1. (10 points) Define the *shuffle-reverse* operation \(\otimes : \Sigma^* \times \Sigma^* \rightarrow 2^{\Sigma^*} \) for any alphabet \(\Sigma \) by

- \(\varepsilon \otimes (ax) = \{(\varepsilon \otimes x) a\} \),
- \((ax) \otimes \varepsilon = \{(x \otimes \varepsilon) a\} \),
- \(ax \otimes by = \{x \otimes by\} : \{a\} \cup \{ax \otimes y\} : \{b\} \)

for all \(a, b \in \Sigma, x, y \in \Sigma^* \). For example, \(01 \otimes ab = \{ba10, b1a0, 1ba0, 10ba, lb0a, b10a\} \). We extend the definition to languages by \(L_0 \otimes L_1 = \bigcup_{xy \in L_0} x \otimes y \). For example,

\[
\{01,0\} \otimes \{ab\} = \{ba10, b1a0, 1ba0, 10ba, lb0a, b10a, ba0, b0a, 0ba\}
\]

Prove that for any regular languages \(A \) and \(B \), language \(A \otimes B \) must be regular. (Hint: Decompose the \(\otimes \) operation into the composition of two operations.)

2. (12 points) A state \(q \) in an NFA \(N = (Q, \Sigma, \Delta, S, F) \) is *useless* if

- \(\neg(\exists z \in \Sigma^*) q \in \hat{\Delta}(S, z) \) \((\) there doesn’t exist a string taking \(N \) from a start state to \(q \), \() or,

- \(\neg(\exists z \in \Sigma^*) \hat{\Delta}(q, z) \cap F \neq \emptyset \) \((\) there doesn’t exist a string taking \(N \) from \(q \) to a final state). \()

a Can we remove all useless states from any NFA without changing the language that it accepts? Justify your answer.

b If we want to remove useless states, we notice that the definition of a useless state involves testing for an infinite set of strings, \(\Sigma^* \). Describe a finite time algorithm to test if \(q \) is useless.

c Describe an algorithm which decides whether the language accepted by NFA \(N = (Q, \Sigma, \Delta, S, F) \) is infinite. You may assume that \(N \) does not have \(\varepsilon \)–transitions.

3. (12 points) For each of the following languages over \{a, b, c\}, tell whether or not it is regular and justify your response.

a The set of all strings that have a substring of length 4 which starts and ends with the same symbol.

b The set of strings with the same number of bs as cs. So \(cab \) and \(a \) each belong to our language, and \(cabab \) does not belong.

c The set of all strings that do not have a substring of length 4 which starts and ends with the same symbol.
1. It is easier to break this problem into two steps, by breaking \otimes into the composition of two operations, the first shuffles two strings, and the second takes the reverse of a string. Then we show that regular sets are closed under both of these operations. We first show that applying the *shuffle* operation $\Psi: \Sigma^* \times \Sigma^* \rightarrow 2^{\Sigma^*}$

- $e\Psi x = \{x\}$,
- $x\Psi e = \{x\}$,
- $ax\Psi by = \{a\} \cdot \{x\Psi by\} \cup \{b\} \cdot \{ax\Psi y\}$

for all $a, b \in \Sigma$, $x, y \in \Sigma^*$, to regular languages yields a regular language.

If L_0 and L_1 are regular, then there are DFAs $M_0 = (Q_0, \Sigma, \delta_0, s_0, F_0)$ and $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ such that $L_0 = L(M_0)$ and $L_1 = L(M_1)$. The idea behind the following machine is to run M_0 and M_1 in parallel, using nondeterminism to guess which machine should consume the next input symbol and advance its state. A string is accepted by $N_{M_0 \Psi M_1}$, if there exists a path which consumes the string and takes each of M_0 and M_1 to final states.

$$N_{M_0 \Psi M_1} = (Q_0 \times Q_1, \Sigma, \Delta, \{(s_0, s_1)\}, F_0 \times F_1)$$

where $\Delta((q_i, q_j), a) = \{(\delta_0(q_i, a), q_j), (q_i, \delta_1(q_j, a))\}$. So, by extending the definition of Ψ, if L_0 and L_1 are regular, then so is $L_0 \Psi L_1 = \bigcup_{x \in L_0} \bigcup_{y \in L_1} x\Psi y$, and there must be a DFA to accept $L_0 \Psi L_1$.

As we showed in class, and also as stated in our text, regular languages are closed under reversal. So because there must be a DFA to accept $L_0 \Psi L_1$, there must be a DFA to accept $L_0 \otimes L_1$.

2. **String** $z \in L(N)$ if and only if there is a path labeled z in N from some $s \in S$ to some $f \in F$. If q is useless, then it can’t belong to any such path, either because we can’t get some $s \in S$ to q or we can’t get from q to some $f \in F$ (so no suffix of z can get us from q to some $f \in F$). So removing useless state q from Q can not change the language accepted by N.

b By the Pigeonhole Principle, if $\exists z \in \Sigma^* q \in \hat{\Delta}(S, z)$ then

$$\exists z \in \Sigma^* (q \in \hat{\Delta}(S, z)) \land (|z| < |Q|).$$

That is, there is a path in N from a state of S to q which does not pass through any state twice. Likewise, if $\exists z \in \Sigma^* \hat{\Delta}(q, z) \cap F = \emptyset$ then

$$\exists z \in \Sigma^* (\hat{\Delta}(q, z) \cap F \neq \emptyset) \land (|z| < |Q|).$$

That is, there is a path in N from q to a state of F
which does not pass through any state twice. Hence, to test if q is useless, we only need
test a finite set of strings, $\{z \in \Sigma^* \mid |z| < |Q|\}$.

Useless?(q)

Reachable \leftarrow false

for each $z \in \Sigma^*$, $|z| \leq |Q| - 1$ do

if $q \in \hat{\Delta}(S, z)$ then Reachable \leftarrow true

if \neg Reachable then return “q is useless”

GettoF \leftarrow false

for each $z \in \Sigma^*$, $|z| \leq |Q| - 1$ do

if $F \cap \hat{\Delta}(\{q\}, z) \neq \emptyset$ then GettoF \leftarrow true

if \neg GettoF then return “q is useless”

return “q is not useless”

c Remove useless states from N, and there is cycle (loop) in the new NFA if and only if
the language it accepts is infinite.

3. **a** The language is regular because it is described by the regular expression

$$(a+b+c)^* a (a+b+c) (a+b+c) a (a+b+c)^* +$$

$$(a+b+c)^* b (a+b+c) (a+b+c) b (a+b+c)^* +$$

$$(a+b+c)^* c (a+b+c) (a+b+c) c (a+b+c)^*$$

b The language is not regular. If it were, then there would be an n such that every string z
in the language could be written $z=uvw$ with $|uv| \leq n$, $|v| > 0$, such that every string in
$\{uv^lw \mid l \geq 0\}$ would also belong to the language. Choose $z=b^nc^n$. Any attempt to express
z as uvw with $|uv| \leq n$ and $|v| > 0$ would have $v=b^i$, $i > 0$. So uv^2w contains more bs than
cs, which contradicts the conditions of the Pumping Lemma. So the language can not be
regular.

c The language is regular because it is the complement of the regular language in 3a and
regular languages are closed under complement.