1. (8 points) Show that the language \(\{0^n1^n \mid m \equiv_3 n \} \) is regular by constructing an automaton (DFA or NFA) to accept it, where \(m \equiv_3 n \) means that \(m \) and \(n \) are congruent modulo 3. You don't need to prove that your automaton accepts the language.

2. (8 points) Prove or give a counterexample to the following:

Conjecture: For any DFA \(M = (Q, \Sigma, \delta, S, F) \), language \(L(M) \) is infinite if and only if there exists a \(z \in L(M) \) such that \(|Q| \leq |z| < 2^{|Q|} \).

3. (10 points) Prove or give a counterexample to the following:

Conjecture: For any regular language \(L \), there exists an NFA \(N = (Q, \Sigma, \Delta, S, F) \) without \(\varepsilon \) transitions to accept \(L \) such that \(|S| = |F| = 1 \).
1. We design an NDA to accept \(\{0^n 10^n : m = n \} \) by first noting that
\[
\{0^n 10^n : m = n \} = \{0^n 10^n : m = n, n \leq 0 \} \cup \{0^n 10^n : m = n, n \leq 1 \} \cup \{0^n 10^n : m = n, n \leq 2 \}.
\]
To test if some \(z \in \{0^n 10^n : m = n \} \) we will use nondeterminism to "guess" to which of the three languages on the right inequality above \(z \) belongs. An acceptor for \(\{0^n 10^n : m = n, n \leq i \}, 0 \leq i \leq 2 \) is \(N_i = \left\{ \{q_{i,0}, q_{i,1}, q_{i,2}, p_{i,0}, p_{i,1}, p_{i,2}\}, \{0,1\}, \Delta, \{q_{i,0}\}, \{p_{i,2}\} \right\} \)
where for \(0 \leq i, j \leq 2 \),
\begin{itemize}
 \item \(\Delta_i(q_{i,j},0) = \{q_{i,j+1(\text{mod} 3)}\} \),
 \item \(\Delta_i(q_{i,j},1) = \{p_{i,j}\} \),
 \item \(\Delta_i(q_{i,j},1) = \emptyset \) for \(j \neq i \),
 \item \(\Delta_i(p_{i,j},0) = \{p_{i,j+1(\text{mod} 3)}\} \),
 \item \(\Delta_i(p_{i,j},1) = \emptyset \),
 \item \(\Delta_i(q_{i,j},\varepsilon) = \Delta_i(p_{i,j},\varepsilon) = \emptyset \).
\end{itemize}
It is interesting to note that each \(N_i \) is "almost deterministic" (transitions to \(\emptyset \) violate determinism). Finally, we take the union of the three NDAs, and add a new unique start state with an \(\varepsilon \)-transition to each of the start states of \(N_0, N_1 \) and \(N_2 \).
\[
\left\{ \{s\} \cup \{q_{i,j}, p_{i,j} | 0 \leq i, j \leq 2\}, \{0,1\}, \Delta_0 \cup \Delta_1 \cup \Delta_2 \cup \Delta^* \{s\}, \{p_{i,j} | 0 \leq i \leq 2\} \right\}
\]
where \(\Delta^*(s,0) = \Delta^*(s,1) = \emptyset \) and \(\Delta^*(s,\varepsilon) = \{q_{i,0} | 0 \leq i \leq 2\} \).

2. The **Conjecture** is true.

Assume that there exists a \(z \in L(M) \) such that \(|Q| \leq |z| \). By the Pigeonhole Principle applied to \(Q \), there must be a decomposition of \(z = uvw \) such that \(|v| \geq 1 \) and
\[
\hat{\delta}(s,u) = \hat{\delta}(s,uv).
\]
But since \(\hat{\delta}(s,uvw) \in F \), then for all \(k \geq 0 \), \(\hat{\delta}(s,u^kvw) \in F \). So
\[
\{uv^kw | k \geq 0\} \subseteq L(M) \quad \text{and} \quad \{uv^kw | k \geq 0\}
\]
is infinite, so \(L(M) \) must also be infinite.

Assume that \(L(M) \) is infinite. There must be a \(z \in L(M) \) such that \(|z| \geq 2*|Q| \). When considering the states through which \(M \) passes in processing \(z \), some state of \(Q \), say \(q_s \), is traversed at least two times. Consider a shortest path from \(s \) to \(\delta(s,z) \) which passes through \(q_s \), and let \(u \) be the string corresponding to the path from \(s \) to \(q_s \), and let \(v \) be the string corresponding to the path from \(q_s \) to \(\delta(s,z) \). By the minimality of the paths, \(|uv| \leq |Q| \). Consider a shortest nontrivial cycle from \(q \) to \(q \). Let \(x \) be the string corresponding to the shortest nontrivial path from \(q \) to \(q \). We know that for all \(k \geq 0 \),
ux^k \in L(M)$, and there must be a $k \geq 1$ such that $Q \leq |ux^k| < 2*|Q|$, thus establishing the theorem.

3. The Conjecture is false. Assume the Conjecture is true, and choose $L = \{\varepsilon, a\}$. Because $\varepsilon \in L$, the start state must also be the final state. Because $a \in L$, there must be a transition from the start state to the start/final state. But then $aa \in L$, which is a contradiction. So the Conjecture must be false.

 In fact, the Conjecture would be true if $\varepsilon \notin L$. We could introduce a new start state with outgoing edges like those from each of the old start states. We introduce a new final state f and every transition to a final state of the original NFA also includes a transition to f, the only final state.