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ABSTRACT
In this paper, we address the challenges that arise from the growing
scale of annotations in scientific databases. On one hand, end-users
and scientists are incapable of analyzing and extracting knowledge
from the large number of reported annotations, e.g., one tuple may
have hundreds of annotations attached to it over time. On the other
hand, current annotation management techniques fall short in pro-
viding advanced processing over the annotations beyond just prop-
agating them to end-users. To address this limitation, we propose
the InsightNotes system, a summary-based annotation manage-
ment engine in relational databases. InsightNotes integrates data
mining and summarization techniques into annotation management
in novel ways with the objective of creating and reporting concise
representations (summaries) of the raw annotations. We propose
an extended summary-aware query processing engine for efficient
manipulation and propagation of the annotation summaries in the
query pipeline. We introduce several optimizations for the creation,
maintenance, and zoom-in processing over the annotations sum-
maries. InsightNotes is implemented on top of an existing anno-
tation management system within which it is experimentally eval-
uated using real-world datasets. The results illustrate significant
performance gain from the proposed techniques and optimizations
(up to 100x in some operations) compared to the naive approaches.

Categories and Subject Descriptors
H.2 [Database Management]: Systems—Query processing

Keywords
Annotation Management; Summarization; Query Processing.

1. INTRODUCTION
Modern relational database systems provide backbone support to

many emerging scientific applications in various disciplines such
as in biology, healthcare, ornithology, among many others. In these
applications, data curation and annotation is a vital mechanism for
capturing users’ observations, understanding and curating the data,

∗This project is partially supported by NSF-CRI 1305258 grant.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.

highlighting erroneous or conflicting values, and freely describ-
ing the data outside the barriers of the rigid relational schemas.
More importantly, in many cases, scientists assess the credibility
and trustworthy of the data based on the annotations attached to it,
e.g., based on the data’s provenance information and any attached
scientific articles. That is why annotation management has been
extensively studied in the context of relational databases to support
these applications [4, 6, 10, 13, 16, 22] .

However, with the increasing scale of collaboration and the ex-
tensive use of annotations among scientists, the number and size
of the annotations may far exceed the size of the original data it-
self, e.g., one tuple in the database may have tens or even hundreds
of annotations attached to it over time. This is especially true due
to the increasing number of automated tools that annotate the data
with various information [21], e.g., verification, quality assessment,
and prediction tools. The following examples illustrate the increas-
ing scale of scientific annotations.

Example 1−Biological Annotations (10x Scale-up): Nu-
merous biological databases leverage the power of relational
DBMSs for storing, querying, and annotating or curat-
ing their data, e.g., Genobase (http://ecoli.naist.jp/GB8/),
EcoliHouse (http://www.porteco.org/), Ensemble project
(http://www.ensembl.org/), and UniProt database system
(http://www.ebi.ac.uk/uniprot). These systems either provide
web-based SQL interfaces for directly executing complex queries
over the data, e.g., Genobase, or allow full database download, e.g.,
Ensemble, EcoliHouse, and UniProt. According to the geneon-
tology.org website, the ratio between the number of annotations
to the number of biological records in several of these systems is
more than an order of magnitude, e.g., in UniProt database there
are around 28,239,042 data records compared to 186,648,155
annotation records, and in DataBank database there are 199,930
data records compared to 3,047,731 annotation records. These
annotations range from function predictions of genes and proteins,
provenance records carrying the sources’ information, scientific
articles about the data, and curation information such as bug fixes
and version numbers. Thus, it is typical in these databases to have
10s of annotations attached to each data tuple.

Example 2−Ornithological Annotations (100x Scale-up):
Ornithology is the branch in science that concerns the study
of birds. Several large-scale relational databases are in use
to store and query information related to 10s of thousands of
birds worldwide, e.g., DBRC (http://www.dbrc.org.uk/), and AKN
(http://www.avianknowledge.net/). In these systems, in addition to
the base data, i.e., the birds’ basic information such as scientific
names, synonyms, geographic ranges, images, description, etc.,
there are more than 200,000 bird watchers and scientists who con-
tinuously provide observations and annotations on these birds from
their trips. It is reported in [1] that, on average, bird watchers add
1.6 million observations (annotations) per month to the ebirds sys-



tem, which is part of the AKN network. These annotations are
free-text values that may describe anything related to the observed
birds, e.g., color, body shape or weight, certain behavior or sound,
eating habits, geographic location, or observed diseases. Therefore,
in these databases the number of annotations can be more than two
orders of magnitude larger than the number of data records.

Given these motivating applications, it is evident that the amount
of annotations reported back (propagated) to end-users along with
queries’ answers can be overwhelming and hard to interpret, e.g., it
is extremely hard for a biologist to go over many reported annota-
tions to find out which ones carry provenance information vs. bug
fixes, which ones are obsolete or proven wrong, and what is the
summary of an attached big article or document. Similarly, for an
ornithologist or bird lover, it is almost impractical to go over 100s
of annotations per tuple to find out which ones are duplicates or
have similar content, which ones talk about a bird’s eating habits
vs. body anatomy, and which ones are more critical and highlight
diseases. Therefore, delegating the extraction of such knowledge
to end-users, especially in large-scale systems, is the wrong choice.
Instead, we need more advanced annotation management systems
that not only propagate and query the raw annotations, but also
analyze, mine, and summarize them into more meaningful repre-
sentations that provide the most insight possible to end-users.

In this paper, we propose the “InsightNotes” system; a
summary-based annotation management engine in relational
databases. InsightNotes advances the state-of-art in annotation
management by exploring, utilizing, and propagating the anno-
tations in novel ways even under complex relational queries and
transformations, e.g., projection, join, grouping and aggregation,
and duplicate elimination. InsightNotes integrates data mining
techniques into annotation management with the objective of creat-
ing and reporting more concise representations of the raw annota-
tions. For example, referring to Figure 1, instead of propagating the
raw annotations with each output tuple from a query, InsightNotes
will propagate various types of summaries, e.g., clustering the an-
notations having similar content into groups and reporting only a
representative from each group, classifying the annotations accord-
ing to user-defined classifiers and reporting each class label along
with the number of associated annotations, and summarizing large-
object annotations, e.g., big documents or articles, and reporting
small snippets representing them. The mining techniques will op-
erate on the tuple-level, i.e., the annotations on each tuple will be
summarized and then the mining outputs will be attached back to
their data tuples as illustrated in Figure 1.

InsightNotes addresses several core challenges, which include:
(1) Extensibility and Efficient Maintenance: Each of the motivat-
ing examples described above warrant the need for different types
of annotation summaries. Therefore, InsightNotes is designed as an
extensible system, where the database admins define how to sum-
marize the annotations in a way suitable for their applications. For
example, in biological databases (Figure 1(a)), it can be meaningful
to classify the annotations on genes into classes {‘FunctionPredic-
tion’, ‘Provenance’, ‘Comment’}, while in ornithological databases
in is more meaningful to classify them into classes {‘Behavior’,
‘Disease’, ‘Anatomy’, ‘Other’}. The system only defines some
properties and requirements that the integrated mining techniques
should obey for efficient and incremental maintenance of the anno-
tation summaries. (2) Summary-Aware Query Processing: Unlike
the raw annotations which are free-text objects, the annotation sum-
maries will have well-defined structures and properties. The chal-
lenge is how to extend the query engine to efficiently manipulate
the annotation summaries at query time without retrieving the raw
annotations whenever possible. We present two strategies that com-
pute the summaries at the last stage of query processing (lazy evalu-
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Figure 1: Annotation summarization in different domains.

ation), and then we propose a more aggressive and efficient strategy
that entails extending each of the query operators, e.g., projection,
join, grouping, and aggregation, to directly operate on the summary
objects attached to each tuple. And (3) Zoom-in Query Process-
ing: Reporting the annotation summaries raises another challenge,
which is: What if the end-user is interested in zooming-in and re-
trieving specific raw annotations? For example, referring to Fig-
ure 1(a), the end-user may be interested in retrieving the three an-
notations labeled with “FunctionPrediction” on the given tuple, or
in retrieving all annotations in the cluster represented by annotation
“A1”. Therefore, we propose novel zoom-in querying capabilities
coupled with smart caching techniques for efficient execution.

The key contributions of this paper are summarized as follows:
• Proposing the InsightNotes system, a summary-based annota-
tion management engine in relational DBs, that exploits and prop-
agates the annotations in novel ways. InsightNotes propagates to
end-users concise and meaningful representations, called annota-
tion summaries, instead of the, possibly too numerous, raw annota-
tions. InsightNotes provides efficient incremental maintenance of
the annotation summaries, and it is extensible as it enables database
admins to define their own summarization techniques.
• Proposing different strategies for optimizing the creation and
propagation of the annotation summaries. They cover the spectrum
of entirely postponing the creation of summaries until query time
(On-The-Fly strategy), pre-computing and materializing the sum-
maries but lazily integrating them at the last stage of query process-
ing (Lazy-Propagation strategy) and aggressively integrating them
at the early stage of query processing (Summary-Aware strategy).
We studied the pros and cons of each strategy.
• Extending the semantics and algebra of the standard query op-
erators to propagate the annotation summaries within the query
pipeline. The extended operators can directly manipulate the sum-
maries without retrieving the raw annotations. We also introduce
new operators specific to the propagation of annotation summaries.
• Introducing a novel zoom-in query processing mechanism for
expanding the annotation summaries and retrieving the raw anno-
tations when desired. We propose caching techniques and several
runtime optimizations for efficient execution.

