
Sequence	of	Stack	Frames	for	
Explaining	Banking	Excep8ons	

CS2102	
Professor	Kathi	Fisler	

This	demonstra8on	accompanies	the	BankingService	
example	that	we	have	been	doing	for	the	last	several	

lectures.	
	

It	starts	from	the	point	when	we	decided	to	throw	an	
excep8on	rather	than	return	null	when	a	named	

customer	is	not	found.	
	

The	lecture	notes	provide	context	for	the	star8ng	point	
of	these	slides	

loginScreen()

The	Stack	

The	Current	Method	

 public void loginScreen() {
 // prompt for name and password
 System.out.println("Welcome …”);
 System.out.print("Enter username: ");
 String username = keyboard.next();
 System.out.print("Enter password: ");
 int password = keyboard.nextInt();
 try {
 B.login(username,password);
 System.out.println("Login success");
 } catch (CustNotFoundException e) {
 System.out.println(”Try Again");
 this.loginScreen();
 }
}

As	the	user	is	about	to	type	in	their	password	
(having	already	typed	their	username)	

loginScreen()

The	Stack	

The	Current	Method	

 public void loginScreen() {
 // prompt for name and password
 System.out.println("Welcome …”);
 System.out.print("Enter username: ");
 String username = keyboard.next();
 System.out.print("Enter password: ");
 int password = keyboard.nextInt();
 try {
 B.login(username,password);
 System.out.println("Login success");
 } catch (CustNotFoundException e) {
 System.out.println(”Try Again");
 this.loginScreen();
 }
}

Java	reads	the	typed-in	password	

loginScreen()

The	Stack	

The	Current	Method	

 public void loginScreen() {
 // prompt for name and password
 System.out.println("Welcome …”);
 System.out.print("Enter username: ");
 String username = keyboard.next();
 System.out.print("Enter password: ");
 int password = keyboard.nextInt();
 try {
 B.login(username,password);
 System.out.println("Login success");
 } catch (CustNotFoundException e) {
 System.out.println(”Try Again");
 this.loginScreen();
 }
}

Java	reads	sends	the	username	and	password	
to	the	login	method	in	the	BankingService	
class.	Java	puts	a	liNle	marker	on	the	stack	to	
indicate	that	we	are	in	a	try	block.		

loginScreen()

The	Stack	

The	Current	Method	

 public void login(String custname,
 int withPwd) {
 Customer cust =
 customers.findByName(custname);
 cust.tryLogin(withPwd);
 }

We	record	on	the	stack	that	we	are	now	in	a	
call	to	login,	and	the	login	code	is	the	current	
method.	The	code	arrow	is	at	the	top	of	login.	
We	are	about	to	call	findByName.	

login()

Note	this	call	to	tryLogin	aTer	the	
arrow.	If	findByName	throws	an	
excep8on,	this	line	will	be	skipped		

loginScreen()

The	Stack	

The	Current	Method	

 public Customer findByName(String name) {
 for (Customer cust:customers) {
 if (cust.nameMatches(name))
 return cust;
 }
 throw new CustNotFoundException(name);
 }

We	record	on	the	stack	that	we	are	now	in	a	
call	to	findByName,	which	becomes	the	current	
method.		The	arrow	is	at	the	start	of	the	for	
loop	to	check	the	customers.	

login(“K”,12)

findByName(“K”)

loginScreen()

The	Stack	

The	Current	Method	

 public Customer findByName(String name) {
 for (Customer cust:customers) {
 if (cust.nameMatches(name))
 return cust;
 }
 throw new CustNotFoundException(name);
 }

Fast	forward	–	we	didn’t	find	the	customer,	
and	the	arrow	is	at	the	point	of	the	excep8on.	
Java	“throws”	the	excep8on.	

login(“K”,12)

findByName(“K”)

loginScreen()

The	Stack	

The	Current	Method	Java	now	searches	back	through	the	stack	for	
the	try	marker,	ignoring	the	other	method	calls	
that	were	wai8ng	to	finish	(this	is	where	the	
pending	call	to	tryLogin	gets	skipped).		The	
arrow	moves	to	the	start	of	the	catch	block.	

login(“K”,12)

findByName(“K”)

public void loginScreen() {
 // prompt for name and password
 System.out.println("Welcome …”);
 System.out.print("Enter username: ");
 String username = keyboard.next();
 System.out.print("Enter password: ");
 int password = keyboard.nextInt();
 try {
 B.login(username,password);
 System.out.println("Login success");
 } catch (CustNotFoundException e) {
 System.out.println(”Try Again");
 this.loginScreen();
 }
}

loginScreen()

The	Stack	

The	Current	Method	
The	skipped-over	methods	are	removed	from	
the	stack,	and	Java	con8nues	running	the	code	
within	the	try	block.	The	marker	comes	off	
because	we	have	finished	try	part	of	the	block	

public void loginScreen() {
 // prompt for name and password
 System.out.println("Welcome …”);
 System.out.print("Enter username: ");
 String username = keyboard.next();
 System.out.print("Enter password: ");
 int password = keyboard.nextInt();
 try {
 B.login(username,password);
 System.out.println("Login success");
 } catch (CustNotFoundException e) {
 System.out.println(”Try Again");
 this.loginScreen();
 }
}

loginScreen()

The	Stack	

The	Current	Method	

The	arrow	advances	to	the	new	call	to	loginScreen,	which	now	goes	on	the	stack,	and	
the	arrow	starts	again	at	the	top	of	the	loginScreen	method.		When	we	get	to	the	try	
statement,	a	new	marker	will	go	on	the	stack	on	the	upper	loginScreen	call.	

public void loginScreen() {
 // prompt for name and password
 System.out.println("Welcome …”);
 System.out.print("Enter username: ");
 String username = keyboard.next();
 System.out.print("Enter password: ");
 int password = keyboard.nextInt();
 try {
 B.login(username,password);
 System.out.println("Login success");
 } catch (CustNotFoundException e) {
 System.out.println(”Try Again");
 this.loginScreen();
 }
}

loginScreen()

