1. (9 points) Give regular expressions for the following sets of strings over \(\{0,1\} \).
 a All strings for which the number of 0's is divisible by 3.
 b All strings which contain 00 and it contains 111, though not necessarily in that order.
 c All strings of odd length which contain 11.

2. (5 points) Which of the following "identities" are **true for all** regular expressions \(R, S \) and \(T \)? If an "identity" is **false**, provide a counterexample.
 a \(R(S+T) = RS + RT \)
 b \((R^*)^* = R^* \)
 c \((R^*S^*)^* = (R+S)^* \)
 d \(RR = R \)
 e \((R+S)^* = R^* + S^* \)

3. (10 points) **a** Either give a regular expression for \(L = \{0^n1^m2^l \mid l, m, n > 0\} \) or prove that it doesn't exist.
 b Either give a regular expression for \(L = \{0^n1^m2^l \mid l > 0 \land n > m > 0\} \) or prove that it doesn't exist.

4. (10 points) Define function \(\otimes : \Sigma^* \times \Sigma^* \rightarrow 2^{\Sigma^*} \) for any alphabet \(\Sigma \) by
 - \(\epsilon \otimes x = \{x\} \),
 - \(x \otimes \epsilon = \{x\} \),
 - \(ax \otimes by = \{a\} \cdot \left\{x \otimes by\right\} \cup \{b\} \cdot \{ax \otimes y\} \)

for all \(a, b \in \Sigma, x, y \in \Sigma^* \). For example, \(01 \otimes ab = \{01ab, 0aub, 0ab1, ab01, ab01, a0b1, a0b0\} \). We extend the definition to languages by \(L_0 \otimes L_1 = \bigcup_{x \in L_0, y \in L_1} x \otimes y \). For example,

\[
\{01, 0\} \otimes \{ab\} = \{01ab, 0aub, 0ab1, ab01, ab01, a0b1, a0b0, ab0, ab0, ab0\}
\]

Prove that for any regular languages \(A \) and \(B \), language \(A \otimes B \) must be regular.
1. \(a \left(1^*01^*01^*01^*\right)^* \)

\(b\) We can treat this as the union of two cases, where either 00 appears before 111 or 111 appears before 00.

\[
\left((0+1)^*00(0+1)^*111(0+1)^*\right) + \left((0+1)^*111(0+1)^*00(0+1)^*\right)
\]

\(c\) We can build the regular expression around 11. We know that either it is preceded by a string of odd length and followed by a string of even length or that it is preceded by a string of even length and followed by a string of odd length. The strings of even length are described by \((00+01+10+11)^*\) and the strings of odd length are described by \((00+01+10+11)^*(0+1)\). So an answer is

\[
(00+01+10+11)^*(0+1)11(00+01+10+11)^* + (00+01+10+11)^*(0+1)11(00+01+10+11)^*
\]

2. \(a\) true

\(b\) true

\(c\) true

\(d\) false Let \(R = 0 \). \(RR = 00 \neq 0 = R \)

\(e\) false Let \(R = 0 \) and \(S = 1 \). \(01 \in (R + S)^* = (0+1)^* \) though \(01 \notin R^* + S^* = 0^* + 1^* \)

3. \(00^*11^*22^* \)

\(b\) There does not exist a regular expression for \(L = \{01^m2^n \mid l > 0 \wedge n > m > 0\} \) because it is not a regular language. If it were, the Pumping Lemma assures us of the existence of a \(k>0\) such that \(01^k2^{k+1}\) can be expressed as \(xyz\) such that \(\{xy^iz \mid i \geq 0\} \subseteq L \). There are two cases to consider:

- \(0 \in y\) In this case \(xy^0z\) does not contain any 0's, and hence \(xy^0z \notin L\)
- \(0 \notin y\) In this case \(y\) contains a nonempty string of 1's and does not contain any 2's.

So \(xy^2z\) contains at least as many 1's as 2's, so it must follow that \(xy^2z \notin L\).

Both of these cases are impossible.

4. If \(L_0\) and \(L_1\) are regular, then there are DFAs \(M_0 = (Q_0, \Sigma, \delta_0, s_0, F_0)\) and \(M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)\) such that \(L_0 = L(M_0)\) and \(L_1 = L(M_1)\). The idea behind the following machine is to run \(M_0\) and \(M_1\) in parallel, using nondeterminism to guess which machine should consume the next input symbol and advance its state. A string is accepted by \(N_{M_0 \otimes M_1}\) if there exists a path which consumes the string and takes each of \(M_0\) and \(M_1\) to final states.

\[
N_{M_0 \otimes M_1} = \left(Q_0 \times Q_1, \Sigma, \Delta, \left((s_0, s_1)\right), F_0 \times F_1\right)
\]
where \(\Delta((q_i, q_j), a) = \{(\delta_0(q_i, a), q_j), (q_i, \delta_1(q_j, a))\} \).