The rest of the paper is organized as follows. In Section 2,
we provide formal definitions for the annotation summaries, and
present three strategies for developing InsightNotes. In Section 3,
we cover the extended query processing engine including the Lazy-
Propagation and Summary-Aware strategies as well as the zoom-in
processing. The creation and maintenance of the annotation sum-
maries is introduced in Section 4. The related work and experimen-
tal evaluation are presented in Sections 5 and 6, respectively. And
finally the conclusion remarks are included in Section 7.



{ Name: “Snippet”, 
   TypeProperties: [ AnnotationInvariant Boolean, 
                      DataInvariant  Boolean, 

                     LargeObjThresold  Number]}  

{ InstanceID: “TextSummary1”, 
   TypeName: “Snippet”, 
    FunctionID: SummaryFunc1(), 
   Properties: [ AnnotationInvariant: True, 
             DataInvariant: True, 

            LargeObjThresold: 500 Bytes,  
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         ClassLabels: [“Behavior”, “Disease”, “Anatomy”, “Other”],  
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                        ….]}  
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Figure 2: The hierarchy of annotation summaries: Types, Instances, and Objects.

2. ANNOTATION SUMMARIES: TYPES
AND STRUCTURES

In this section, we formally present the data model for the anno-
tation summaries, which includes the types of summaries supported
in InsightNotes along with their structures and properties.
• Summary Types: InsightNotes supports three widely-used

families (types) of data mining techniques for mining and sum-
marizing the raw annotations, which are: (1) Text summarization
techniques, e.g., [18], for summarizing large-object annotations,
e.g., big text values and large documents, and creating concise snip-
pets from them, (2) Clustering techniques, e.g., [17, 24], for clus-
tering the annotations into distinct groups of similar content, And
(3) Classification techniques, e.g., [9], for categorizing annotations
according to user-defined classifiers. The definition of the summary
types is as follows:

Definition 1– Summary Type: Each annotation summary has
a type that consists of a pair of values {Name, TypeProperties},
where Name is a unique identifier that defines the summary type,
i.e., “Snippet”, “Cluster”, or “Classifier”, and TypeProperties is
a set of key-type pairs representing the type-level properties.

The type-level properties will be inherited by all summary in-
stances instantiated from a given type. Typically, InsightNotes will
leverage some of these properties at execution time to optimize the
creation and propagation of the annotation summaries. For exam-
ple, all summary types will have two Boolean properties (See Fig-
ure 2(a)), which are: AnnotationsInvariant, and DataInvariant.
The former property specifies whether or not the summarization of
a newly added annotation over a given tuple t depends on t’s exist-
ing annotations. In contrast, the latter property specifies whether or
not the summarization depends on t’s content. Either of these prop-
erties can be True or False independently. In the case where the two
properties are set to True, then the Annotation Manager can execute
the summarization algorithm for that type only once for each added
annotation even if it will be attached to many tuples. The created
summary can then be attached to as many tuples as needed. Each
summary type may also have a set of type-specific properties. For
example, the Snippet type may have a LargeObjThreshold prop-
erty that specifies the threshold above which an annotation is con-
sidered a large object and needs to be summarized. Similarly, the
Classifier type may have a ClassLabel property that specifies the
possible class labels for a given classifier as shown in Figure 2(a).

• Summary Instances: A summary instance is a specific
instance of a given summary type that defines the exact algorithm
(function) used to implement the summary type as well as any
instance-level properties. Each summary type may have many
instances defined under it as illustrated in Figure 2(b). The
definition of summary instance is as follows:

Definition 2– Summary Instance: A summary instance
defines a specific implementation of a summary type and con-
sists of a four-ary vector {InstanceID, TypeName, FunctionID,
InstanceProperties}, where the InstanceID is a unique identi-
fier for each instance, TypeName references a summary type,
FunctionID defines the function name implementing this instance,
and InstanceProperties is a set of key-value pairs representing the
instance-level properties.

The instance-level properties may have an arbitrary number of
user-defined properties—This is in addition to the type-level prop-
erties inherited from the summary type. Unlike the type-level prop-
erties, instance-level properties are not used for optimizations be-
cause their semantics are not known to the system. In contrast, they
are used as a systematic way for storing and passing information in
the system. For example, in Figure 2(b), there are two summary
instances instantiated from the Snippet type, which are TextSum-
mary1 and TextSummary2. The former instance is both Annota-
tionInvariant and DataInvariant, whereas the latter instance is not
DataInvariant, i.e., its function (SummaryFunc2()) may depend on
the tuple’s content while creating its snippets. Another example
is the ClassBird1 classifier instance presented in Figure 2(b). Any
of the type- and instance-level properties can be accessed by the
underlying functions to customize its execution as desired. For ex-
ample, the ClassBird1 classifier instances uses the TrainingModel
property to pass the location of the model to the underlying func-
tion NaiveBayesFunc().

Once summary instances are defined in the database, they can
be linked to users’ relations in a many-to-many relationship, i.e.,
each DB relation R may have many instances linked to it to sum-
marize the annotations attached to each tuple r ∈ R and to create
the summary objects defined next. It is worth mentioning that the
creation of the summary types and instances, and linking them to
users’ relations is the task of the database admin, which is entirely
transparent from end-users querying the data.



• Summary Object: The summarization of the raw annota-
tions attached to a given tuple r according to a given summary
instance creates a summary object that will be attached to r and
automatically maintained and updated by the system. Summary
objects are the objects that will propagate in the query pipeline and
be reported to end-users. They are defined as follows:

Definition 3– Summary Object: A summary object summarizes
the annotations attached to a given data tuple according to a spe-
cific summary instance. A summary object consists of a five-ary
vector {ObjID, InstanceID, TupleID, Rep[], Elements[][]}, where
ObjID is the objects’s unique identifier, and the InstanceID and
TupleID are references for the corresponding summary instance,
and the data tuple, respectively. Rep[] is an array storing the
representatives produced from the summarization algorithm, while
Elements[][] is a two-dimensional array storing for each represen-
tative, the references (Ids) to its contributing raw annotations.

The example in Figure 2(c) illustrates linking the two summary
instances TextSummary2 and ClassBird1 to the Bird table, and
hence the raw annotations on each tuple r ∈ Bird will be sum-
marized according to these instances and the resulting summary
objects will be attached back to r as depicted in the figure.

In general, assume a user relation R that has n data attributes
and k summary instances linked to it. Then, each tuple r ∈ R has
the following conceptual schema:

r =< a1, a2, ..., an, {s1, s2, ..., sk} >
where a1, a2, ..., an are the data values of r, and s1, s2, ..., sk are
the annotation summary objects attached to r. For each summary
object si, the structure of the summary representatives stored in
Rep[]—which will be reported to the end-user— depends on si’s
summary type, e.g., clustering techniques may produce a represen-
tative for each cluster, while classification techniques may produce
the class labels along with the count of annotations assigned to each
label (Refer to Figure 2(c)). In InsightNotes, the structure of the
output representatives is defined as follows (See Figure 2(c)):

Summary Type Structure of Representatives (Rep[])
Cluster [(Text annotation, Number groupSize)]

Classifier [(Text classLabel, Number annotationCnt)]
Snippet [(Text snippet)]

Finally, for a given representative, say Rep[i], the corresponding
entry in the Elements array, i.e., Elements[i][], stores the Ids of the
raw annotations contributing to Rep[i]. For example, in the Class-
Bird1 summary object, the 1st representative Rep[1] = (Behavior,
33) has the corresponding entry Elements[1][] = [A2, ...] referring
to the raw annotations describing the bird’s behavior. Similarly,
the TextSummary2 object has two entires in its Rep[] array with
corresponding entires Elements[1][] = [A5], and Elements[2][]=
[A4] referring to the articles attached to the tuple, respectively. It is
worth noting that the Elements[][] array will not be reported to end-
users at query time, instead it will be used by the system during the
query processing and zoom-in operation as described in Section 3.

2.1 InsightNotes Strategies
As presented above, the annotation summaries are fundamen-

tally different from the raw annotations since they have well-
defined structure and properties. Hence, existing annotation prop-
agation techniques are not directly applicable in InsightNotes. In
this section, we present three possible strategies (illustrated in Fig-
ure 3) for designing the InsightNotes engine. The pros and cons of
each strategy are also summarized in Figure 4.

