

 (define-struct dillo (length dead?))

 (define baby-dillo (make-dillo 8 false))

 (define adult-dillo (make-dillo 24 false))

 (define huge-dead-dillo (make-dillo 65 true))

 (define (can-shelter adillo)

 (and (dillo-dead? adillo)

 (> (dillo-length adillo) 60)))

 (check-expect (can-shelter baby-dillo) false)

 (check-expect (can-shelter huge-dead-dillo) true)

KNOWN CLASSES OBJECTS

NAMED VALUES

EXPRESSION (impact on other areas are in red)

KNOWN CLASSES OBJECTS

NAMED VALUES

class Dillo {
 int length;
 …
}

EXPRESSION (impact on other areas are in red)

class Dillo {
 int length;
 boolean isDead;

 Dillo (int length, boolean isDead) {
 this.length = length;
 this.isDead = isDead;
 }
}

A class expression adds to
the known-classes area

KNOWN CLASSES OBJECTS

NAMED VALUES

new Dillo (5, false)

EXPRESSION (impact on other areas are in red)

Dillo
length = 5
isDead = false

class Dillo {
 int length;
 boolean isDead;

 Dillo (int length, boolean isDead) {
 this.length = length;
 this.isDead = isDead;
 }
}

A new expression adds to
the objects area

KNOWN CLASSES OBJECTS

NAMED VALUES

deadDillo = new Dillo (3, true)

EXPRESSION (impact on other areas are in red)

Dillo
length = 5
isDead = false

class Dillo {
 int length;
 boolean isDead;

 Dillo (int length, boolean isDead) {
 this.length = length;
 this.isDead = isDead;
 }
}

Dillo
length = 3
isDead = true

deadDillo

An = expression yields
a named value

Note there is no way to
access the live dillo (but

it still exists)

KNOWN CLASSES OBJECTS

NAMED VALUES

anotherDeadDillo = new Dillo (3, true)

EXPRESSION (impact on other areas are in red)

Dillo
length = 5
isDead = false

class Dillo {
 int length;
 boolean isDead;

 Dillo (int length, boolean isDead) {
 this.length = length;
 this.isDead = isDead;
 }
}

Dillo
length = 3
isDead = true

deadDillo

Dillo
length = 3
isDead = true

anotherDeadDillo

It is fine to have multiple
objects with the same

field values.

(define-struct boa (name length eats))

; a Boa is a (make-boa String Number String)
; interp: a boa constrictor where
; name is the boa’s name
; length is the boa’s length
; eats is the boa’s favorite food

;; likes-same-food?: Boa Boa → Boolean
;; produces true if both boas have the same
;; favorite food

(define (likes-same-food? boa1 boa2)
(string=? (boa-eats boa1) (boa-eats boa2)))

Given the above Racket function, write the heading for an analogous Java
method. Call your method likesSameFood. You do NOT have to write the
body of the method (although you may write the method as a stub if you
wish). Just figure out what the heading would be so that you can write test
cases.

Write a set of Junit test cases for likesSameFood.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

