1. (25 points) Give an exact closed-form solution to the recurrence

\[T(n) = \begin{cases}
2T(n-1) + 3, & \text{if } n > 1 \\
1, & \text{if } n = 1
\end{cases} \]
2. (25 points) Suppose you want to find the 42^{nd} largest element, x, of an array $A[1..n]$ of $n \geq 42$ distinct elements. A contains exactly 41 elements larger than x. Your benchmark operations are pairwise comparisons.

(a) Describe an algorithm to solve this problem which uses $n-1$ comparisons in the best case.

(b) Describe a $O(n)$ upper bound on the worst case complexity of this problem.

(c) Show that at least $n + \lceil \log n \rceil - 2$ comparisons are necessary in the worst case.
3. (25 points) Assume you are given two sorted arrays $A[1..n]$ and $B[1..n]$ of $2n$ distinct elements. Describe an algorithm to find the median of these $2n$ elements. That is, find the n^{th} smallest of these $2n$ elements. The time complexity of your algorithm should be in $O(\lg n)$. You may assume that n is a power of 2. For example, if $A=(18, 95)$ and $B=(10, 99)$, then your algorithm should return 18.
4. (25 points) Assume that you have to implement a counter which initially contains an integer m, and you want to perform n INCREMENTs on the counter. Ultimately the counter should contain $m+n$. For example, if $m=00011010$ (the initial state of the counter), then after each of three INCREMENTs the counter will contain

<table>
<thead>
<tr>
<th>Operation</th>
<th>counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCREMENT</td>
<td>00011011</td>
</tr>
<tr>
<td>INCREMENT</td>
<td>00011100</td>
</tr>
<tr>
<td>INCREMENT</td>
<td>00011101</td>
</tr>
</tbody>
</table>

Assume the binary representation of m contains $O(n)$ 1's. Show that for any value of m (for any initial state of the counter) the cost of performing n INCREMENTs is in $O(n)$, where the benchmark operation is performing a bit change in implementing the counter.
1. Unfolding the recurrence yields (for \(n \geq 3 \))
\[
T(n) = 2T(n - 1) + 3
\]
\[
= 2(2T(n - 2) + 3) + 3 = 4T(n - 2) + 6 + 3
\]
\[
= 4(2T(n - 3) + 3) + 6 + 3 = 8T(n - 3) + 12 + 6 + 3.
\]
After \(k \) levels of unfolding we get
\[
T(n) = 2^k T(n - k) + 3 \sum_{0 \leq i \leq k-2} 2^i.
\]
After \(n-1 \) levels of unfolding we get
\[
T(n) = 2^{n-1} T(1) + 3 \sum_{0 \leq i \leq n-2} 2^i = 2^{n-1} + 3(2^{n-1} - 1) = 2^n - 3.
\]

2. **a** We first check if \(A \) is already sorted (using \(n-1 \) comparisons). If not, we sort the list. Finally, we return \(A[\text{n-41}] \).

 - **sorted?** ← true
 - for \(i \leftarrow 1 \) to \(n-1 \)
 - if \(A[i] < A[i+1] \) then **sorted?** ← false
 - if not **sorted?** then \(\text{HEAPSORT}(A) \)
 - return \(A[\text{n-41}] \)

 b \(\text{BUILDHEAP}(A) \)

 - \(\Theta(n) \)
 - for \(i \leftarrow 1 \) to 41 do \(\text{HEAP-EXTRACT-MAX}(A) \)
 - \(\Theta(\lg n) \)
 - return \(\text{HEAP-EXTRACT-MAX}(A) \)
 - \(\Theta(\lg n) \)

c In order to "know" the 42\(^{rd}\) largest, the algorithm must "know" the 41 elements of \(A \) which are larger than the 42\(^{rd}\) largest. We showed in class that \(n + \lceil \lg n \rceil - 2 \) comparisons are necessary in the worst case to find the 2 largest elements of \(A \).

3. This problem is like the nuts-&-bolts problem.

 \(\text{MEDIAN}(A,B,n) \)
 - if \(n = 1 \)
 - then return \(\min(A[1], B[1]) \)
 - else
 - if \(A[n/2] < B[n/2] \)
 - then
 - remove the \(n/2 \) smallest elements of \(A \)
 - remove the \(n/2 \) largest elements of \(B \)
 - \(n \leftarrow n/2 \)
 - \(\text{MEDIAN}(A,B,n) \)
 - else
 - remove the \(n/2 \) smallest elements of \(B \)
 - remove the \(n/2 \) largest elements of \(A \)
 - \(n \leftarrow n/2 \)
4. We use amortized analysis, using the accounting model. We assume that flipping a bit costs $1. We invest $1 $O(n)$ times to place 1 on each 1-bit in the counter. We then charge 2 for each of n increments. The invariant that we maintain is that 2 enters to execute each bit flip, and there is always 1 on each 1-bit. Every time a 0-bit is flipped, we use 1 to cover the flip and leave 1 on the bit. When 2 enters to flip a 1-bit, it combines with the 1 on the 1-bit to cover 1 to flip the 1-bit and then send 2 up to cover the cost of flipping higher order bits.