Name________________________

Date: December 17, 2009
All documentation permitted, but no communication is permitted

1. (20 points) Which of the following are context-free? Justify your answers.
 \[a \{a^n b^n c^{3n} \mid n \geq 0\} \]

 \[b \{a^n b^m c^{3n} \mid m, n \geq 0\} \]
2. (30 points) Let \(\mathcal{P} \) be the set of languages for which membership can be decided by a Turing machine in polynomial time, and let \(\mathcal{NP} \) be the set of languages for which membership can be decided by a nondeterministic Turing machine in polynomial time.

\(a \) Is \(\mathcal{P} \) closed under concatenation? Justify your answer.

\(b \) Is \(\mathcal{NP} \) closed under concatenation? Justify your answer.

\(c \) Is \(\mathcal{P} \) closed under complement? Justify your answer.
3. (20 points) Is the following CONJECTURE true? Justify your answer.

CONJECTURE: The set of recursively enumerable languages is closed under complement.
4. (30 points) Consider the language

\[L = \left\{ (M_0, M_1, z) \mid \text{TM } M_0 \text{ halts on input } z \in \Sigma^* \text{ in fewer steps than TM } M_1 \right\}. \]

Note that if \(M_0 \) halts on \(z \) but \(M_1 \) does not, then \((M_0, M_1, z) \in L \).

\(\text{a} \) Is \(L \) recursively enumerable? Justify your answer.

\(\text{b} \) Is \(L \) recursive? Justify your answer.
1. $a \{a^n b^n c^{3n} \mid n \geq 0 \}$ is not a CFL. Assume it is a CFL, and let k be the constant provided by the Pumping Lemma for CFLs. Consider $z=a^k b^k c^{3k}$. By the PL, z can be written $uvwxy$ with $\text{length}(v) + \text{length}(x) > 0$ and $\text{length}(vwx) \leq k$ such that $\{uv^iwx^i \mid i \geq 0\} \subseteq \{a^n b^n c^{3n} \mid n \geq 0\}$.

Because $\text{length}(vwx) \leq k$, vwx cannot contain a's and c's. But because $\text{length}(v) + \text{length}(x) > 0$, string vx must contain some a's or b's or c's. So uv^2wx^2y cannot increase the number of a's, b's and c's. So $uv^2wx^2y \not\in \{a^n b^n c^{3n} \mid n \geq 0\}$, which is a contradiction.

2. $a \cup b \in \mathcal{P}$ and \mathcal{NP} are each closed under concatenation. Assume that $L_0, L_1 \in \mathcal{P}$ (respectively $L_0, L_1 \in \mathcal{NP}$). There must exist TMs M_0, M_1 (respectively TMs M_0, M_1) such that $L_0 = L(M_0)$ and $L_1 = L(M_1)$, and M_0 and M_1 decide on membership in L_0 and L_1 in polynomial time. We want to show that $L_0 \cdot L_1 \in \mathcal{P}$ (respectively $L_0 \cdot L_1 \in \mathcal{NP}$).

For both cases (deterministic and nondeterministic), we can test whether $z \in L_0 \cdot L_1$ by using the following algorithm:

```plaintext
for each $x, y \in \Sigma^*$ such that $xy = z$ do
    if $x \in L(M_0)$ and $y \in L(M_1)$ then return accept
return reject
```

There are $\text{length}(z) + 1$ decompositions of z into x and y, so there are a polynomial (in $\text{length}(z)$) number of invocations of two polynomial time algorithms. So the test is performed in polynomial time. And the algorithm decides that $z \in L_0 \cdot L_1$ if and only if z can be decomposed into x and y such that $x \in L_0$ and $y \in L_1$.

3. $c \in \mathcal{P}$ is closed under complement. Assume that $L \in \mathcal{P}$. There must exist TM M such that $L = L(M)$ and M decides on membership in L in polynomial time. To decide whether $z \in \overline{L}$, we run the following TM which halts in polynomial time.

```plaintext
run $M$ on input $z$
    if $M$ returns accept then return reject else return accept
```

3. The set $HALT$ of pairs (M, z) where TM M halts on input z is recursive but not recursive (this is equivalent to the halting problem). We proved in class, and it is proved in the text, that
If L and \overline{L} are both re then L is recursive. So $HALT$ is re, but its complement is not re. So the CONJECTURE is false.

4. **a** L is re. We can use two Universal TMs to simulate, step by step, M_0 and M_1 on input z. If M_0 halts first, then we accept. If M_1 halts first, then we reject.
 b L is not recursive. The HALTING PROBLEM is reducible to membership in L, and hence membership in L can not be recursive. Let M_∞ be a TM which never halts. For example, M_∞ can have one state, q_0, and $\delta_{M_\infty}(q_0,x) = [q_0,x,R]$ for all $x \in \Gamma$. Given any instance of the HALTING PROBLEM, such as whether TM M halts on input z, we note that the answer is yes if and only if $(M,M_\infty,z) \in L$. Hence, if membership in L were recursive, then the HALTING PROBLEM would be decidable.