In Strategy I (On-The-Fly) depicted in Figure 3(a), the system
maintains only the raw annotations without materializing or pre-
computing the annotation summaries. At query time, the raw anno-
tations will propagate in the query pipeline according to the state-
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Figure 3: InsightNotes strategies.

Strategy I Strategy II Strategy III 

Query engine 
extension 

Separate mining 
operator on top 

Separate summary 
operator on top 

Extended algebra 
for all operators 

Query Algebra Annotation-based 
algebra 

Annotation-based 
algebra 

Summary-based 
algebra 

Additional Storage No Yes Yes 

Query performance* slowest slower fastest 

Scaling with number 
of summaries* 

No No, but better 
than Strategy I 

Yes 

Advanced summary-
Based Querying** 

No No Yes 

Summaries quality* 
Better clusters Identical clusters in both strategies 

Snippet & Classifier: Identical in all  

* Experimentally verified in Section 6.  
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Figure 4: Comparison between InsightNotes Strategies.

of-art annotation management techniques [4, 10, 13, 22], and then
they will be mined and summarized on the fly using a newly intro-
duced operator on top of the query plan as depicted in Figure 3(a).
The new operator will basically receive each data tuple along with
its attached raw annotations, execute the mining algorithms to sum-
marize these annotations, and then report each data tuple along with
its annotation summaries. As depicted in Figure 4, the advantages
of this strategy are that it leverages the existing annotation man-
agement engines, does not require additional storage, and it may
generate better cluster summaries since the clustering step is ex-
ecuted after all merging and dropping operations have been per-
formed on the annotations in the query plan. However, Strategy I
can be very expensive since the costly mining algorithms will be
executed on-the-fly as part of each query. Nevertheless, it will not
scale as the number of summary instances linked to the DB rela-
tions increases. Another critical limitation is that since the sum-
maries are constructed only at the last stage of processing, then it is
not applicable to apply advanced summary-based processing, e.g.,
selecting, joining, or ordering the data tuples based on their anno-
tation summaries.

In Strategy II (Lazy-Propagation) depicted in Figure 3(b), the
system creates the annotation summaries and maintains them at the
time of adding new annotations. These summaries will be stored
in a repository called Summary Repository. However, the query
operators will not be modified to operate on the annotation sum-
maries, instead they will still operate on and propagate the raw
annotations (similar to Strategy I). The key advantage of Strategy
II is that the newly added operator on top of the query plan (the
summary-propagation operator) will not execute the mining algo-
rithms to create the summaries, instead it will access the Summary
Repository to transform the raw annotations into their summarized



representations. Thus, Strategy II should yield better performance
and scalability compared to Strategy I. However, this strategy has
two main drawbacks. First, similar to Strategy I, since the sum-
maries are integrated only at the last stage of processing, then ad-
vanced summary-based processing is not applicable. And second,
the summary-propagation operator is still an expensive operator
and involves high overheads in building the final summary objects.
And hence, this strategy will not scale well under large number of
summaries (See Figure 4).

Strategy III (Summary-Aware) depicted in Figure 3(c) will fun-
damentally extend the query processing engine to directly operate
on the annotation summaries in the query pipeline, i.e., each of the
relational operators will be extended to process and produce tuples
carrying their summary objects (Refer to the left-side tuple in Fig-
ure 2(c)). Therefore, the query algebra will need to be extended to
a summary-based algebra. Although this strategy is more complex,
it has two main advantages. First, it is computationally the most ef-
ficient strategy w.r.t. performance and scalability, e.g., it is around
7x and 3x faster than Strategies I, and II, respectively as will be
presented in Section 6. And second, it is now feasible to treat the
annotation summaries as first-class citizens in the database and to
develop more advanced summary-based query processing beyond
just the propagation, which is part of our future work.

3. InsightNotes QUERY ENGINE
The implementation of Strategy I (On-The-Fly) is straightfor-

ward, and thus in this section, we focus on the other two strategies.
We assume that the Summary Repository is already created and
maintained by the Annotation Manager (The focus of Section 4).

3.1 Summary Propagation: The Lazy-
Propagation Strategy

In this section, we present the Lazy-Propagation strategy for im-
plementing InsightNotes (Refer to Figure 3(b)). In this strategy, the
raw annotations will propagate in the query pipeline according to
the common semantics used in current annotation management sys-
tems, e.g., [4, 10, 13]. The basic principles of the propagation are
summarized as follows: (1) The selection operator propagates the
annotations from an input tuple to the output tuple without modifi-
cation, (2) The join, grouping and aggregation, duplicate elimina-
tion and set operators, all these operators merge two or more tuples
together and produce an output tuple. The annotations on the out-
put tuple will be the concatenation (union) of all annotations on the
merged tuples. And (3) The projection operator has two common
semantics, which are either to propagate the annotations attached
only to the projected attributes and drop any other annotations, or
to propagate all annotations attached to a tuple and treating all of
them as tuple-level—Usually a keyword in the SQL query defines
which semantics is desired.

On top of a given query plan, the system will add
the newly introduced summary-propagation operator. An
input tuple to the operator is in the following form:

r =< a1, a2, ..., an, {w1, w2, ..., wm} >
where a1, a2, ..., an are the data values of r, and w1, w2, ..., wm
are the raw annotations attached to r.

In Figure 5, we present the algorithm of the summary-
propagation operator. The operator maintains a memory buffer
(Buff) for caching the input tuples received from the downstream
operator until the buffer is full (Line 1). Then, the buffered tu-
ples are joined with the tables in the Summaries Repository using
a semi-join algorithm, i.e., the unique annotation ids from Buff are
selected, and then joined with the table containing the summary
objects (note that the relationship between raw annotations and the
summary objects is many-to-many) (Lines 3-4). Since different an-

Summary-Propagation Operator 
Inputs: 

 - Data records in the form of: rin = <a1, a2, …, an, {w1, w2, …, wm}> 
      //w1, w2, …, wm are the raw annotations attached to rin  

Outputs: 
 - Data records in the form of: rout = <a1, a2, …, an, {s1, s2, …, sk}> 
      //s1, s2, …, sk are the summary objects corresponding to rin’s raw annotation 
  

Operator’s Algorithm: 
1.  - Buffer the input data records into a memory buffer (Buff) until full 
 

2.  - Join Buff with Summaries Repository (using semi-join) 
3.             - Anno-IDs = Extract the distinct annotation ids from Buff.  
4.             - SummaryObjs = Semi-join the Ann-IDs with Summaries Repository 

                               and retrieve the corresponding summary objects. 
5.             - Eliminate duplicates from SummaryObjs and group them per data tuple 
 

6.     - Update and merge the summary objects on each data tuple r  
7.           - For each SummaryObj o on r Loop 
8.                    -  update o to reflect the effect of un-projected (dropped) annotations   
9.                   - Merge the summary objects having the same instance Ids.  
 

10.  - Report one output tuple at a time until Buff is empty. 
11.  - Go to Step 1 until all input tuples from the downstream operator are consumed. 

Summary-Propagation Operator (Old) 
Inputs: 

 - Data records in the form of: rin = <a1, a2, …, an, {w1, w2, …, wm}> 
      //w1, w2, …, wm are the raw annotations attached to rin  

Outputs: 
 - Data records in the form of: rout = <a1, a2, …, an, {s1, s2, …, sk}> 
      //s1, s2, …, sk are the summary objects corresponding to rin’s raw annotation 
  

Operator’s Algorithm: 
1.  - Buffer the input data records into a memory buffer (Buff) until full 
 

2.  - Join Buff with Summaries Repository (using semi-join) 
3.   - Anno-IDs = Extract the distinct annotation ids from Buff.  
4.   - SummaryObjs = Semi-join the Ann-IDs with Summaries Repository 

                               and retrieve the corresponding summary objects. 
5.   - Eliminate duplicates from SummaryObjs 
6.   - Group the SummaryObjs per data tuple in Buff 
 
7.  - Update and merge the summary objects per data tuple 
8.   -  For each data tuple r in Buff  Loop 
9.           - For each SummaryObj o on r Loop 
10.       -  update o.Elements[][] and o.Rep[] arrays by dropping  

            the raw annotations not in {w1, w2, …, wm}. 
11.           - Merge the summary objects having the same instance Ids  

   using the merge operator.  
12.  - Report one output tuple at a time until Buff is empty. 
13.  - Go to Step 1 until all input tuples from the downstream operator are consumed. 

Figure 5: The algorithm for the summary-propagation operator.

notations may reference the same summary object, we eliminate
the duplicates among the retrieved objects before grouping them
per data tuple (Lines 5-6). The next step is to modify and merge
the summary objects for each data tuple. The update step (Line
8) is needed only if the query plan involves a projection operation,
which may drop annotations from the data tuples. Thus, the sum-
mary objects retrieved from the Summary Repository will need to
be updated. The details of such updating will be discussed in Sec-
tion 3.2 (Table 1). The last step is to merge the summary objects
having the same instance Ids. Recall that a data tuple may be gener-
ated from operations such as join, distinct, and grouping, and hence
it carries annotations from several tuples.

