STEPQ: Spatio-Temporal Engine for Complex
Pattern Queries

Dongqging Xiao, Mohamed Eltabakh

Worcester Polytechnic Institute, MA 01604, USA,
{dxiao, meltabakh}@cs.wpi.edu

Abstract. With the increasing complexity and wide diversity of spatio-
temporal applications, the query processing requirements over spatio-
temporal data go beyond the traditional query types, e.g., range, kNN, and
aggregation queries along with their variants. Most applications require sup-
port for evaluating powerful spatio-temporal pattern queries (STPQs) that
form higher-order correlations and compositions of sequences of events to
infer real-world semantics of importance to the targeted application. STPQs
can be supported by neither traditional spatio-temporal databases (STDBs)
nor by modern complex-event-processing systems (CEP). While the former
lack the expressiveness and processing capabilities for handling such com-
plex sequence pattern queries, the later mostly focus on the Time dimension
as the driving dimension, and hence lack the power of the special-purpose
processing technologies established in STDBs over the past decades. In this
paper, we propose an efficient and scalable spatio-temporal engine for com-
plex pattern queries (STEPQ). STEPQ has several innovative features and
ideas that will open the research in the area of integration between spatio-
temporal databases and complex event processing.

1 Introduction

The recent advances and wide-spread popularity of mobile devices, wireless cellu-
lar phones, and Global Positioning Systems (GPS) have enabled spatio-temporal
applications in various domains to continuously monitor and track all objects of
interest. Thus with the increasing complexity and wide diversity of spatio-temporal
applications, the query and data exploration requirements go beyond the traditional
spatio-temporal query types, e.g., range, k nearest-neighbor (kNN), and aggregation
queries [3, 4], to more expressive and semantics-rich spatio-temporal pattern queries
(or STPQ) that require higher-order correlation among events. In Table 1, we illus-
trate several of STPQs from different applications. Evidently, STPQs are prevalent
in many applications as they capture real-world semantics that otherwise would
have been lost or delegated to the application layer for ad-hoc and inefficient pro-
cessing. It is not meaningful to assume that a suspicious criminal activity in Q1 or
the alert condition for a patient in Q3 depend solely on a single data instance (or
even snapshot) of the data stream - rather separate snapshots of instances in the
high-speed stream must be trapped at the right moments of time and synchronized
to determine the correct match of such a complex STPQ query.

In this paper, we envision the STEPQ system—Spatio-Temporal Engine for
complex Pattern Queries— that addresses the unique challenges of handling STPQs,
including: (1) They embed powerful semantics not captured by current spatio-
temporal query types, (2) Unlike traditional query types that can be evaluated on
each instance of the database in isolation, STPQs require correlation among spatio-
temporal events (both in time and in space) over multiple instances of the database,

Q1||Report child-abuse criminals who stay in a school area A1l for more than x minutes and

then move to a suspicious area A2 within one hour (E.g.,suspicious criminal activity).

Q2[|Report cars that stay in my kNN over interval T and continuously are getting closer to my moving car.

Q3||Send alert to patient P, if she stays in contact (within distance D for at least interval T) with a patient

having a transferable disease (E.g., health threat).

Q4||For consecutive areas Al, A2, and A3, report speeding cars (over the speed limit for at least x mins)

in Al and A3 but not in A2 (E.g., testing effect of radar signs over A2 on drivers’ behavior).

Q5(|Report restaurants located in kNN of two moving cars and getting closer to both cars over interval

T (E.g., find common nearby restaurants in direction of moving cars).

Table 1. Examples of spatio-temporal pattern queries (STPQs).

(3) They require a full-fledged query engine equipped not only with efficient event-
processing techniques but also with effective spatio-temporal processing capabilities,
and (4) Unlike state-of-art event-processing techniques (CEP) that have no control
over the input stream of events, the STPQs generate these streams of events, and
hence crucial optimization strategies can be deployed to control which higher-order
events to generate and when. These challenges combined make the state-of-art in
complex event processing (CEP), e.g., [8], not applicable since CEP techniques
cannot process traditional range or kNN queries efficiently, also state-of-art in spatio-
temporal databases (STDBs), e.g., [2, 7], fall short since they lack the expressiveness
power and processing capabilities of handling complex pattern queries.

