.example.com), which follows the examples provided in Microsoft’s docu-
mentation for configuring mail servers. We found that nearly half of organizations
provide such a server for their employees to authenticate, though few of them
used a default interface such as OWA or Microsoft’s Azure-hosted email portal.

We next focused our measurements on the Skype for Business (SFB) service.
Microsoft’s SFB client automatically searches for an organization’s servers using
a mechanism similar to email auto-discovery. For all the Fortune 1000 and univer-
sity domains, we perform a CNAME DNS query on the lyncdiscover host associ-
ated with the organization (e.g., lyncdiscover.example.com), which can reveal
which organizations use SFB services. We also query for dialin.example.com

and meet.example.com, which are other commonly used SFB host names. When
organizations use Microsoft’s Azure hosted systems, the CNAME query returns an
answer associated with the webdir.online.lync.com host name. For all the
non-Azure responses, we performed a A record DNS query to obtain the IP ad-
dress of the on-site SFB service.

In Table 1, we show the result of the measurements. Roughly 77% of com-
panies and 58% of universities had servers that would be affected by some form
of account lockout attack. For organizations that use Azure-hosted services, an
account lockout attack targeted at these servers would affect other services that
consult the Azure Active Directory server, but they would not affect services that
communicate with an on-site Active Directory server because the uni-directional
Azure AD server connection with an on-site AD server does provide the capa-
bility to share this information. However, attacks against services that commu-
nicate to a non-Azure AD server would affect all services, since non-Azure AD
servers propagate an account lockout organization-wide, including to the Azure

Account Lockouts: Characterizing and Preventing 11

AD server. Accordingly, attackers looking for the biggest impact may target
non-Azure AD servers when possible.

5 Discussion of Potential Countermeasures

Our measurements demonstrate that account lockout attacks can be crippling
for an organization and that many large organizations are vulnerable to these
attacks. However, there are a variety of mechanisms that may be effective at
mitigating such attacks. Each method has strengths and limitations in terms of
ease of deployment, legacy compatibility, visibility and impact on end-users. We
discuss potential methods and implemented two of them, one which modifies a
residential router and another that leverages user provided secret information,
to show to what extent we can prevent account lockout attacks.

Countermeasure: Private Usernames. An account lockout attack requires knowl-
edge of the target username. In practice, gaining this knowledge is often trivial.
For example, Alice’s username might be alice and her email address may be
alice@example.com. Intuitively, if the username becomes harder to guess then
lockout attacks become commensurately harder for the attacker to execute. Pri-
vate usernames offer tangible benefits. The approach is backwards-compatible
with all existing infrastructure, it avoids lockout attempts on the username, and
incurs no additional computational overheads or infrastructure. However, the
approach may sacrifice end-user convenience for this computational efficiency.
In particular, end-users will now need to manage multiple identifiers and know
when to enter their private username and when to use their public email address.
Further, organizations may need to reconsider how access control systems and
resource sharing will work when a username is intended to be kept private from
an employee’s coworkers. Finally, transitioning to a private username schema
may be prohibitively disruptive for organizations that have a large number of
users and legacy systems.

Countermeasure: Multi-Factor Authentication. Another countermeasure is to
ask the user to provide additional secret information as part of a multi-factor
authentication (MFA) scheme, such as biometrics, hardware tokens, or one-time
pass codes that are transmitted via a smartphone application. MFA-based ap-
proaches are effective at distinguishing legitimate users from attackers, assum-
ing the attacker has not compromised all the factors. Further, they are widely
deployed so users are already familiar with the process and the usability cost
is relatively low compared to the security benefits. Unfortunately, multi-factor
schemes alone cannot solve the problem of account lockouts. Intuitively, this
problem is not necessarily a limitation of multi-factor authentication but of the
lockout policies themselves. In other words, most lockout polices only account
for the number of failed attempts and not the kind of information used in the
attempt. Consider Active Directory’s multi-factor authentication interface; this
workflow allows a username and password to be used in conjunction with a
second factor verification via smartphone application or text message. Failed

12 Y. Liu et al.

authentication attempts still lead to an account lockout as the second factor is
only used if the provided username and password are valid. In short, the second
factor does not influence the server’s decision to lockout an account.

Countermeasure: Observed Characteristics. The above approaches rely on the
user to provide private information as proof. An orthogonal approach is for the
authenticating server to use historical information related to the user’s behavior
or observable connection characteristics. For example, Eriksson et al. [9] studied
geographic detection based on IP addresses. The primary limitation of such
approaches is they must be tuned carefully to balance between false negatives
(allowing an attacker to authenticate) and false positives (preventing a legitimate
user from authenticating).