3.2 Summary Propagation: The Summary-
Aware Strategy

In this section, we present the Summary-Aware propagation strat-
egy (Figure 3(c)). This strategy is driven by three objectives:
(1) Avoid executing the mining algorithms at query time since that
is highly expensive and will not scale as the number of summary
instances increases, (2) Allow the query operators to directly ma-
nipulate the summary object in a pipelined fashion without retriev-
ing the raw annotations, which will achieve significant speedup and
enable querying the data based on the annotation summaries at any
processing stage, and (3) The final results from both Summary-
Aware and Lazy-Propagation should be identical such that the
above benefits are obtained while maintaining the same quality of
the generated annotation summaries.

At query time, each data tuple r ∈ R in the
query pipeline will have the following conceptual schema:

r =< a1, a2, ..., an, {s1, s2, ..., sk} >
where a1, a2, ..., an are the data values of r, and s1, s2, ..., sk are
the summary objects attached to r.

• Selection Operator (σ): The selection operator σp(R) applies
a set of predicates p over the data part of the tuples, and selects
only the ones that satisfy these predicates. The summary objects
attached to the selected tuples will propagate without modification.

σp(R) = {r ∈ R, r =< a1, a2, ..., an, {s1, s2, ..., sk} >
| p(< a1, a2, ..., an >) = True}

• Projection Operator (π): The projection operator
πa1,a2,...,am(R) selects the specified attributes from R’s tu-
ples. The summary objects associated with these attributes should



Type πFa1,a2,...,am () // si (input object) and s′i (output object)
Classifier For j = 1 to number of representative in si.Rep[] Loop

s′i.Elements[j][ ] = Filter( si.Elements[j][], {a1, ..., am})
s′i.Rep[j].classLabel = si.Rep[j].classLabel
s′i.Rep[j].annotationCnt = |s′i.Elements[j][]|

Snippet For j = 1 to number of representative in si.Rep[] Loop
s′i.Elements[j][] = Filter( si.Elements[j][], {a1, ..., am})
If (s′i.Elements[j][] is Null) Then

Delete s′i.Elements[j] and s′i.Rep[j]
Else

s′i.Rep[j] = si.Rep[j]
Cluster For j = 1 to number of representative in si.Rep[] Loop

s′i.Elements[j][] = Filter( si.Elements[j][], {a1, ..., am})
If (s′i.Elements[j][] is Null) Then //Group will be deleted

Delete s′i.Elements[j] and s′i.Rep[j]
Else if (si.Rep[j].annotation ∈ s′i.Elements[j][]) Then

s′i.Rep[j].annotation = si.Rep[j].annotation
s′i.Rep[j].groupSize = |s′i.Elements[j][]|

Else //Need to select a new representative
s′i.Rep[j].annotation = Most recent anno in s′i.Elements[j][]
s′i.Rep[j].groupSize = |s′i.Elements[j][]|

Table 1: Fine-grained projection on annotation summaries.

be selected accordingly. There are two different semantics covered
in literature [10, 13], which are both adopted in InsightNotes.

- Fine-Grained Projection (πFa1,a2,...,am(R)): Under this
semantics, only the annotations on the projected attributes (as well
as the tuple-level annotations) are selected and propagated. Anno-
tations on the non-projected attributes are discarded. Therefore,
πF over tuple r is defined as follows:

πFa1,a2,...,am(r)→ r′ =< a1, a2, ..., am, {s′1, s′2, ..., s′k} >

where r′ is the output tuple, and s′i (∀ 1 ≤ i ≤ k) is the up-
dated summary object corresponding to si in r after dropping the
non-projected annotations. More formally, the πF operator will
update the summary objects as presented in Table 1. For the Clas-
sifier type, the raw annotations (only the Ids) corresponding to
each class label, i.e., Elements[j][] ∀j, will be filtered (using
the Filter() function) to drop all cell-level annotations on the non-
projected attributes. The Rep[] array will maintain the same set
of class labels, but the count of annotations assigned to each label,
i.e., Rep[j].annotationCnt, will be updated to the cardinality of the
new s′i.Elements[j][]. For the Cluster type, we want to avoid re-
clustering the annotations after filtering out the non-projected ones
because this would violate the first two objectives of our strategy.
Instead, our algorithm refines the existing clusters as presented in
Table 1. Each group within the cluster object (Figure 1(a) shows
a cluster summary object with three groups) will have its raw an-
notations (si.Elements[][]) filtered to drop the un-projected an-
notations. If a group becomes empty, then it will be deleted from
both the Elements[][] and Rep[] arrays. Otherwise, if the rep-
resentative annotation is still projected, then it will remain as the
representative of its group in the new s′i object. This simple cri-
teria has two main advantages; first it is deterministic (unlike ran-
dom selection), and second it does not require retrieving the anno-
tations’ content. Notice that the same algorithm will be used by
the summary-propagation operator in the Lazy-Propagation strat-
egy (Refer to Line 8 in Figure 5).

- Promoted Projection (πPa1,a2,...,ak (R)): Under this seman-
tics, the annotations attached to the tuple, regardless to which
attribute, will propagate along with the projected attributes (as if
all annotations are promoted to the tuple-level). Therefore, πP

over tuple r is defined as follows:

Merge operator: Ω(Sr, St)→ Srt
1- Sr = {s1, s2, ..., sk} // The first input set of summary objects
St = {s′1, s′2, ..., s′m} // The second input set of summary objects
Srt = {} // The output set of summary objects

2- Copy the summary objects with unique instance Ids from Sr and St to Srt
∀ si ∈ Sr | 6 ∃ (s′j ∈ St & si.InstanceID = s′j .InstanceID)

→ copy si to Srt
∀ s′i ∈ St | 6 ∃ (sj ∈ Sr & s′i.InstanceID = sj .InstanceID)

→ copy s′i to Srt

3- Union the summary objects having the same instance Id from Sr and St
If (si.InstanceID = s′j .InstanceID) Then
− Create a new summary object s′′ij in Srt
− s′′ij .InstanceID = si.InstanceID
− s′′ij .TupleID = null // Null for the on-the-fly tuples

Classifier For x = 1 to number of representatives in Rep[] Loop
s′′ij .Rep[x].classLabel = si.Rep[x].classLabel
s′′ij .Elements[x][] = si.Elements[x][] ∪ s′j .Elements[x][]
s′′ij .Rep[x].annotationCnt = |s′′ij .Elements[x][]|

Snippet For x = 1 to number of representatives in si.Rep[] Loop
s′′ij .Rep[x] = si.Rep[x]
s′′ij .Elements[x][] = si.Elements[x][]

− Add the snippets from s′j that does not exist in si to s′′ij
Cluster For x = 1 to number of representatives in si.Rep[] Loop

If si.Elements[x][] do not overlap with groups in s′j Then
s′′ij .Rep[x] = si.Rep[x]
s′′ij .Elements[x][] = si.Elements[x][]

Else //Merge si[x] with overlapping groups (say s′j [k])
s′′ij .Elements[x][] = si.Elements[x][] ∪ s′j .Elements[k][] ∀k
s′′ij .Rep[x] = Most recent ann in s′′ij .Elements[x][]

− Add s′j ’s groups that did not merge with groups in si to s′′ij

Table 2: The merge operator on two sets of summary objects.

πPa1,a2,...,am(r)→ r′ =< a1, a2, ..., am, {s1, s2, ..., sk} >

where si ∀ 1 ≤ i ≤ k on the output tuple r′ are the same summary
objects as on the input tuple r.

• Merge Operator (Ω): Several of the relational operators, e.g.,
duplicate elimination, set operators, and grouping, involve merg-
ing the identical tuples together into one tuple, and hence the an-
notations on these tuples need to be also merged together. The
commonly used semantic in annotation management systems is to
union the attached annotations. Although this operation is straight-
forward in the case of the raw text annotations, it is more challeng-
ing in the case of the annotation summaries. In general, assume we
have two data tuples r and t, where r has a set of attached summary
objects Sr corresponding to r’s raw annotions Ar . Similarly, t has
a set of attached summary objects St corresponding to t’s raw an-
notions At. It is worth noting that the summary objects in Sr and
St may have different types and structures because r and t may
belong to different tables having different summary instances. our
objective is to compute Srt which corresponds to Ar ∪At directly
from Sr and St.

