Either prove or give a counterexample to establish whether or not each of the following conjectures holds for every connected weighted graph \(G = (V, E) \), \(w : E \to \mathbb{R}^+ \), with \(|E| > |V| \geq 3 \), with distinct edge weights? You may use the fact that if the edge weights are distinct then \(G \) admits exactly one MST.

Conjecture 1: If \(e \) is the second lightest edge of \(E \), then \(e \) belongs to every minimum spanning tree of \(G \).

The conjecture is true. Let \(uv \) be a lightest edge. Applying the Blue Rule in cut \(\{u\} \cup (V - \{u\}) \) colors \(uv \) Blue. Letting \(A \) be the set containing \(\{u, v\} \) plus one endpoint of the second lightest edge, an application of the Blue Rule will color the second lightest edge Blue, assuring us that it belongs to an MST.

Conjecture 2: If \(e \) is the third lightest edge of \(E \), then \(e \) belongs to every minimum spanning tree of \(G \).

Edge \(uv \) in the following graph is the third lightest edge, but it does not belong to an MST.

Conjecture 3: If \(e \) is the heaviest edge of \(E \), then \(e \) does not belong to any minimum spanning tree of \(G \).

Edge \(uv \) in the following graph is the heaviest edge, but it belongs to the MST.