5.1 Distinct Authentication Pools

The goal of this work is to incorporate and augment existing authentication
approaches. Our proposed countermeasures are based on the following obser-
vations. First, existing authentication mechanisms fail to stop account lockout
attacks because the problem lies with the lockout policy not the mechanism.
Second, account lockout policies should base lockout decisions on the totality
of information rather than a simple boolean log of attempts. Third, the pro-
liferation of legacy systems means that organizations are more likely to adopt
defenses (at least in the short term) that do not require changes to the end-user
software or existing authentication servers.

We codify these observations into a proposed authentication scheme based on
distinct authentication pools. This scheme is designed to leverage historical activ-
ity, network proximity, and secondary credentials to maintain separate authen-
tication risk pools with their own lockout thresholds and failed authentication
attempt counts, as shown in Figure 3. Each pool maintains a separate counter
and threshold which can be configured to meet different security requirements.
To make authentication pools immediately applicable to existing systems, we
use security middleboxes to implement the key functionality without requiring
changes to the services or Active Directory servers. Importantly, this scheme
allows a user to authenticate even if there is an on-going lockout attack.

We also propose and implement two novel, and orthogonal, authentication
mechanisms to serve as the basis for two of the authentication pools. The first is
a token-based mechanism that transparently authenticates requests originating
from a user’s residential network. The second proposed mechanism leverages a
user-supplied credential that effectively turns a public username into a private
username. We discuss the design of both mechanisms below.

5.2 Protecting Requests from Residential Networks

Many existing web-based authentication systems leverage HTTP cookies to de-
termine if a user is currently logged in or has logged in successfully in the past.
The pool proxy server could validate cookie values and place users with valid

Account Lockouts: Characterizing and Preventing 13

Unprotected
channel

Security
proxy

Login attempts
via

0 / 5

0 / 5

0 / 5

No Additional Token

Protected
residential

network

Channel
protected by

secret

Router adds token

Username + token

Intra
network

 0 / 100

No Additional Token

Active Directory
Services

Fig. 3. With a security middlebox or proxy, an organization can create separate au-
thentication thresholds and authentication attempt counts based on factors that may
indicate the user’s legitimacy. This diagram depicts four authentication pools based
on the presence of tokens, manual authenticators, and on-site presence. The proxy can
send commands to help account management in Active Directory, such as unlocking
an account, restoring the original account lock state, and checking the account status.

cookies in a pool that is separate from users that do not present such cookies.
Unfortunately, such an approach is limited to web-based authentication. Instead,
we propose leveraging an approach from the TCP Fast Open (TFO) standard [5].
In essence, an authentication server orders the client or a middlebox to store a
cookie, allowing that client or middlebox to prove it previously logged in suc-
cessfully when trying to authenticate again in the future. Like the original TFO
standard, the cookie we introduce would not be an authoritative authenticator
and it would not be resistant to a man-in-the-middle attack. However, it does
provide sufficient evidence to put a client in a separate authentication risk pool.

The authentication pool proxies can be implemented using the TLS “peek
and splice” technique [29], in which the proxy is on the route to the protected
application servers and has the private TLS keys associated with each server.
This allows the proxy to decrypt the traffic, extract the username, and validate
tokens and cookie values. If a token is present, the proxy server can then issue
commands to the Active Directory server to determine whether the account is
locked out, and if so, temporarily lift the lock. It can then re-encrypt the request
with the tokens extracted and send it to the application server to process the
authentication attempt. Once the authentication result is sent back to the proxy,
it can re-lock the account, if it was previously locked.

In our implementation, to check if an account is locked and obtain the number
of failed authentication attempts, the proxy speaks the LDAP protocol with the
AD server. Using the python-ldap library [7], the security proxy checks the
account status via the ldap.search() function on the badPwdCount attribute
with administrator privileges. To unlock the account, the proxy server uses the
ldap.modify s() function and sets value of lockoutTime to 0. Finally, to restore
the failed authentication attempts, the proxy server can use an invalid password
to send the same number of prior authentication attempts.

