DUE: Thursday, September 19

1. (8 points) Prove that for every \(n \geq 2 \) there exists a language \(L_n \) for which there exists a DFA with \(n \) states to accept \(L_n \) and there does not exist a DFA with \(n-1 \) states to accept \(L_n \).

2. (5 points) For NFA \(N = (Q, \Sigma, \Delta, S, F) \), state \(q \in Q \) is useful if there exist \(s \in S, z \in \Sigma^* \) such that \(q \in \Delta(s, z) \) and there exist \(f \in F, x \in \Sigma^* \) such that \(f \in \Delta(q, x) \), and a state is useless if it is not useful. Remove useless states from the NFA with \(\varepsilon \)-transitions

\[
N = \left(\left\{ q_0, q_1, q_2, q_3, q_4, q_5 \right\}, \{0,1\}, \Delta, \left\{ q_0, q_2 \right\}, \left\{ q_3 \right\} \right)
\]

to obtain an equivalent NFA with no useless states, where

\[
\begin{array}{c|ccc}
\Delta & 0 & 1 & \varepsilon \\
\hline
q_0 & \left\{ q_1, q_3 \right\} & \left\{ q_2 \right\} & \emptyset \\
q_1 & \emptyset & \emptyset & \emptyset \\
q_2 & \emptyset & \emptyset & \left\{ q_5 \right\} \\
q_3 & \emptyset & \emptyset & \emptyset \\
q_4 & \emptyset & \left\{ q_2, q_5 \right\} & \left\{ q_3 \right\} \\
q_5 & \emptyset & \emptyset & \left\{ q_1 \right\} \\
\end{array}
\]

3. (15 points) a Describe a decision procedure which accepts as input an NFA \(N \) and decides whether or not \(L(N) \) is infinite.

b Describe a decision procedure which accepts as input an NFA \(N \) and \(k \in \mathbb{N} \) and decides whether or not \(|L(N)|=k \).

c Describe a decision procedure which accepts as input two NFAs \(N_0 \) and \(N_1 \) and decides whether \(|L(N_0)|<|L(N_1)| \). Note that if regular languages \(L(N_0) \) and \(L(N_1) \) are each infinite, then they have the same cardinality.

4. (6 points) For the NFA \(\left(\left\{ q_0, q_1, q_2 \right\}, \{0,1\}, \Delta, \left\{ q_0, q_1 \right\}, \left\{ q_0, q_2 \right\} \right) \), where

\[
\begin{array}{c|cc}
\Delta & 0 & 1 \\
\hline
q_0 & \left\{ q_1, q_2 \right\} & \emptyset \\
q_1 & \left\{ q_1 \right\} & \left\{ q_1 \right\} \\
q_2 & \emptyset & \left\{ q_0 \right\} \\
\end{array}
\]

use the algorithm from class and our text to construct the regular expression

\[
\alpha_{\left\{ q_0, q_0 \right\}} + \alpha_{\left\{ q_0, q_1 \right\}}
\]

describing the language defined by the set of paths from \(q_0 \) to \(q_1 \) or \(q_2 \).
only possibly passing through q_0 or q_1 as intermediate states. You don't need to simplify the regular expression produced by the algorithm.
1. For \(n \geq 2 \), let \(L_n = \{0^{n-2}\} \) be defined over \{0\}. The language is accepted by
\[\{q_0, \ldots, q_{n-1}\}, \{0\}, \delta, \{q_0, \{q_{n-2}\}\} \], where \(\delta(q_i, 0) = q_{i+1} \) for \(0 \leq i \leq n-2 \), and
\(\delta(q_{n-1}, 0) = q_{n-1} \) (state \(q_{n-1} \) is a black hole).

Since \(|\Sigma| = 1 \), each state of a DFA has one edge leaving it. So beginning at the start state we encounter a (possibly trivial) path, leading to a nontrivial cycle (a path or cycle is trivial if it does not have any edges). Since \(L_n \) is finite, no states on the cycle can be final states. To accept \(L_n \), at \(n-2 \) edges from the start state is a final state (there are \(n-1 \) states on this path), and its outgoing edge is to the cycle. So any acceptor for to accept \(L_n \) must have at least \(n \) states.