In Table 2, we introduce the new merge operator Ω(Sr, St) that
merges (union) two sets of summary objects Sr and St and pro-
duces an output set Srt. The merge operator is a logical operator
that will be used within other relational operators. In Step 2 in
Table 2, the algorithm copies the summary objects having unique
instance Ids from Sr and St to Srt. These objects do not have
matching counterpart objects with the same instance Id from the
other set, and hence they will not change. In Step 3, the summary
objects having the same instance Ids (say, si and s′j) from Sr and
St, respectively, will be merged together. The new object (s′′ij) will
have the same summary instance Id, but the Rep and Elements ar-
rays will be updated based on the summary type. For example, for



the Classifier type, the summary representatives, i.e., the classifier
labels in the Rep array, will remain the same for s′′ij , and for each
class label, the Ids of the raw annotations from both si and s′j (in El-
ements array) will be merged together to eliminate any duplicates,
and then the count for each class label is updated accordingly. For
the Cluster type, assume that si has groups si = {g1, g2, ..., gk}
while s′j has groups s′j = {g′1, g′2, ..., g′m}, then for each group in
si if it is not overlapping with groups in s′j , then it will be copied as
is to s′′ij (same elements and representative). Otherwise, the over-
lapping groups will be merged together, i.e., getting the union of
their elements and and the representative will be the most recent
annotations among the old representatives. Finally, as shown in
Table 2, the remaining groups from s′j will be added to s′′ij .

The merge algorithm in Table 2 is designed not only to satisfy
the first two objectives of the Summary-Aware strategy, but also to
achieve the following two crucial properties for the Merge operator
that will help achieving the third objective.

Lemma 1: The Merge operator retains the two properties:
Commutativity: Ω(Sr1

, Sr2
) = Ω(Sr2

, Sr1
)

Associativity: Ω(Ω(Sr1
, Sr2

), Sr3
) = Ω(Sr1

,Ω(Sr2
, Sr3

))

= Ω(Sr1
, Sr2

, Sr3
) 2

Proof: The proof of Commutativity is straightforward since the
algorithm in Table 2 is not sensitive to the order of Sr1 and Sr2 .
The proof of Associativity relies on that the primitive operations
for merging summary objects are themselves associative. For ex-
ample, if Sr1 , Sr2 , and Sr3 have their summary objects belong to
distinct summary instances, then the output result is the union of
the input objects (Step 2 in Table 2), and the union operation is as-
sociative. If there are objects having the same instance Ids and will
be merged, then in the case of the Classifier type, for example, the
output class labels will be the same regardless of the order of the
merge. Moreover, the Elements[][] arrays will be merged together
using a union operation (which is associative), and hence the merge
operation itself is associative. The same rules apply for the Snippet
and Cluster types.

• Duplicate Elimination and Set Operators: Two anno-
tated tuples r =< a1, a2, ..., an, {s1, s2, ..., sk} > and t =<
b1, b2, ..., bn, {s′1, s′2, ..., s′m} > are said to be identical (denoted
by r ≡ t) iff the data part of both r and t are identical. That is:

r ≡ t iff r.ai = t.bi, ∀ 1 ≤ i ≤ n
The summary objects of r and t will be then merged together

using the merge operator and attached to the output tuple, i.e., if
r ≡ t, then the output from the duplicate elimination δ(r, t) is:
δ(r, t) =< a1, a2, ..., an,Ω({s1, s2, ..., sk}, {s′1, s′2, ..., s′m}) >

The same semantics apply for the set operators that merge iden-
tical tuples together, e.g., union and intersect operators.

• Grouping & Aggregation Operators: The grouping operator
γa1,a2,...,am,F1(β1),...Fz(βz)(R) groups a set of tuples of identical
values w.r.t the grouping columns (a1, a2, ..., am) and merges them
into one tuple. The propagation of the annotation summaries under
the grouping operator is based on the semantics of the merge opera-
tor. That is, if r1, r2, ..., rn belong to the same group, and they have
the sets of summary objects Sr1 , Sr2 , ..., Srn , respectively, then the
output set of summary objects, say Sg , that will be attached to the
group output is:

Sg = Ω(...(Ω(Ω(Sr1 , Sr2), Sr3), ..., Srn)
= Ω(Sr1 , Sr2 , Sr3 , ..., Srn)

• Join Operator (./): The join operation ./p (R, T ) joins tuple
r ∈ R with t ∈ T iff they jointly satisfy the set of predicates
p. Consistent with the semantics of the other operators, the sets of

summary objects on r (Sr) and t (St) will be merged together. That
is, a joined output tuple will have a set of summary objects Srt as:

Srt = Ω(Sr, St)

Lemma 2: The relational operators using the Merge operator are
not sensitive to the order of processing their input tuples. 2

Proof: The join operator is not sensitive to the order of the joined
tuples because of the commutativity of the merge operator (Lemma
1). Moreover, the duplicate elimination, grouping, and set opera-
tors are not sensitive to the order of processing their identical tuples
because of the associativity of the merge operator (Lemma 1).

If a query plan involves both a fine-grained projection and
merge operations, then to guarantee that the Summary-Aware and
Lazy-Propagation strategies will produce the same results the fine-
grained projection has to be performed before any merge operation.
Recall that the Lazy-Propagation performs all merges at the last op-
erator (after the projection is done). Therefor, the Summary-Aware
strategy always pushes the projection as early as possible. Even
if some of the projected-out attributes are temporarily needed for
other operations, e.g., join or grouping, then the early projection
will only apply to the summary objects, and then the data projec-
tion can be applied later in the query plan.

Theorem 1: Given a query plan PQ under no annotation propa-
gation, and PQ−lazy , and PQ−summary are its extended versions
under the Lazy-Propagation, and Summary-Aware strategies, re-
spectively, then PQ−lazy and PQ−summary are guaranteed to pro-
duce identical results. 2

Proof: The proof follows from the properties of the query opera-
tors. The selection and promoted-projection operators have no ef-
fect on the annotation summaries. Also, according to Lemmas 1 &
2 applying the merge operations in PQ−summary in a pipelined
fashion (within one operator or across operators) will yield the
same final result as performing all the merge operations at the
last operator in PQ−lazy . Finally, the sequence of applying the
fine-grained projection and merge operations is the same in both
PQ−lazy and in PQ−summary , which concludes that the final re-
sults from both query plans are identical.

Based on Theorem 1, we can also derive the following theorem.

Theorem 2: Given a query Q and two equivalent, but different,
execution plans PQ and P ′Q generated from the query optimizer,
then the annotation summaries produced from each of Strategies I,
II, and III will be identical under both plans. 2

Proof: Considering Strategy I, since the annotation summaries are
created at the last stage of processing, i.e., immediately before re-
porting to end-users, then the input tuples (data and raw annota-
tions) to the Summarization-Mining operator are guaranteed to be
identical under PQ and P ′Q. And hence, the output results (data
and annotation summaries) from Strategy I will be identical under
both execution plans. The same proof applies to Strategy II. For
Strategy III and based on Theorem 1, we can infer that this strategy
also produces identical results under PQ and P ′Q.

3.3 Zoom-In Query Processing
One of the interesting challenges that arise in InsightNotes is

that: What if the end-user is interested in zooming-in and retriev-
ing the detailed annotations of a certain summary. For example,
in ornithological DBs, the annotations on a given table can be clas-
sified as { ‘Disease’, ‘Anatomy’, ...} as depicted in Figure 6. An
end-user may be interested in retrieving the raw annotations about
diseases, or the full articles of specific reported snippets.

We formulate the zoom-in operation as follows. Given a query
Q and its corresponding answerset AQ = {r1, r2, ..., rx}, where
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Figure 6: Examples of the zoom-in operator.

each tuple ri has the schema containing its data values and the set
of summary objects, i.e., ri =< a1, a2, ..., an, {s1, s2, ..., sk} >

We introduce a new zoom-in operator
Zp(AQ, instanceId [, index]), where AQ is an input rela-
tion, p is a set of predicates over AQ data attributes to optionally
select a subset of interest from AQ’s tuples, instanceId is the id
of the summary instance that the user wants to retrieve its details,
and the optional index argument specifies an index within the
Rep[] array for which the raw annotations will be retrieved. If
omitted, then all raw annotations from the summary object will
be retrieved. Recall that for a summary object O, the ids of the
raw annotations corresponding to a given representative O.Rep[i]
are stored in O.Elements[i][]. Thus, the output from the zoom-in
operator is formalized as follows:

Zp(AQ, instanceId [, index]) = {r′i =< a1, ..., an, {w1, ..., wm} > |
p(r′i) = True & {w1, ..., wm} = Retrieve(s.Elements[index][]),

where s.InstanceID = instanceId }

where each output tuple r′i must satisfy the input predicates
p, i.e., p(r′i) = True, s is the summary object attached to ri
having the specified instanceId, and {w1, w2, ..., wm} are the
raw annotations corresponding to the Ids in s.Elements[index][].
The example in Figure 6 demonstrates how the zoom-in opera-
tor works. Assume that tuples r1 and r2 in the given relation
AQ have summary objects of type Classifier with instance id
ClassBird1. Moreover, r1 has a summary object of type Snip-
pet and instance id TextSummary. Then, the algebraic expression
ZTID in {r1,r2}(AQ, ClassBird1, 1) retrieves r1 and r2 along
with the raw disease annotations as depicted in Figure 6(a) (no-
tice that index 1 in the expression references the Disease la-
bel within the classifier). Similarly, the algebraic expression
ZTID =r1(AQ, T extSummary, 2) selects tuple r1 along with the
complete Wikipedia article corresponding to the 2nd snippet within
its summary object (Figure 6(b)).