14 Y. Liu et al.

 Exchange
Server - email

AD Server

Legitimate
Users Router

1. Login request

NetFilter
Agent

2. Intercept packets
and append cookie
as TCP option

3. Put
packets back

Security
Proxy

4. Verify the token. If
it is valid, unlock the
account
5. Remove token, send
packets out

7. Verify username
and password. Reply
True if passed.

6. Foward

8. Grant access.
Reply to user.

11. Update token,
forward reply11. Log in successfully 9. After the session,

restore account lock
state in AD Server
10. Issue new token
to router

Fig. 4. With a residential middlebox, tokens can be automatically supplied and stored
by examining packets to and from application servers.

For cookies using TCP options, the process can proceed in a fashion similar to
TCP Fast Open (see Figure 4). Organizations can provide some employees with
a modified router that will act as a middlebox that manages TCP cookies for
the user. When the user accesses the organization’s servers, the router checks to
see if it has a cookie for the destination. If so, it adds the cookie as a TCP option
with the request. The security proxy can then extract the cookie and perform
the appropriate account unlocking operations before sending the request to the
application server. Upon receiving a positive authentication response from the
application server, the security proxy can generate a cookie value and insert it
as a TCP option. The user’s router will then extract the cookie, store it locally,
and then forward the response to the user.

5.3 Supporting Private Usernames

A token can also be user-supplied. The secret code can be shared via email, on
an employee’s badge, or in new employee orientation materials. When a user
supplies the username for authentication, they can insert a delimiter followed by
a non-public value that the proxy device can detect (e.g., username+code). The
non-public value can be arbitrary set by the proxy administrator and changed
if it was ever learned by an adversary and used in an account lockout attack.
Each account should have unique secret token used for login. Since the value
is only used to circumvent a lockout attack, the value could be one the user
could readily access or remember, such as the user’s associated employee ID or
badge number. When processing authentication attempts, the proxy can search
for the delimiter in a username, extract the non-public value, and verify it. The
proxy can then forward the authentication request with the delimiter and code
stripped from the username field for authentication by the AD server.

The user-supplied token approach has the value of being easily implemented
and supported in legacy systems with the help of a proxy. When a user’s account

Account Lockouts: Characterizing and Preventing 15

is not being attacked, they need not provide the token since the default authen-
tication pool will be unlocked. After their account is locked due to an attack,
the user only needs to type a short addition to their username to gain access.
While this approach does require user training, during support calls to IT staff,
the helpdesk staff can quickly remind users of the override. Finally, when setting
up automated clients, such as email programs or smartphone applications, the
user can choose to enter the token to ensure continued access during attacks
without incurring any inconvenience. The user-supplied token avoids the com-
plications of legacy usernames and access control that are associated with the
private username approach while attaining similar benefits.

6 Evaluation of the Authentication Pools System

For our evaluation, we consider both the security effectiveness and the per-
formance of using authentication pools. We focus on the two authentication
mechanisms proposed in the preceding section: 1) authenticating requests from
residential networks and 2) providing support for private usernames with tokens.

6.1 Implementation and Experimental Setup

For our baseline experiments, we configured a Windows Server 2016 Standard
server to run the Active Directory service on a virtual machine with two cores
and 8 GB of RAM. We configured an Exchange 2010 server on another Win-
dows Server 2016 Standard VM with two cores and 8 GB of RAM. The Exchange
server used the Active Directory server VM for authentication and the POP3 ser-
vice for checking emails. To test the proposed countermeasures, we implemented
two different middleboxes: the authentication pool proxy and the residential
router. Our client is another Ubuntu 16.04 server VM that runs a POP3 Python
script client that attempts to use our Exchange email server. While the deployed
enterprise configurations will differ from our experimental setup, we believe this
setup is sufficient for evaluating the security and performance characteristics.

The pool proxy implementation supports both the TLS “peek and splice”
and the private username authentication mechanisms described in the preceding
section. We use an Ubuntu virtual machine with 2 cores and 4096 MB of RAM
and the tcpproxy library [13], which allows the interception and modification
of packets. The tcpproxy library provides the functionality to wrap normal
socket communication into TLS protected communication when a private key is
imported. The pool proxy uses a copy of the Exchange server’s private key. The
decrypted payload contains the account information. However, when tcpproxy

uses SSL-wrapped sockets, it only provides the decrypted packet payload without
network or transport layer headers. Using the libnetfilter queue library and
the iptables tool, the pool proxy intercepts the packets and extracts any TCP
options from the packet headers before forwarding, to tcpproxy to see any token
TCP options. If they are present, as shown by the green line in Figure 3, the
proxy switches the request to a separate authentication pool.