2 Limitations of State-of-Art Techniques

Conceptually, STPQs can be viewed as two-layered queries where the first layer runs
traditional spatio-temporal queries, e.g., range and kNN, on top of the raw input
stream coming from moving objects (we refer to these queries as base queries). The
second layer runs complex pattern-matching queries on top of the results generated
from the base queries. Thus, with the state-of-art technology, there are two possible
approaches to support STPQs, namely application-level and middleware-level
as depicted in Figures 1(a) and (b). In the application-level approach, all of the pat-
tern matching and event correlation is done at the application level to impose the
query semantics, which is clearly an ad-hoc and inefficient solution since (1) each
application applies its own semantics independently, (2) mobile devices usually have
limited power and processing capabilities, and (3) STDBs may send streams of un-
necessary results plus the lack of many possible optimizations that could have been
performed by the execution engine. The middleware-level approach, which consists
of loosely coupled CEP systems, e.g., [8,1,5] and STDBs is a more feasible ap-
proach. However, it has serious drawbacks and limitations including;:

(1) Coupling hurdles: There are several linking problems that emerge between
the STDB and CEP layers such as: (a) STDBs deploy incremental evaluation tech-
niques for purposes of efficiency and scalability whereas CEP systems do not handle
incremental updates, and (b) The base queries can themselves be moving objects,
e.g., Queries Q2, Q3, and Q5 in Table 1, and hence CEP systems need to get as
input not only the query answer, but also the query points.

(2) Optimization hurdles: Since STPQs generate both the base queries and the
pattern-matching queries, then several optimization opportunities arise that cannot
be leveraged with loosely coupled STDB and CEP layers. For example, in Query
Q4, the three range queries over areas A1, A2, and A3 will be concurrently running,
although queries over A2 and A8 should run only if there is a match in the previous

Application

|| Answers to

Spatio-temporal Y
queries

queries "

> Spatio-Temporal
Database Engine (STDB)

(a) Application-level Approach

Application

Answers to
|| pattern queries
Complex Event 3

pattern’, Processing Engine (CEP) J

queries,
Spatio-temporal

queries

#Answevs to
I ST queries

Spatio-Temporal
Database Engine (STDB)

(b) Middleware-level Approach

In Application-level approach, applications issue traditional spatio-temporal queries (ST queries) and get the
answers back from the STDB. All pattern-detection and event-correlation is performed by the application.

In Middleware-level approach, applications issue separate ST queries and pattern queries to the two layers

STDB and CEP, respectively. Applications should also couple these queries together.

In STEPQ, applications issue spatio-temporal pattern query (similar to the queries in Table 1) and get the

answer back. The proposed system overcomes all hurdles in the middleware-level approach.

Application

Spatio-temporal
pattern queries

Answer

Compiler & Optimizer

PQ-CompilerOptimizer ‘

queries

Execution Engine

PM-Execution ST-Execution
Engine Engine

Pattern queries ISpaﬁo—temporal

(c) Architecture of STEPQ for Spatio-

Temporal Pattern Queries
Fig. 1. Possible architectures for supporting spatio-temporal pattern queries.

areas.

(3) Synchronization and Transformation hurdles: A STPQ may require not
only executing multiple base queries to generate events, but also synchronizing their
execution. For example, Query Q5 in Table 1 requires synchronizing the execution
of two moving kNN queries and then intersecting their results. Such synchronization
and transformation over the event streams are not feasible in the middleware-level
approach and not even supported by current STDBs.