3.3.1 Zoom-in Execution Optimizations
The zoom-in operator is typically a follow-up operation on pre-

viously executed queries, i.e., users first execute a query, analyze its
results, and then get interested in zooming-in over specific annota-
tion summaries. Therefore, we implement the zoom-in operator as
a new stand-alone SQL command that can reference previously ex-
ecuted queries. To enable this mechanism, InsightNotes assigns for
each executed query a unique identifier QID that users can refer-
ence as the 1st argument in the zoom-in operator. To optimize the
execution of the operator, we combine two execution modes:

Re-Execution Mode: In this mode, the system stores only the
definition of the executed queries, and when the end-user issues
a zoom-in operation Zp(QID, instanceId [, index]), the query
corresponding to QID is re-executed. However, before the re-

execution, the query is optimized by pushing down the predicates
p as well as the other arguments, i.e., instanceId and index, as
much as possible in the query plan. Thus, irrelevant data tuples
and summary objects are filtered out as early as possible. Although
straightforward, this execution mode may involve high overhead
especially if the referenced query is expensive or if multiple zoom-
in operations are executed over the same query.

Materialization Mode: In this mode, the queries’ results are
temporarily materialized and stored in temp tables, and hence the
zoom-in operations can be directly applied to these tables. How-
ever, since materializing all the executed queries is impractical, the
system deploys a caching mechanism that allocates a disk space in
the database, called TempSpace, for the temporarily materialized
result sets, and queries will compete for this space using a data
replacement policy. We developed a replacement policy called
RCO (stands for Recency, Complexity, and Overhead), which
is a modified version of the LRU replacement policy. First,
LRU is well suited for the problem at hand since it matches
the expected execution pattern of the zoom-in operations, i.e., a
query is executed, followed by a sequence of zoom-in operations
(if any), and then discarded. However, LRU does not take into
account the complexity of the queries, i.e., the execution cost and
output overhead. In contrast, the RCO policy takes into account
three factors, which are: Recency (captured by the timestamp
of the last execution or reference to a query), Complexity (cap-
tured by the execution time of the query—It is known since the
query is executed in the system), and Overhead (captured by
the result set size of the query). When prioritizing the queries
in TempSpace for replacement, these factors are normalized for
each query Q and then summed up to getQ’s final score as follows:

Q.RecencyNorm = (currentTime - Q.lastReference) / MaxInterval
Q.OverheadNorm = Q.outputSize / MaxSize
Q.ComplexityNorm = MinExecutionTime / Q.executionTime

Q.Score = Q.RecencyNorm + Q.OverheadNorm + Q.ComplexityNorm

where MaxInterval is the largest interval of all available queries,
i.e., Max(currentT ime−Qi.lastReference) ∀i, MaxSize and
MinExecutionTime are the largest result set size, and the smallest
execution time among the available queries, respectively. Note
that each of these normalized factors produces a measure be-
tween (0, 1], where closer to 0 means higher priority to stay in
TempSpace. Thus, the final score is within the range of (0, 3] with
score 3 to be the highest priority to be replaced. Now, given a new
query Qnew, it will be added to TempSpace iff we can remove one
(or more) existing queries to make room for Qnew’s output such
that the final score of each of these removed queries is larger than
Qnew.Score. Otherwise, Qnew is not materialized.

4. EXTENSIBILITY AND MAINTENANCE
OF ANNOTATION SUMMARIES

In this section, we present several issues and optimizations re-
lated to the creation and maintenance of the Summary Repository,
which takes place at the time of adding or deleting annotations.

Properties of Summarization Algorithms: The only property
that we mandate in the summarization algorithms is to be incremen-
tal, i.e., given a new annotation on a specific tuple the summaries
can be updated incrementally without the need for re-building. This
property is critical for efficient execution since annotations are con-
tinuously added to the data tuples. For the Snippet and Classifier
summary types, the incremental processing is inherent in most of
their algorithms, e.g., text summarization in [18], and classification
techniques in [9]. For the clustering techniques, there are numer-
ous incremental algorithms for clustering evolving data [2, 17, 23,
24]. Several of these algorithms have shown to achieve the stability



property, which is that the created clusters are stable (with a small
variance) under the different permutations of a given set of input
objects [23, 24]. Therefore, any of these algorithms can be effi-
ciently integrated in InsightNotes. InsightNotes also mandates the
generated representatives from the summarization techniques to ad-
here to the structure of representatives (the Rep[] array) presented
in Section 2.

Maintenance Algorithm: The algorithm for adding new anno-
tations and maintaining their summaries is presented in Figure 7.
This algorithm is carried out by the Annotation Manager, which
is responsible for adding the annotations and for maintaining the
Raw-Annotation Repository and Summary Repository up-to-date.
As inputs, the algorithm takes a new annotation A and a simple
Select-Project query Q on a user relation R, where A will be at-
tached to Q’s output. It is worth highlighting two key optimizations
in the algorithm that significantly reduce the overheads involved in
adding annotations and updating their summaries. The first opti-
mization is that the Annotation Manager has two execution modes,
i.e., Eager Attachment and Lazy Attachment. If query Q can be
efficiently executed, i.e., using an index and it has estimated high
selectivity, then annotation A will be instantaneously attached to its
tuples (Lines 3-4), and the annotation summaries will be updated
(Lines 5-13). If Q would require an expensive table scan, then the
Annotation Manager will store A and Q in a system table for later
execution with the aim for buffering multiple of these annotations,
and then attaching them using a single table scan (Lines 14-20).
In the Lazy Attachment mode, the buffered annotations will be re-
freshed on relation R when a user’s query touches R (Line 16).

The second optimization is used when updating the summaries
(Lines 5-13), where the Annotation Manager checks the properties
of each summary instance linked to relation R. If a given instance
has both of its properties AnnotationInvariant and DataInvariant
set to True, then this means that the summarization technique works
independent of any other annotations or the data content. There-
fore, the corresponding summarization technique is called once in-
dependent of the number of tuples returned from Q (Lines 7-8),
and the summarization output is then attached to all of Q’s output
tuples in the Summary Repository (Line 9). Otherwise, the summa-
rization technique has to be called for each tuple in Q (Lines 10-13
& 19-20).

Extensibility Feature: InsightNotes is not limited to specific
algorithms or techniques. Instead the DB admins can integrate
the desired mining or summarization techniques into InsightNotes
as UDFs, e.g., PostgreSQL, which is the underlying database en-
gine of InsightNotes , supports UDFs in different languages such
as SQL, C, and Java. The metadata information, e.g., train-
ing datasets, models, or configuration parameters, needed for a
given technique can be passed—either directly or as pointers to
locations— through the instance-level properties attached to each
summary instance (Refer to Figure 2). For example, assume we
want two Naive Bayes classifiers, one for classifying annotations
as {approve, refute, neutral}, and the other one for classifying them
as {provenance, comment}. Then, the Naive Bayes algorithm will
be implemented as a UDF in the database, and the two statistical
models for the classifiers will be also stored in the database, e.g.,
tables Model-1 and Model-2. Then, two summary instances will
be created, one for each classifier, and they will both refer to the
same UDF, but they will differ in the instance-level properties that
point to the location of the input model and that define the class
labels. At the system level, InsightNotes provides a generic inter-
face function, called getPropertyValue(<propertyName>), that can
be called from the UDFs to return the value of the given property
name within the context of the active summary instance. Thus,
the UDFs can operate differently according to properties defined in
each summary instance.

Adding New Annotation 
 

Inputs:              // annotation A will be attached to the output from query Q 
      - The new annotation A (timestamp, curator, value) 
      - Select-Project query Q on relation R 
 

1. Eager Attachment (If Q has efficient execution plan using an index on R): 
2.     // Insert the raw annotation  
3.     - Execute Q to find the target tuples being annotated ! {r1, r2, …, rn} 
4.     - Insert A into the Raw-Annotations Repository over {r1, r2, …, rn} 
 

5.     // Update the summaries   
6.     - For each summary instance (say s) on R  Loop 
7.            - If  (s.AnnotationInvariant = True) and (s.DataInvariant = True) Then  
8.                      - Execute s.FunctionID on A to produce A’s summary 
9.                      - Update (or create if not exists) the summary object of s 
                                    on {r1, r2, …, rn} in the Summary Repository. 
10.            - Else 
11.                    - For each tuple (say rx) in {r1, r2, …, rn} Loop 
12.      - Execute s.FunctionID on (A, rx and/or the summary object)   
                                     to produce A’s summary on rx 
13.                          - Update (or create if not exists) the summary object of s 
                                         on rx in the Summary Repository. 
                                   