16 Y. Liu et al.

To support private usernames, the pool proxy also checks each username for
a + character and extracts the subsequent code. If the code is valid, the system
recognizes the connection as associated with the blue line in Figure 3. When
the verification of a security token succeeds, the security proxy issues commands
to the AD domain controller to unlock the account if additional attempts are
permitted for that pool group. After the credential verification completes at the
domain controller, the security proxy sends commands to restore the account
lock status. When the TCP option is used, the security proxy generates a new
token and appends it to the reply packet as a TCP option. The router can thus
extract the new token and store it for future use.

For the residential router, we use an Ubuntu 16.04 server VM configured with
single core and 2048 MB of RAM. We then created a C program that uses the
Linux libnetfilter queue library and iptables to intercept traffic to and from
the residential network. The program is designed in a fashion to allow it to be
ported to commodity router hardware. The program uses the packet’s destination
address to determine if it is a known organizational application server. If so,
supplies any associated token as a TCP option. The program also looks at the
packet’s source address to determine if it is an application server, and if so, the
program looks for TCP options containing a token. If one is found, the router
stores it for future out-bound packets and removes the option before sending the
packet towards its destination. In Figure 4, we provide a diagram of this process.

6.2 Security Effectiveness

Using a methodology similar to our measurements in Section 4.2, we create a tool
that emulates an attacker trying to trigger an account lockout. We use a Python
script with the poplib library [1] to create a POP3 client. That script initi-
ates 100 authentication attempts in rapid succession. Even with the relatively
permissive NIST guidance, that volume triggered a lockout.

We unlocked the account and reset the failed attempt counter to zero. We
then replicated this process using web requests to the Outlook Web Application
(OWA) interface on the Exchange server manually. The outcome was the same:
the legitimate user was unable to authenticate to either OWA or POP3 because
the account was locked in AD.

We note that the account lockout through the OWA portal may be affected by
credential caching in Microsoft’s Internet Information Services (IIS). A parame-
ter, UserTokenTTL, defines how long the IIS server should cache authentication
tokens. The default cache flush delay is 15 minutes [20]. With that default, an
attacker has 15 minutes to make unlimited password guess attempts. During
that attack, the failed authentication attempts counter increases. After it hits
the threshold, access via services like POP3 is denied because the account is
locked, but the cached credential still allows a user to authenticate via the OWA
portal. In effect, this delays the account lockout attack from affecting the OWA
portal, but still allows an account lock to propagate throughout the rest of the
organization. After the cache period ends, the account will also be locked on the

Account Lockouts: Characterizing and Preventing 17

Table 2. Our security evaluation determined the effectiveness of the TCP option and
embedded code countermeasures. Across 20 trials, both approaches correctly allow
legitimate requests and deny malicious attempts.

Router TCP Option Username + secret
Token Valid Token Invalid Token Valid Token Invalid

Allows access 20 0 20 0

Denies access 0 20 0 20

OWA portal. Accordingly, this caching does not ultimately affect the attack’s
success.

For the residential router mechanism, we primed the router by performing a
legitimate authentication attempt. We then cleared the account lock status and
authentication attempt counts. We then ran the attacker script without present-
ing a token value. However, when the legitimate user attempted to login, the
router supplied the previously obtained token and the security proxy correctly
unlocked the account temporarily to process the request before re-locking it.
We found that the legitimate user was able to authenticate without impediment
despite the ongoing attack.

We repeated the TCP option process with an adversary that tried to forge
TCP tokens, by supplying random values. As expected with the low likelihood of
guessing a 10-byte token value, we found that adversary never generated a cor-
rect token. The security proxy accordingly ignored these tokens and the attacker
remained locked out. However, when the legitimate user attempted to authenti-
cate, the proxy recognized the token and properly allowed the attempt. Finally,
we repeated these experiments using the user-supplied tokens. The legitimate
user provided a username of the format username+token when attempting to
authenticate. In our first experiment, the attacker did not provide tokens and in
our second, the attacker attempted to guess tokens randomly. As with the TCP-
option experiments, we found the attacker was unable to unlock the account
while the legitimate user had unimpeded access to authenticate. In Table 2, we
show the numerical results of our experiments. In each experiment, we conducted
20 separate trials and the results were consistent.

6.3 Performance Evaluation

To determine the performance impact of the approach, we use end-to-end tim-
ings. We measured the amount of time required to complete an authentication
request using the time.time() function, provided by Python, in the legitimate
client’s script. We measured the timing without our countermeasures imple-
mented and with them in place. This allows us to determine the sum of all
overheads present in the system. We show the results in Figure 5.

