1. (10 points) Tell whether each of the following conjectures is true, and justify your answers.

Conjecture A: For any DFA \(M = (Q, \Sigma, \delta, S, F) \) there is an NFA \(N = (Q', \Sigma, \Delta, S, F') \) such that \(L(M) = L(N) \) and \(|Q'| \leq |Q| \).

Conjecture B: For any NFA \(N = (Q, \Sigma, \Delta, S, F) \) there is a DFA \(M = (Q', \Sigma, \delta, S, F') \) such that \(L(M) = L(N) \) and \(|Q'| \leq |Q| \).

2. (8 points) Show that for any alphabet \(\Sigma \), the set of all strings \(z \) such that there exists \(a \in \Sigma \) and \(a \) does not appear in \(z \) is regular. That is, \(\{ z \mid (\exists a \in \Sigma) z \in (\Sigma - \{a\})^* \} \) is regular. So, if \(\Sigma = \{a, b, c\} \), then \(abab \) and \(\varepsilon \) and \(bbbb \) and \(acaaca \) all belong to the language.

3. (10 points) This problem is a variation of problem 3 of http://web.cs.wpi.edu/~sms/cs3133/HW2-07.pdf

We say that string \(z \) is a *substring of* string \(w \) if there exist strings \(\alpha, \beta \) such that \(w = \alpha z \beta \). Is the following CONJECTURE true? If it is true, then you only need to give a construction to justify your result; you needn't prove that your construction works.

CONJECTURE: For any regular language \(L \), then \(Sub(L) = \{ w \mid (\exists z \in L)(w \text{ is a substring of } z) \} \) is regular.
1. **Conjecture A** is true. Given any DFA $M = (Q, \Sigma, \delta, S, F)$, we construct NFA $N = (Q, \Sigma, \Delta, S, F)$ such that for all $q \in Q, a \in \Sigma$, $\Delta(q, a) = \{\delta(q, a)\}$.

Conjecture B is false. Let $N = (\{s, q\}, \{0, 1\}, \Delta, \{s\}, \{s, q\})$ where

\[
\begin{align*}
\Delta & = \begin{pmatrix} 0 & 1 \\ s & \{s\} & \{q\} \\ q & \emptyset & \emptyset \end{pmatrix} \\
N \text{ accepts a string if it is a string of 0's followed by at most one 1. Assume there exists a} \text{ two state DFA } M = (\{r, t\}, \{0, 1\}, \delta, \{r\}, F) \text{ to accept } L(N). \text{ Because } \epsilon \in L(N), \text{ it must fol-} \\
& \text{low that } r \in F. \text{ If } \delta(r, 1) = r, \text{ then } 11 \in L(M) \text{ which contradicts the fact that} \\
& 11 \notin L(N). \text{ So } \delta(r, 1) = t. \text{ Because } 1 \in L(N), \ t \in F. \text{ But } 11 \notin L(N), \text{ so } \delta(t, 1) \notin \{r, t\}. \text{ So it fol-} \\
& \text{lows that there does not exist a two state DFA to accept } L(N), \text{ and **Conjecture B** must be false.}
\]

2. We show that the language is regular by constructing an NFA with $|\Sigma| + 1$ states. The NFA first guesses (with ϵ transitions) which letter a in Σ won't appear in the string, and then verifies that a doesn't appear. The acceptor is

\[
(\{s\} \cup \{q_a \mid a \in \Sigma\}, \Sigma, \Delta, \{s\}, \{q_a \mid a \in \Sigma\})
\]

where $\Delta(s, \epsilon) = \{q_a \mid a \in \Sigma\}$ and $(\forall a \in \Sigma) \Delta(s, a) = \emptyset$. For each $a \in \Sigma$, $\Delta(q_a, \epsilon) = \Delta(q_a, a) = \emptyset$ and $\Delta(q_a, u) = \{q_a\}$ for all $u \in \Sigma - \{a\}$.

3. The **Conjecture** is true. If $L = \emptyset$, then $\text{Sub}(L) = \emptyset$, which is regular. Otherwise L is nonempty and there is a DFA $M = (Q, \Sigma, \delta, s, F), \ F \neq \emptyset$, to accept it. We construct a new DFA $M^* = (Q^*, \Sigma, \delta, s, F^*)$ by removing from Q all states which are either not accessible from s or for which there does not exist a path to a state of F. We know that $s \in Q^*$, and $L(M) = L(M^*)$. We then construct an NFA $N = (Q^* \cup \{s^*\}, \Sigma, \Delta, \{s^*\}, Q^*)$ with

\[
\begin{align*}
\Delta(s^*, \epsilon) &= Q^*, \ \Delta(s^*, a) = \emptyset \text{ for all } a \in \Sigma, \ \Delta(q, a) = \{\delta(q, a)\} \text{ for all } a \in \Sigma, \ q \in Q^*, \text{ and} \\
\Delta(q, \epsilon) &= \emptyset \text{ for all } q \in Q^*.
\end{align*}
\]