14. Lazy Attachment (If Q’s execution plan is table-scan on R): 
15.     - Buffer A and its query Q in a system table Buff 
16.     -  When a user query is issued over R, then R’s annotations are refreshed 
17.     - Scan R once and identify the tuples satisfying each query in Buff 
18.                        - Attach the annotations to their corresponding tuples  
19.    - For   each annotation A in Buff     Loop   
20.                        - Execute Lines 5-13 to update the summaries. 

Figure 7: Creation and maintenance of annotation summaries.

5. RELATED WORK
Annotation management is widely applicable to a broad range

of applications, yet it gained significant importance within the con-
text of scientific applications [3, 15, 19]. Therefore, to help sci-
entists in their scientific exterminations and to boost the discovery
process, several generic annotation management frameworks have
been proposed for annotating and curating scientific data in rela-
tional DBMSs [4, 8, 13, 14, 22]. Several of these systems, e.g.,
[4, 8, 13, 22], focus on extending the relational algebra and query
semantics for propagating the annotations along with the queries’
answers at query time. The work in [10] proposes compact storage
mechanisms for storing multi-granular annotations at the raw-, cell-
, column-, and table-levels, as well as defining behaviors for anno-
tations under the different database operations. Other systems have
addressed special types of annotations, e.g., [7, 12]. For example,
the work in [7] addresses the ability to annotate the annotations,
and hence it proposes a hierarchal approach that treats annotations
as data.

Although the above systems provide efficient query processing
for annotations, they all share a common limitation, which is that
they all manipulate the raw annotations, and they report to end-
users all ones relevant to their queries even if each output tuple has
hundreds of annotations. There are no previous attempts to pro-
vide advanced and optimized query processing on top summarized
forms of the annotations. Thus, as annotations scale up over time,
existing systems will fall short in providing real insights and useful
information to end-users. The InsightNotes system is proposed to
address such critical limitations.

Scientific systems and workflows have also leveraged the con-
cept of semantic and ontology-based annotations, e.g., [3, 5, 19].
For example, the work in [19] uses the annotations drawn from
a specific ontology to relate and measure the similarity among
the scientific entities in the database. And hence, it uses the an-
notations as a similarity metric among the data entires. In con-
trast, the work in [3, 5] uses semantic annotations to either sum-
marize complex workflows [3], or help in building and verifying
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Figure 8: Storage overhead.
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Figure 10: Propagation Performance (SP).

workflows [5]. Therefore, these systems are based on workflow-
and process-centric annotations, e.g., annotations capturing the se-
mantics of each function in a workflow, the structure of their in-
put and output arguments, etc. In contrast, InsightNotes manages
data-centric annotations that are independent from how the data is
processed−As highlighted in the motivating applications in Sec-
tion 1. Hence, the objective and approaches proposed in Insight-
Notes are different from those in the other systems.

In the domains of e-commerce, social networks, and entertain-
ment systems, e.g., [11], the annotations are usually referred to
as tags. These systems deploy advanced mining and summariza-
tion techniques for extracting the best insight possible from the
annotations to enhance users’ experience. However, unlike rela-
tional DBs, the retrieval mechanisms in these systems are typically
straightforward and do not involve complex processing or transfor-
mations, i.e., objects (products in Amazon or movies in Netflix)
are usually queried as individual instances without going through a
complex pipeline of query operators, e.g., projection, join, group-
ing, and aggregation operators. Therefore, no advanced query pro-
cessing is required over the annotations summaries once created.

6. EXPERIMENTS
InsightNotes is developed on top of an existing annotation man-

agement system. The experiments are executed using a Dell Opti-
Plex 990 Desktop machine having Intel dual core i5 2400 Processor
(3.1GHz, 6M), 4GB DDR3 memory, and 250GB SATA hard drive.

Application Datasets: We use real-world anno-
tated scientific database available from the AKN system
(http://www.avianknowledge.net/) that stores information re-
lated to 10s of thousands of birds worldwide. The database schema
consists of several tables including the main table Birds, and
several dimension tables for regions, taxonomies, and synonyms.
We used the Birds table since it is the largest table and it is the
main annotated tables by 100s of thousands of bird watchers
and scientists. The table consists of 45,000 tuples holding birds’
information over 12 attributes, e.g., scientific name, Ids across
different systems, description, genus, family, and habit. The
table size in the database is 450MBs. The collected number of
annotations is 9.2x106 that describe a wide range of bird related
information, e.g., color, body shape or weight, certain behavior or
sound, eating habits, geographic location, or observed diseases.
All tuples in the Birds table are annotated with the following
statistics on the number of annotations attached to each tuple: avg
= 204, min = 62, max = 321, and stdev= 76. The total size of the
annotation table is 4.2GBs. All annotations in the dataset are at
the tuple-level, i.e., attached to the entire tuple. For the purpose of
our experiments, we developed a tool that attaches some of these
annotations to specific attributes in the tuples. The tool searches
for the column names in a given annotation, and based on that, it
attaches an annotation to its referenced columns.

Summarization Techniques: We integrated several data min-
ing techniques within InsightNotes for the annotation summariza-

tion. We used the Naive Bayes [9] technique for annotation clas-
sification, the CluStream technique [2] for clustering the annota-
tions in an incremental way, and the LSA (Latent Semantic Anal-
ysis) technique [18] for text summarization and snippet creation.
In the experiments, we created several summary instances that
use the same underlying techniques but differ in their outputs.
For example, several classifiers have been instantiated to classify
annotations as either {‘Question”, ‘Answer’, ‘Comment}, {‘Dis-
ease’, ‘Anatomy’, ‘Behavior’, ‘Other’}, or {‘Geographic’, ‘Non-
Geographic’}. Moreover, several snippet instances have been cre-
ated that differ in whether or not they are data dependent, the
threshold above which an annotations is considered a large-object,
and the snippet size to create.

Storage Overhead: In Figure 8, we present the storage over-
head associated with the annotation summaries. The y-axis shows
the ratio of the summaries’ size to the size of the raw annotations
(' 4.2 GBs). In the experiment, we vary the number of annotation
summaries over 3, 6, and 9 divided equally between the three sum-
mary types: Snippet, Classifier, and Cluster. As the figure shows,
the average size of each summary type is around 13% of the raw an-
notations’ size, where snippets have slightly higher overhead while
classifiers have the least overhead. The reason is that the represen-
tatives in the case of the Snippet type are larger than those in the
Cluster and Classifier types. Moreover, the representatives in the
Classifier type are smaller than those in the Cluster type (The class
labels in classifiers are just a single word). And as expected, as
the number of summary instances increases, the storage overhead
increases proportionally.

Creation and Maintenance of Annotation Summaries: We
proposed in Figure 7 two key optimizations for scalable creation
and maintenance of annotation summaries. In Figures 9, we evalu-
ate the effectiveness of these two optimizations. The x-axis in Fig-
ure 9(a) shows the number of tuples that a single annotation can be
attached to (ranging from 1 to 32). In this experiment, we link five
summary instances (two Snippet, two Classifier, and one Cluster)
to the database relation. The native approach (labeled as “Naive”)
would compute the summaries of the new annotation with each
related data tuple regardless of whether or not the summary in-
stances are defined as DataInvariant or AnnotationInvariant. In
contrast, the proposed algorithm (labeled as “Invariant-Aware”)
will take these properties into account. Therefore, if all five sum-
mary instances are DataInvariant and AnnotationInvariant, then
the summaries are computed only once for each annotation, and
then the summary objects of each related tuple are updated (See la-
bel “Invariant-Aware-5”). We also studied the cases between these
two extremes, e.g., when one or two of the five summary instances
are data dependent while the rest are DataInvariant and Annota-
tionInvariant. The performance of these cases is illustrated in Fig-
ure 9(a) as “Invariant-Aware-4” (For one data-dependent instance)
and “Invariant-Aware-3” (For two data-dependent instances). The
results indicate that even in the cases where not all summary in-
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Figure 11: Propagation Performance (SPG).

!"

#!!"

$!!"

%!!"

&!!"

'!!!"

'#!!"

'$!!"

'%!!"

(')*" (')+',*" (')+',+'-*" (#)+"',+'-*" (#)+#,+'-*" (#)+#,+#-*"

!
"#

$%
&'
()

#&
*+
#,
-&

.")/#$&01&+"))2%&345624,#5&*78&9:255(;#$<&98&9:"56#$<&+8&+4(==#6-&

!" !"##$%&'()$%*+,%-.$/$01-2+
3$)'(22-0$01-2+,%-.$/$01-2+
!"##$%&+4$5&+,%-.$/$01-2+
!"##$%&+6278*9:&+,%-.$/$01-2+

++++;++++++++++++++++++++++<++++++++++++++++++++++=+++++++++++++++++++++++>+++++++++++++++++++++++?++++++++++++++++++++++@+
++A;9B+++++++++++A;9C;DB++++++A;9C;DC;!B++++A<9C;DC;!B+++A<9C<DC;!B+++A<9C<DC<!B++++

Figure 12: Propagation vs. Instance Num.

!"

