1. (8 points) Let \(L \) be any regular set of binary strings. Prove that the set of strings in \(L \) which contain 00 but do not contain 0101 is regular.

2. (8 points) Prove or give a counterexample to the following:

Conjecture: For any NFA \(\mathcal{N} = (Q, \Sigma, \Delta, S, F) \), we obtain an equivalent NFA by contracting any pair of states \(p, q \in Q \) such that \(q \in \Delta(p, \varepsilon) \). That is, if we apply the following transformation to NFA \(\mathcal{N} \) we obtain a new NFA which accepts the same language.

\[
\begin{align*}
\text{if } & \exists p, q \in Q, q \in \varepsilon - \text{closure}(p) \\
& \text{create new state } pq \notin Q \\
& (\forall a \in \Sigma \cup \{\varepsilon\}) \Delta(pq, a) \leftarrow \Delta(p, a) \cup \Delta(q, a) \\
& (\forall r \in Q) (\forall a \in \Sigma \cup \{\varepsilon\}) (p \in \Delta(r, a) \lor q \in \Delta(r, a)) \Rightarrow (\Delta(r, a) \leftarrow \Delta(r, a) \cup \{pq\} - \{p, q\}) \\
& Q \leftarrow Q \cup \{pq\} - \{p, q\} \\
& \text{if } (p \in S) \lor (q \in S) \text{ then } (S \leftarrow S \cup \{pq\} - \{p, q\}) \\
& \text{if } (p \in F) \lor (q \in F) \text{ then } (F \leftarrow F \cup \{pq\} - \{p, q\})
\end{align*}
\]

Intuitively, if there is an \(\varepsilon \)–transition from \(p \) to \(q \), then we replace states \(p \) and \(q \) with a new state, \(pq \), such that all transitions into \(p \) or \(q \) become transitions into \(pq \) and all transitions from \(p \) or \(q \) become transitions from \(pq \), and the new automaton accepts the same language.

3. (10 points) Prove or give a counterexample to the following:

Conjecture: For any regular language \(L \), there exists an NFA \(\mathcal{N} = (Q, \Sigma, \Delta, S, F) \) such that:

- \(L = L(\mathcal{N}) \),
- \(|S| = |F| = 1 \),
- \((\forall q \in Q)(\forall s \in S)(\forall a \in \Sigma \cup \{\varepsilon\})(s \in \Delta(q, a)) \), and
- \((\forall f \in F)(\forall a \in \Sigma \cup \{\varepsilon\})\Delta(f, a) = \emptyset \).
1. We know that L_0, the set of binary strings which contain 00, is regular because it is described by the regular expression $(0+1)^*00(0+1)^*$. We know that L_1, the set of binary strings which contain 0101, is regular because it is described by the regular expression $(0+1)^*0101(0+1)^*$. We know that L_2, the set of binary strings which do not contain 0101, is regular because regular sets are closed under complement. The strings in L which contain 00 but do not contain 0101 is $L_0 \cap L_2$, and because regular sets are closed under intersection, it must be regular.

2. The CONJECTURE is false. As a counterexample, consider NFA $N = (\{s, p, q\}, \{0,1\}, \Delta, \{s\}, \{p\})$ where

\[
\begin{array}{cccc}
\Delta & 0 & 1 & \epsilon \\
s & \{p\} & \{q\} & \emptyset \\
p & \emptyset & \emptyset & \{q\} \\
q & \emptyset & \emptyset & \emptyset
\end{array}
\]

Applying the transformation yields NFA $N^* = (\{s, pq\}, \{0,1\}, \Delta^*, \{s\}, \{pq\})$ where

\[
\begin{array}{cccc}
\Delta^* & 0 & 1 & \epsilon \\
s & \{pq\} & \{pq\} & \emptyset \\
pq & \emptyset & \emptyset & \{pq\}
\end{array}
\]

But $L(N) = \{0\}$ and $L(N^*) = \{0,1\}$.

3. We establish the CONJECTURE by noting that any regular language has an NFA $N = (Q, \Sigma, \Delta, S, F)$ to accept it. We introduce two new states, $S^*, q_f^* \notin Q$ and we derive Δ^* from Δ by adding the transitions $\Delta^*(S^*, \epsilon) = S$, $\Delta^*(S^*, a) = \emptyset$ for all $a \in \Sigma$, $\Delta^*(q_f^*, a) = \emptyset$ for all $a \in \Sigma \cup \{\epsilon\}$, and setting $\Delta^*(q, \epsilon) = \Delta(q, \epsilon) \cup \{q_f^*\}$ for each $q \in F$. So setting $N^* = (Q \cup \{S^*, q_f^*\}, \Sigma, \Delta^*, \{S^*\}, \{q_f^*\})$, we note that N^* satisfies the last three conditions of the CONJECTURE, and that N and N^* have identical transitions within Q.

To see that $L(N^*) = L$, we first prove that $L(N^*) \subseteq L$ and then that $L \subseteq L(N^*)$.

If $z \in L(N^*)$, then $q_f^* \in \widehat{\Delta}^*(S^*, z)$. The only transition from S^* is an ϵ-transition to S. Since the only transition into q_f^* is ϵ-transition from F, the path traced by $\epsilon \epsilon \epsilon = z$ from S^* to q_f^* from a state of S to a state of F, implying that $z \in L(N)$.

If \(z \in L(N) \), there is a path in \(N \) traced by \(z \) from a state \(s \) of \(S \) to a state \(f \) of \(F \). But there is a path in \(N^* \), traced by \(\varepsilon z \varepsilon = z \) from \(S^* \) to \(q_f^* \), which starts with an \(\varepsilon \)–transition from \(S^* \) to \(s \), and finishing with an \(\varepsilon \)–transition from \(f \) to \(q_f^* \). So \(z \in L(N^*) \).