3 STEPQ System: Vision and Challenges

Given the above limitations, it is clear that engineering existing systems to han-
dle STPQs is not the right approach. In the following we envision the architec-
ture of the proposed STEPQ system and the involved challenges. The system con-
sists of two standard layers; compilation/optimization and execution layers as il-
lustrated in Figures 1(c). In the compilation/optimization layer, the pattern-query
compiler & optimizer (PQ-CompilerOptimizer) component, which is the central
component of the system, is responsible for compiling and optimizing the entire
query. Given a spatio-temporal pattern query, PQ-CompilerOptimizer decomposes
it into one or more traditional queries (the base queries) and pattern-matching
queries. The individual base queries are compiled and optimized using an extended
spatio-temporal compiler € optimizer (ST-CompilerOptimizer) that works under
the control of the PQ-CompilerOptimizer. In contrast, pattern-matching queries
are fully compiled by PQ-CompilerOptimizer. The base queries will be executed
by the extended spatio-temporal execution engine (ST-EzecutionEngine), while the
pattern-matching queries will be executed by the pattern-matching execution engine
(PM-EzecutionEngine). The continuously generated results from the base queries
will drive the progress of the pattern-matching queries. The key characteristics and
challenges in STEPQ are (More details and examples can be found in [6]):

e Leveraging & extending state-of-art in STDBs: It is crucial to leverage the
existing technology in STDBs. This is achieved by the ST-CompilerOptimizer and
ST-FEzxecutionEngine components that retain all the innovations in STDBs such as
continues and incremental evaluation, spatial-aware operators and access methods,

and scalable execution. Moreover, base queries will be subject to new optimizations
triggered by PQ-CompilerOptimizer.

e Coherent integration between spatio-temporal and pattern-matching
techniques: This is achieved by having a single system with interacting components
orchestrated by the PQ-CompilerOptimizer. Such integration allows the sharing of
base queries across multiple pattern-matching queries, activating/suppressing base
queries when needed, and seamless flow between the generated streams from the
base queries to the pattern-matching queries.

e Cross-cutting optimizations: This is achieved by the PQ-CompilerOptimizer
component that enables PM-FExecutionEngine to provide feedback information to
ST-FEzxecutionEngine to control the execution of the base queries depending on the
progress of the pattern queries. Cross-cutting optimizations require new commu-
nication mechanisms (and feedback loop) between the pattern-matching and base
queries to control what events to generate and when.

e Synchronized Query Processing: STPQs may require not only executing mul-
tiple base queries, but also synchronizing their execution and jointly processing their
results. Hence, new execution plans and synchronization strategies need to be inte-
grated in the evaluation of both spatio-temporal and pattern-matching queries.

e Event Model and Query Language: New—possibly extensible—query lan-
guages and event models are needed to meet the diverse requirements of STPQs.
For example, new concepts such as event sets need to be introduced to provide log-
ical grouping of events produced from the base queries. The significance of event
sets is two-fold. First, each answer set produced from a base query can be pipelined
and processed as one unit, and hence further operations, e.g., synchronization and
transformation, can be applied on the event sets. Second, event sets provide an effi-
cient mechanism for anticipating when events should occur in the future, and hence
they enable continuity /persistency operations.

References

1. R. Adaikkalavan and S. Chakravarthy. SnooplB: Interval-based event specification and
detection for active databases. TKDE, 59(1):139-165, 2006.

2. T. Behr and R. H. Guting. Fuzzy Spatial Objects: An Algebra Implementation in
SECONDO. In In Proceedings of the International Conference on Data Engineering,
ICDE, page 1137 1139, 2005.

3. R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis. Nearest Neighbor and Reverse
Nearest Neighbor Queries for Moving Objects. In Proceedings of the International
Database Engineering and Applications Symposium, IDEAS, pages 44-53, 2002.

4. Y. Cai, K. A. Hua, and G. Cao. Processing Range-Monitoring Queries on Heteroge-
neous Mobile Objects. In Proceedings of the International Conference on Mobile Data
Management, MDM, 2004.

5. A. Demers, J. Gehrke, and B. Panda. Cayuga: A general purpose event monitoring
system. In CIDR, pages 412422, 2007.

6. M. Eltabakh. STEPQ: Extensible Spatio-Temporal Engine for Complex Pattern
Queries. Technical Report WPI-CS-TR-13-02.

7. B. Gedik and L. Liu. MobiEyes: Distributed Processing of Continuously Moving Queries
on Moving Objects in a Mobile System. In Proceedings of the International Conference
on Extending Database Technology, EDBT, 2004.

8. E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over streams.
In Proceedings of the ACM SIGMOD international conference on Management of data,
pages 407-418, 2006.