2. State \(q_4 \) is useless because it can’t be reached from any start state. States \(q_1, q_2 \) and \(q_5 \) are useless since there does not exist a path from any of them to a final state. So removing them yields equivalent \(N = \{\{q_0, q_3\}, \{0, 1\}, \Delta^+, \{q_0\}, \{q_3\}\} \), where

\[
\begin{array}{ccc}
\Delta^+ & 0 & 1 \\
q_0 & \{q_3\} & \emptyset & \emptyset \\
q_3 & \emptyset & \emptyset & \emptyset \\
\end{array}
\]

3. For all three parts of this problem, we assume the NFAs \(N, N_0 \) and \(N_1 \) have been converted to equivalent DFAs \(M, M_0 \) and \(M_1 \) which have, respectively, sets of states \(Q, Q_0 \) and \(Q_1 \).

\(a \) \(L(N) \) is infinite if and only if there is a path from the start state of \(M \) to a final state of \(M \), and a vertex on the path lies on a nontrivial cycle. The Floyd-Warshall Algorithm tests for each the existence of a path from any vertex to any other vertex, and it tests whether there is a path from any vertex to itself (the equivalent of lying on a cycle).

\(b \) We use the previous algorithm to test if \(L(M) \) is finite. If it is finite, then all strings in \(L(M) \) are of length at most \(|Q|-1 \). We test all strings in \(\Sigma^* \) of length at most \(|Q|-1 \) to decide if they belong to \(L(N) \), and we test if the number of strings which do belong is equal to \(k \).

\(c \) We use the procedure from part \(a \) to decide if either of \(L(N_0) \) or \(L(N_1) \) is infinite. If either is infinite, the answer is simple. If both \(L(N_0) \) and \(L(N_1) \) are finite, then we invoke the following finite, albeit inefficient, procedure:

\[
k \leftarrow 0
\]

\[
\text{repeat}
\]

\[
\text{if } |L(N_0)| = k \text{ or } |L(N_1)| = k \text{ then}
\]

\[
\text{if not } |L(N_i)| = k \text{ then return true else return false}
\]

\[
k \leftarrow k + 1
\]

\[
\text{forever}
\]
4. \(\alpha_{q_0q_0} \cap \alpha_{q_0q_2} = \varepsilon \)
\(\alpha_{q_0q_0} = \varepsilon + 0 + 1 \)
\(\alpha_{q_0q_1} = \alpha_{q_0q_2} = 0 \)
\(\alpha_{q_0q_0} = \alpha_{q_0q_2} = \emptyset \)
\(\alpha_{q_0q_0} = 1 \)
\(\alpha_{q_0q_1} = \emptyset \)
\(\alpha_{q_0q_0} = \varepsilon \)
\(\alpha_{q_0q_1} = \alpha_{q_0q_2} = 0 \)
\(\alpha_{q_0q_1} = \varepsilon + 0 + 1 \)
\(\alpha_{q_0q_1} = \alpha_{q_0q_2} = \emptyset \)
\(\alpha_{q_0q_0} = \varepsilon \)
\(\alpha_{q_0q_1} = 1 \)
\(\alpha_{q_0q_0} = 10 \)
\(\alpha_{q_0q_1} = 0 + 0(\varepsilon + 0 + 1)^*(\varepsilon + 0 + 1) \)
\(\alpha_{q_0q_2} = 0 + 0(\varepsilon + 0 + 1)^*\emptyset \)
\(\alpha_{q_0q_0} + \alpha_{q_0q_1} = 0 + 0(\varepsilon + 0 + 1)^*(\varepsilon + 0 + 1) + 0 + 0(\varepsilon + 0 + 1)^*\emptyset \)

which simplifies to \(0(0 + 1)^* \).