!#"

!##"

!###"

!####"

!#####"

$%#&" !'!(%)" ('(%)" $'%)" *)"

!"
"#

$%&
'(
%#

)'
%&
'#

*)
+'
,-
".
'/
+0
1)
2'

!"#$%&'()'*++(,-,.(+/''

Zoom-in Cache Hit 

Zoom-in No Cache or  
 Cache Miss 

Figure 13: Zoom-in Performance.

stances are DataInvariant or AnnotationInvariant, the proposed
“Invariant-Aware” algorithm still achieves significant savings.

The performance of the Eager vs. Lazy evaluation approaches
is presented in Figures 9(b). We vary the number of annotations
added to the data table between two consecutive user’s queries be-
tween 1 and 32 as illustrated over the x-axis, and the y-axis shows
the total time needed to add these annotations and update their cor-
responding summaries. In the Eager-Attachment approach each
added annotation will trigger a table scan to select the target tu-
ples to be annotated and to update their summaries. In contrast,
in the Lazy-Attachment approach only one table scan is needed (at
the time of the user’s query) to attach all the buffered annotations
to their data tuples. Notice that in the Lazy-Attachment approach a
user query may be penalized and get delayed until all buffered an-
notations are refreshed. Therefore, to avoid potential large delays,
InsightNotes uses a threshold (currently 50), which if reached, then
the buffered annotations will be automatically refreshed even with-
out the presence of a user’s query.

Propagation at Query Time: In Figures 10 and 11, we study
the propagation performance of the annotation summaries under
different query types. Figure 10 shows the performance of a Select-
Project query, while Figure 11 shows the performance of a Select-
Project-Grouping query. We vary the number of annotations in the
database over the range between 450,000 (10 annotations per tu-
ple) to 9x106 (200 annotations per tuple) as depicted over the x-
axis in the figures. The number of summary instances linked to
the database relation are three (one of each type, Snippet, Clus-
ter, and Classifier). The four techniques in comparison are the
Raw-Annotation Propagation, which is a standard propagation of
the raw annotations without any summaries involved, and the three
summary propagation strategies proposed in Section 2.1.

The results in Figure 10 show that the Summary-Aware strategy
is the most efficient even when compared to the standard propa-
gation of raw annotations. The reason is that the size of the sum-
maries is much smaller than the size of the raw annotations (around
40% as illustrated in Figure 8), and hence the summary propaga-
tion is up to 2x faster. Moreover, the summary-aware strategy ma-
nipulates the summaries in an efficient pipelined fashion without
the need for any special-purpose expensive operators. In contrast,
the Lazy Propagation strategy uses the standard propagation as a
black-box, and on top of that it adds the overheads involved in the
newly introduced summary-propagation operator. The On-The-Fly
Propagation strategy is the most expensive one since the mining al-
gorithms are executed at query time. The figure illustrates that it is
7x slower than the Summary-Aware strategy. The performance un-
der a more complex SPG query inherits the same trend as depicted
in Figure 11 with the exception that the query execution is slightly
more expensive. The figure confirms that the summary-aware is
around 2x, 3x, and 7x faster than the standard, lazy, and on-the-fly
propagation strategies, respectively.

In Figure 12, we study the propagation performance while vary-
ing the number of summary instances linked to the database rela-

tion. In this experiment, the number of annotations is set to 9x106

and the number of instances varies from 1 to 6 as illustrated in
the figure. We use the same SPG query used in Figure 11. The
reference fixed performance is the propagation of the raw annota-
tions (Raw-Annotation Propagation), which is independent from
the summary instances. As the figure shows, the Summary-Aware
strategy scales better than the Lazy Propagation and On-The-Fly
Propagation strategies when scaling up the number of summary
instances. Moreover, the On-The-Fly strategy is more sensitive to
the mining algorithms used since they are executed at query time.

Quality of Generated Annotation Summaries: The three sum-
mary propagation strategies, i.e., On-The-Fly, Lazy-Propagation,
and Summary-Aware, will generate identical summaries w.r.t the
Snippet and Classifier types. The only difference will be in the
Cluster type summaries since the latter two strategies will generate
an approximated cluster summaries compared to the On-The-Fly
strategy. The reason is that in the latter strategies some operators
may drop annotations from the pre-computed clusters, e.g., the fine-
grained projection operator, while others may merge pre-computed
clusters, e.g., the join and grouping operators. In contrast, the On-
The-Fly strategy will build the clusters from the raw annotations
only at the last stage of processing. To measure the closeness (sim-
ilarity) of the approximated clusters to those generated from the
On-The-Fly strategy, we used the Rand Index [20] that takes two
groups of clusters and returns a measure of their similarity between
[0,1], where closer to 1 means higher similarity. In the follow-
ing table, we report the RI measures over the two types of queries
we used in Figures 10 and 11, namely a select-project (SP) query,
and a select-project-group (SPG) query. We used the CluStream
technique [2] with varied K parameter (# of clusters), and we cal-
culated the average quality over two sizes of tuples 10, and 100 as
presented in Table 3. The results show that the quality ranges be-
tween 70%-75% in most cases, and it gets slightly better with large
K parameter. In many applications, especially with large-scale an-
notations, this approximation can be acceptable to achieve better
scalability and queries’ response time.

SP Query SPG Query
Tuple Count K= 5 K=7 k=10 K=5 K=7 K=10
Avg over 10 0.75 0.75 0.75 0.69 0.72 0.74
Avg over 100 0.71 0.73 0.75 0.68 0.71 0.76

Table 3: The Rand-Index Measure of Cluster Summaries.

Zoom-in Query Processing: In Figure 13, we illustrate the ef-
fectiveness of the materialization and caching of the query results
to answer a zoom-in query vs. the re-execution of the user’s query.
In this experiment, we use the same SPG query used in Figure 11,
and the number of summary instances is set to 3 (one of each type).
The zoom-in operation will retrieve the raw annotations classified
as ‘Anatomy’. As the figure shows, if the results of the user’s query
is not in the cache, i.e., Cache Miss, then the query will be re-
executed (which is in the order of 10s of seconds). Whereas, if
the results are in the cache, then we only need to probe the raw-
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Figure 14: Summary-Aware vs. Standard Propagation: Total
Savings-to-Overheads ratio.

annotation table (using an index) to retrieve the detailed informa-
tion of specific annotations (which is in the order of milliseconds).
In practice, the huge savings from the caching will even intensify
since multiple zoom-in operations can be performed on the same
query over a short period of time.

Overall Savings vs. Overheads: Although the Summary-Aware
strategy has shown superior performance in query response time, it
encounters overheads in two operations: (1) The creation and main-
tenance of the annotation summaries, and (2) The zoom-in opera-
tions. Thus, in the following experiment (Figure 14) we study the
tradeoff between the total savings vs. overheads compared to the
standard propagation (no summaries). We consider the SP query
presented in Figure 10, and we assume that the saving achieved
by the Summary-Aware strategy in the query’s response time is de-
noted by S. Then, we assume that users will perform, on average,
20 zoom-in operations on the results, which adds an overhead de-
noted by Z. Therefore, the overall saving becomes "S - Z". In
Figure 14, we consider the two cases where the 20 zoom-in opera-
tions will have a cache hit (and thus Z is very small), and the case
where the first zoom-in operation will be a cache miss, but the rest
will be a cache hit (and thus Z will be larger).

Since inserting each new annotation adds some overhead for
maintaining the summaries, we measured in Figure 14 the number
of annotations, sayX , that need to be inserted to balance the saving
"S - Z". For example, in the case of the largest dataset (9x106 anno-
tations), the X is 30,260 (in the case of cache hits) and 11,300 (in
the case of a cache miss). The figure shows that this ratio X (anno-
tation): 1 (query) is large in most cases, which means that in typical
applications the overall savings are higher than the overheads. The
only extreme cases where the overheads are higher than the sav-
ings are for the smallest datasets under a cache miss for the zoom-
in operation, e.g., for the size of 450K annotations, the overhead
from adding one annotation and 20 zoom-in operations—having
one cache miss— can be redeemed after 4 users’ queries having no
cache-miss zoom-in operations. These extreme cases can be even
avoided with the use an appropriate cache size combined with the
proposed RCO replacement policy.

7. CONCLUSION
We proposed the InsightNotes system for exploiting and propa-

gating the annotations in relational DBs in novel ways that have not
been addressed before. The novel features of InsightNotes include:
(1) The integration of mining and summarization techniques with
the annotation management with the objective of creating concise
and meaningful representations of the raw annotations, (2) The de-
velopment of summary-aware query processing engine that enables
efficient and seamless manipulation of the annotation summaries
within the query pipeline, and (3) The zoom-in query processing
for retrieving the raw annotations when desired. We introduced
several optimizations in each of these features for efficient execu-
tion and scalable performance. InsightNotes is developed on top

of an existing annotation management system. The experimental
evaluation indicates the practicality of InsightNotes’s design and
the effectiveness of its proposed optimizations.
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