When comparing our the two authentication mechanisms, we found that the
TCP option countermeasure added around 180 milliseconds of latency while
the user-supplied token added 80 milliseconds of latency, compared to the same
system without a countermeasure present. These overheads are so small they are

18 Y. Liu et al.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

P
e

rc
e

n
ta

g
e

 o
f

T
ri
a

ls

End-to-End Round Trip Time (seconds)

No protection
TCP token

User secret

Fig. 5. We evaluate and compare end to end delay among three cases: red line shows
without any middlebox or proxy, green line shows inserting tokens via TCP option and
blue line shows username + secret token

unlikely to be perceived by an end-user. We believe the user secret scenario is
faster in our implementation because it does not need to examine TCP options,
extract tokens or append TCP tokens.

Based on these results, we find our countermeasures provide effective security
benefits without introducing noticeable latency.

7 Conclusion

In this work, we explored the extent to which organizations are vulnerable to
account lockouts and the impact that the lockouts could have. Looking only
at the deployments of Microsoft Active Directory, we found that the majority
of top companies and universities had an exposed authentication portal that
would enable an attacker to launch an account lockout. Through our experi-
ments with a partnering organization, we demonstrated the feasibility of such
an attack in a production environment. We then introduced a suite of counter-
measures and compared the benefits. We found that both user-supplied tokens
and middlebox-added tokens would be effective and would add no perceptible
delays or performance overheads.

Acknowledgements

The authors would like to thank the anonymous organization for allowing us
to test our account lockout approach on their infrastructure and for providing
feedback on the effectiveness of the account lockout approach when targeting
different authentication portals.

This material is based upon work supported by the National Science Foun-
dation under Grant No. 1651540.

Account Lockouts: Characterizing and Preventing 19

References

1. POP3 protocol client. https://docs.python.org/3/library/poplib.html (2018)
2. 800-63B, N.S.P.: Digital identity guidelines, authentication and lifecycle manage-

ment. https://pages.nist.gov/800-63-3/sp800-63b.html#throttle (2018)
3. Alsaleh, M., Mannan, M., van Oorschot, P.C.: Revisiting defenses against large-

scale online password guessing attacks. IEEE Transactions on dependable and se-
cure computing 9(1), 128–141 (2012)

4. Aura, T., Nikander, P., Leiwo, J.: DOS-resistant authentication with client puzzles.
In: International Workshop on Security Protocols. pp. 170–177. Springer (2000)

5. Cheng, Y., Chu, J., Radhakrishnan, S., Jain, A.: TCP Fast Open. https://tools.
ietf.org/html/rfc7413 (2014)

6. Dean, D., Stubblefield, A.: Using client puzzles to protect TLS. In: USENIX Se-
curity Symposium. vol. 42 (2001)

7. Dufresne, J.: Python-ldap on github. https://github.com/python-ldap/python-
ldap/blob/python-ldap-3.2.0/Doc/index.rst (2017)

8. Durinovic-Johri, S., Wirth, P.E.: Access control system with lockout (1997), US
Patent 5,699,514

9. Eriksson, B., Barford, P., Sommers, J., Nowak, R.: A learning-based approach
for IP geolocation. In: International Conference on Passive and Active Network
Measurement. pp. 171–180. Springer (2010)

10. Ghasemisharif, M., Ramesh, A., Checkoway, S., Kanich, C., Polakis, J.: O single
sign-off, where art thou? an empirical analysis of single sign-on account hijacking
and session management on the web. In: USENIX Security Symposium. pp. 1475–
1492 (2018)

11. Harvard University: Registrars of fortune 1000 companies - raw data.
https://cyber.harvard.edu/archived_content/people/edelman/fortune-

registrars/fortune-list.html

12. Herley, C., Florêncio, D.: Protecting financial institutions from brute-force attacks.
In: IFIP International Information Security Conference. pp. 681–685. Springer
(2008)

13. ickerwx: tcpproxy on github. https://github.com/ickerwx/tcpproxy (2018)
14. Ives, B., Walsh, K.R., Schneider, H.: The domino effect of password reuse. Com-

munications of the ACM 47(4), 75–78 (2004)
15. Koh, J.Y., Ming, J.T.C., Niyato, D.: Rate limiting client puzzle schemes for denial-

of-service mitigation. In: 2013 IEEE Wireless Communications and Networking
Conference (WCNC). pp. 1848–1853. IEEE (2013)

16. Liu, Y., Taylor, C.R., Shue, C.A.: Authenticating endpoints and vetting connec-
tions in residential networks. In: International Conference on Computing, Network-
ing and Communications (ICNC) (2019)

