QUIZ 3

For fixed \(k \geq 1 \) (such as \(k = 423 \) or \(k = 1 \)) and arbitrarily large \(n \), describe an optimal algorithm to find the \(k \)th largest element of array \(A[1..n] \), and show that your algorithm is asymptotically optimal.

Solution:

Build-Max-Heap\((A)\) \(O(n) \)

\[
\text{for } i \leftarrow 1 \text{ to } k-1 \text{ do } \text{EXTRACT-MAX}(A) \quad O(k \lg n)
\]

\[
\text{return } A[1] \quad O(1)
\]

For \(k = 1 \) the algorithm takes time linear (in \(n \)), which we showed to be optimal. We established the lower bound in class that finding the 2nd largest element of \(A \) requires at least \(n + \lg n - 2 \in \Omega(n) \) operations, and for fixed \(k \) the above algorithm takes \(O(n + k \lg n) = O(n) \) operations.