DUE: Tuesday, October 15

1. (4 points) Show that the language \((0+1)^*11(0+1)^*\) is recursive by describing a TM to accept it. Show the transition function \(\delta\); do not just use pseudocode. And show that the machine always enters state \(t\) or \(r\).

2. (20 points) Consider the following language which consists of Turing Machines which halt on some input

\[L_H = \{M_i \mid (\exists z \in \Sigma^*) M_i \text{ halts on input } z\} \]

\(a\) Is \(L_H\) recursively enumerable? Justify your answer.

\(b\) Is \(L_H\) recursive? Justify your answer.
1. The language is accepted by a TM which goes right on the tape and enters state \(t \) if a 11 is ever encountered. If a blank symbol is encountered before encountering a 11 it enters state \(r \). Since the machine only goes to the right, we know it will either encounter a 11 or a blank symbol \(b \), so it will always accept or reject any input \(z \in \Sigma^* \).

Our Turing Machine moves right in state \(p \) until it encounters a 1, in which case it enters state \(q \) and keeps moving right. If in state \(q \) the next symbol is a 1, it accepts the string by entering state \(t \). If it makes it to the blank part of the tape not having encountered a 11, it enters state \(r \).

\[
\begin{align*}
\delta(s,\rhd) &= (p,\rhd, R) \\
\delta(p,0) &= (p,0, R) \\
\delta(p,1) &= (q,1, R) \\
\delta(q,0) &= (p,0, R) \\
\delta(q,1) &= (t,1, R) \\
\delta(p,b) &= \delta(q,b) = (r,b, R) \\
\delta(t,0) &= \delta(t,1) = \delta(t,b) = (t,0, R) \\
\delta(r,0) &= \delta(r,1) = \delta(r,b) = (r,0, R)
\end{align*}
\]

2. \(L_H \) is r.e. To enumerate it, we give all Turing Machines the chance to run for 1 step, then 2 steps, then..., by dovetailing over all TMs.

\[
\begin{array}{ccccccc}
&M_0 & 1 & 2 & 4 & 7 & 11 \\
&M_1 & 3 & 5 & 8 & 12 \\
&M_2 & 6 & 9 & 13 \\
&M_3 & 10 & 14
\end{array}
\]

For the \(t \) steps of the simulation of \(M_i \) we dovetail over the inputs and the number of steps that \(M_i \) is run on each input.

\[
\begin{array}{ccccccc}
&y_0 & 1 & 2 & 4 & 7 & 11 \\
&y_1 & 3 & 5 & 8 & 12 \\
&\Sigma^* & y_2 & 6 & 9 & 13 \\
&y_3 & 10 & 14
\end{array}
\]
If we determine that M_i ever halts on any input, we list it. If M_i halts on input y_j, then it does so in a finite number of steps, say p. Ultimately the t steps allocated to M_i will be large enough for input y_j to be tested for p steps.

b L_H is not recursive. We know that the halting problem is not recursive, so we show how to reduce the halting problem to the problem of deciding on membership in L_H.

Assume that L_H is recursive. There must be a total TM M_H which decides for any TM M_i whether M_i halts on any input. For any TM M_i and input z, we show how to use M_H to decide if M_i halts on input z. Design a new TM M^* which takes as input M_i and any input, and then erases the input and replaces it with z. TM M^* halts on some input (in fact it halts on all inputs) if and only if M_i halts on input z. So because we assumed that L_H is recursive, we could decide if an arbitrary TM M_i halts on input z, which we know is undecidable. So L_H can not be recursive.