1. (6 points) Give a regular expression for the following languages over \(\{0,1\} \).

 a The set of strings that contain 01 and 10. Note that 010 belongs to the language.
 b Every 0 is either immediately preceded by a 1 or immediately followed by a 1.

2. (8 points) For the languages described by the regular expressions
 \[\alpha = 0^* + 1^* \]
 \[\beta = 01^* + 10^* + 1^0 + \left(0^1\right)^* \]
 find a shortest string \(z \) satisfying each of the following conditions.

 a \(z \in L(\alpha) \) and \(z \notin L(\beta) \).
 b \(z \notin L(\alpha) \) and \(z \in L(\beta) \).
 c \(z \in L(\alpha) \cap L(\beta) \).
 d \(z \notin L(\alpha) \cup L(\beta) \).

3. (6 points) Letting \(\alpha \) and \(\beta \) denote arbitrary regular expressions, find a shortest regular expression which is equivalent to each of the following.

 a \(\alpha (\alpha + \alpha^*) + \alpha^* \)
 b \((\alpha + \varepsilon)^* \)
 c \((\alpha + \beta)^* \alpha \beta (\alpha + \beta)^* + \beta^* \alpha^* \)

4. (10 points) Describe an algorithm to convert an arbitrary regular expression \(\alpha \), such that \(L(\alpha) \neq \emptyset \), to an equivalent regular expression \(\beta \) such that \(L(\alpha) = L(\beta) \) and \(\emptyset \) does not appear in \(\beta \).
CS3133
Solutions to HW#3

1. \(a \) Either the first 01 precedes the first 10 or the first 10 precedes the first 01.
 \[0^*11^*0(0+1)^* + 1^*00^*1(0+1)^* \]

 \(b \) \(1^*(101^*+1^*01)^*1^* \)

2. \(a \) 00
 \(b \) 01
 \(c \) \(\varepsilon \)
 \(d \) 010

3. \(a \) \(\alpha^* \)
 \(b \) \(\alpha^* \)
 \(c \) \((\alpha + \beta)^* \)

4. \(\beta \leftarrow \alpha \)
 \(\text{repeat} \)
 \(\text{if} \ \varepsilon + \chi \ \text{or} \ \chi + \varepsilon \ \text{appears in} \ \beta \ \text{for some regular expression} \ \chi \)
 \(\text{then replace it by} \ \chi \)
 \(\text{if} \ \varepsilon \chi \ \text{or} \ \chi \varepsilon \ \text{appears in} \ \beta \ \text{for some regular expression} \ \chi \)
 \(\text{then replace it by} \ \varepsilon \)
 \(\text{if} \ \varepsilon^* \ \text{appears in} \ \beta \ \text{then replace it by} \ \varepsilon \)
 \(\text{until} \ \varepsilon \ \text{does not appear in} \ \beta \)