1 Exercise 34.1-1 on page 1060 of our text.

SOLUTION. If LONGEST-PATH-LENGTH could be solved in polynomial time, then we could solve the decision problem LONGEST-PATH in polynomial time for instance \(\langle G, u, v, k \rangle \) by running LONGEST-PATH-LENGTH on \(\langle G, u, v \rangle \) and returning true if and only if LONGEST-PATH-LENGTH returned a value \(\geq k \).

If LONGEST-PATH \(\in P \), then we identify the length of the longest path by essentially doing a sequential search (binary search would be faster, though still in \(P \)) over all possible path lengths.

\[
\text{LONGEST-PATH}(G,u,v) \\
\quad k \leftarrow 0 \\
\quad \text{while } \text{LONGEST-PATH}(G,u,v,k+1) \text{ do } k \leftarrow k + 1 \\
\quad \text{return } k
\]

2 Given a graph \(G = (V, E) \), a set of vertices \(U \subseteq V \) is an independent set if no pair of vertices of \(U \) has an edge between them. Consider the INDEPENDENT SET problem:

INSTANCE: Graph \(G = (V, E) \) and \(k \in \mathbb{Z}^+ \).

QUESTION: Does \(G \) have an independent set of cardinality \(k \)?

a Prove that the INDEPENDENT SET problem is NP-complete.

Hint: You may want to use the VERTEX-COVER problem described in Section 34.5.2 of our text.

b Suppose you have an Oracle which will decide on the INDEPENDENT SET problem in constant time. That is, the Oracle will accept as input a graph \(G = (V, E) \) and \(k \in \mathbb{Z}^+ \) and will tell, in constant time, whether or not \(G \) has an independent set of cardinality \(k \). Show how to use the Oracle to determine the largest independent set of \(G \) in polynomial (in \(|V| \) and \(|E| \)) time. Note that we seek an answer to the optimization problem using a solution to the decision problem (the Oracle). Analyze your algorithm.

SOLUTION: a For any given certificate \(U \subseteq V \), it is easy to verify in polynomial time, \(O\left(\binom{|U|}{2}\right) = O(n^2) \) time, that \(U \) is an independent set. Thus, the INDEPENDENT SET problem belongs to NP.

It is fairly easy to see that \(U \subseteq V \) is an independent set of \(G \) if and only if its complement, \(V \setminus U \), is a vertex cover. Since the text shows that the VERTEX-COVER problem is NP-complete, we only need show that an instance of VERTEX-COVER is polynomially reducible to an instance of INDEPENDENT SET. Since \(G \) doesn’t even change, this is trivially true. If there were a polynomial time algorithm to solve INDEPENDENT SET, then we could solve VERTEX-COVER in polynomial time by responding that \(G \) admits a Vertex-Cover of cardinality \(k \) if and only if it admits an independent set of cardinality \(|V| - k \).
First, we compute the cardinality of the maximum independent set of G.

\begin{align*}
 k & \leftarrow 0 \\
 \textbf{while } \text{Oracle}(G,k+1) \text{ do } & k \leftarrow k + 1
\end{align*}

Now k contains the cardinality of the maximum independent set of G. For any $v \in V$ we let G/v denote graph G with vertex v removed, as well as all edges incident with v. We now use Oracle to find an independent set of cardinality k.

\begin{align*}
 \textbf{for each } v \in V \text{ if } \text{Oracle}(G/v,k) & \quad \Rightarrow G/v \text{ still contains an independent set of } k \text{ vertices} \\
 \text{then } G & \leftarrow G/v
\end{align*}

the vertices of G are now an independent set of k vertices

Exercise 34.2-1 on page 1065 of our text.

\textbf{SOLUTION:} A certificate for isomorphism of $G = (V, E)$ and $G' = (V', E')$ is a bijection $f : V \rightarrow V'$. The fact that f preserves adjacency can be verified be checking adjacency of the $\binom{|V'|}{2} \in O(|V'|^2)$ pairs of vertices. That is, \textbf{for each } $u, v \in V$ we verify that $(u, v) \in E$ if and only if $(f(u), f(v)) \in E'$.

Exercise 34.5-7 on page 1101 of our text.
SOLUTION: We know that the HAMILTON CYCLE problem is NP-complete. It is easy to see that the HAMILTON-CYCLE problem ≤ₚ the LONGEST-SIMPLE-CYCLE problem because graph $G = (V, E)$ admits a Hamilton cycle if and only if the length of its longest simple cycle equals $|V|$.

5 ▶ The problem of deciding if you can divide n integers $\{p_1, \ldots, p_n\}$ into two sets with equal sums is NP-complete. Show that the KNAPSACK PROBLEM is NP-complete.

SOLUTION: We convert any instance $\{p_1, \ldots, p_n\}$ of our problem (the PARTITION PROBLEM) into an instance of the KNAPSACK PROBLEM in which object i, $1 \leq i \leq n$, has value and weight p_i. The capacity of the knapsack is $\frac{\sum_{1 \leq i \leq n} p_i}{2}$, and the instance of PARTITION PROBLEM admits a solution if and only if the KNAPSACK PROBLEM admits a solution of value $\frac{\sum_{1 \leq i \leq n} p_i}{2}$.