17. Margosis, A.: Security baselines for Windows 8.1, Windows server 2012 R2 and
Internet Explorer 11. https://blogs.technet.microsoft.com/secguide/2014/

08/13/security-baselines-for-windows-8-1-windows-server-2012-r2-and-

internet-explorer-11-final/ (2014)
18. Margosis, A.: Security baseline for Windows 10. https://blogs.technet.

microsoft.com/secguide/2016/10/17/security-baseline-for-windows-10-

v1607-anniversary-edition-and-windows-server-2016/ (2018)
19. Microsoft: Autodiscover for exchange. https://docs.microsoft.com/en-

us/exchange/client-developer/exchange-web-services/autodiscover-for-

exchange (2015)

20 Y. Liu et al.

20. Microsoft support: Changing the default interval for user tokens in IIS.
https://support.microsoft.com/en-us/help/152526/changing-the-default-

interval-for-user-tokens-in-iis (2018)
21. Microsoft support: Office365 login page. login.microsoftonline.com (2019)
22. MITRE Corporation: CWE-645: Overly restrictive account lockout mechanism.

https://cwe.mitre.org/data/definitions/645.html (2019)
23. Monica, A.D., Baldwin, M., Cai, S., Casey, C.: Thousands of apps, one

identity. https://docs.microsoft.com/en-us/enterprise-mobility-security/
solutions/thousands-apps-one-identity (2016)

24. Moore, D., Shannon, C., Brown, D.J., Voelker, G.M., Savage, S.: Inferring internet
denial-of-service activity. ACM Trans. on Computer Systems 24(2), 115–139 (2006)

25. nyxgeek: Lyncsmash. https://github.com/nyxgeek/lyncsmash
26. PCIPolicyPortal: PCI compliance password requirements: Best practices to know.

http://pcipolicyportal.com/blog/pci-compliance-password-requirements-

best-practices-know/ (2015)
27. Pope, C., Kaur, K.: Is it human or computer? defending e-commerce with captchas.

IT professional 7(2), 43–49 (2005)
28. Pylon Technology News: Active directory in todays regulatory environ-

ment. https://pylontechnology.com/active-directory-todays-regulatory-

environment/ (2014)
29. Rousskov, A.: Feature: Sslbump peek and splice. https://wiki.squid-cache.org/

Features/SslPeekAndSplice (2019)
30. SANS Institute: Top 10 mistakes on windows internal networks. https:

//www.sans.org/reading-room/whitepapers/windows/top-10-mistakes-

windows-internal-networks-1016 (2003)
31. Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A., Ratnasamy, S., Sekar, V.:

Making middleboxes someone else’s problem: network processing as a cloud service.
ACM SIGCOMM Computer Communication Review 42(4), 13–24 (2012)

32. Standford University: Alphabetic list of us universities and domains. http://

doors.stanford.edu/~sr/universities.html (1996)
33. Taylor, C.R., Guo, T., Shue, C.A., Najd, M.E.: On the feasibility of cloud-based

sdn controllers for residential networks. In: IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN) (2017)

34. Taylor, C.R., Shue, C.A.: Validating security protocols with cloud-based middle-
boxes. In: IEEE Conference on Communications and Network Security (2016)

35. Taylor, C.R., Shue, C.A., Najd, M.E.: Whole home proxies: Bringing enterprise-
grade security to residential networks. In: IEEE International Conference on Com-
munications (ICC) (2016)

36. Wang, Y., Huang, Y., Zheng, W., Zhou, Z., Liu, D., Lu, M.: Combining convolu-
tional neural network and self-adaptive algorithm to defeat synthetic multi-digit
text-based CAPTCHA. In: IEEE International Conference on Industrial Technol-
ogy (ICIT). pp. 980–985. IEEE (2017)

37. Weir, M., Aggarwal, S., Collins, M., Stern, H.: Testing metrics for password cre-
ation policies by attacking large sets of revealed passwords. In: ACM Conference
on Computer and Communications Security (CCS). pp. 162–175. ACM (2010)

38. Witty, R.J., Allan, A.: Best practices in user ID formation. https:

//www.bus.umich.edu/kresgepublic/journals/gartner/research/117900/

117943/117943.html (2003)
39. Yan, J., Blackwell, A., Anderson, R., Grant, A.: Password memorability and secu-

rity: Empirical results. IEEE Security & privacy 2(5), 25–31 (2004)

