
Bermuda: An Efficient MapReduce Triangle Listing
Algorithm for Web-Scale Graphs

Dongqing Xiao
Worcester Polytechnic Institute

100 Institute Road
Worcester, MA, U.S.A

dxiao@wpi.edu

Mohamed Eltabakh
Worcester Polytechnic Institute

100 Institute Road
Worcester, MA, U.S.A

meltabakh@wpi.edu

Xiangnan Kong
Worcester Polytechnic Institute

100 Institute Road
Worcester, MA, U.S.A
xkong@wpi.edu

ABSTRACT
Triangle listing plays an important role in graph analysis and
has numerous graph mining applications. With the rapid
growth of graph data, distributed methods for listing triangles
over massive graphs are urgently needed. Therefore, the tri-
angle listing problem has been studied in several distributed
infrastructures including MapReduce. However, existing al-
gorithms suffer from generating and shuffling huge amounts
of intermediate data, where interestingly, a large percent-
age of this data is redundant. Inspired by this observation,
we present the “Bermuda” method, an efficient MapReduce-
based triangle listing technique for massive graphs.

Different from existing approaches, Bermuda effectively
reduces the size of the intermediate data via redundancy
elimination and sharing of messages whenever possible. As a
result, Bermuda achieves orders-of-magnitudes of speedup
and enables processing larger graphs that other techniques
fail to process under the same resources. Bermuda exploits
the locality of processing, i.e., in which reduce instance each
graph vertex will be processed, to avoid the redundancy of
generating messages from mappers to reducers. Bermuda also
proposes novel message sharing techniques within each reduce
instance to increase the usability of the received messages.
We present and analyze several reduce-side caching strategies
that dynamically learn the expected access patterns of the
shared messages, and adaptively deploy the appropriate tech-
nique for better sharing. Extensive experiments conducted
on real-world large-scale graphs show that Bermuda speeds
up the triangle listing computations by factors up to 10x.
Moreover, with a relatively small cluster, Bermuda can scale
up to large datasets, e.g., ClueWeb graph dataset (688GB),
while other techniques fail to finish.

CCS Concepts
•Computing methodologies→MapReduce algorithms;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SSDBM ’16 Budapest, Hungary
c© 2016 ACM. ISBN 978-1-4503-4215-5. . . $15.00

DOI:

Keywords
Distributed Triangle Listing; MapReduce; Graph Analytics.

1. INTRODUCTION
Graphs arise naturally in many real-world applications such

as social networks, bio-medical networks, and communication
networks. In these applications, the graph can often be
massive involving billions of vertices and edges. For example,
Facebook’s social network involves more than 1.23 billion
users (vertices), and more than 208 billion friendships (edges).
Such massive graphs can easily exceed the available memory
of a single commodity computer. That is why distributed
analysis on massive graphs has become an important research
area in recent years [12,21].

Triangle listing—which involves listing all triangles in a
given graph—is well identified as a building-block operation
in many graph analysis and mining techniques [10,17]. First,
several graph metrics can be directly obtained from triangle
listing, e.g., clustering coefficient and transitivity. Such graph
metrics have wide applications including quantifying graph
density, detecting spam pages in web graphs, and measuring
content quality in social networks [5]. Moreover, triangle
listing has a broad range of applications including the discov-
ery of dense sub-graphs [17], study of motif occurrences [22],
and uncovering of hidden thematic relations in the web [10].
There is another well-known and closely-related problem
to triangle listing, which is the triangle counting problem.
Clearly, solving the triangle listing problem would automati-
cally solve triangle counting, but not vice versa. Compared
to triangle counting, triangle listing serves a broader range of
applications. For example, Motif identification [22], commu-
nity detection [6], and dense subgraphs [17] are all dependent
on the more complex triangle listing problem.

Several techniques have been proposed for processing web-
scale graphs including streaming algorithms [5,7], external-
memory algorithms [14,18, 19], and distributed parallel algo-
rithms [2,31]. The streaming algorithms are limited to the
approximate triangle counting problem. External-memory
algorithms exploit asynchronous I/O and multi-core paral-
lelism for efficient triangle listing [13, 14, 19]. In spite of
achieving an impressive performance, external-memory ap-
proaches assume that the input graphs are in a centralized
storage, which is not the case for many emerging applica-
tions that generate graphs distributed in nature. Even more
seriously, external-memory approaches cannot easily scale up
in terms of computing resources and parallelization degree.
Algorithm [31] presents a parallel algorithm for exact triangle
counting using the MapReduce framework. The algorithm

proposes a partitioning scheme that improves the memory
requirements to some extent, yet it still suffers from a huge
communication cost. Algorithm [2] presents an efficient MPI-
based distributed memory algorithm on the basis of [31] with
load balancing techniques. However, as a memory-based
algorithm, it suffers from memory limitations.

In addition to these techniques, several distributed and
specialized graph frameworks have been recently proposed as
general-purpose graph processing engines [11,12,21]. How-
ever, most of these frameworks are customized for iterative
graph processing where distributed computations can be kept
in-memory for faster subsequent iterations. However, the
triangle listing algorithms are not iterative and would not
make use of these optimizations.

In this paper, we propose “Bermuda”, a new scalable and
distributed technique for the triangle listing problem on the
cloud-based MapReduce infrastructure and its open-source
implementation Hadoop [30]. We opt for MapReduce because
of two main reasons, which are: (1) MapReduce has several
desirable characteristics including scalability to TBs of data,
efficient fault tolerance, and flexible data model that can
handle graphs seamlessly, and (2) Triangle listing is usually
a one step in bigger analysis tasks and workflows, and its
output may feed other analytical tasks over non-graph data.
MapReduce is a perfect fit for such workflows as it can
handle all types of data ranging from graphs to structured
and un-structured datasets in the same infrastructure.

Compared to the existing techniques, Bermuda has several
key contributions, which can be summarized as follows:

• Independence of Graph Partitioning: Bermuda
does not require any special partitioning of the graph,
which suites current applications in which graph struc-
tures are very complex and dynamically changing.

• Awareness of Processing Order and Locality in
the reduce phase: Bermuda’s efficiency and optimiza-
tions are driven by minimizing the communication over-
head and the number of message passing over the net-
work. Bermuda achieves these goals by dynamically
keeping track of where and when vertices will be pro-
cessed in the reduce phase, and then maximizing the
re-usability of information among the vertices that will
be processed together. We propose several reduce-side
caching strategies for enabling such re-usability and
sharing of information.

• Portability of Optimization: We implemented Bermuda
over the MapReduce infrastructure. However, the pro-
posed optimizations can be deployed over other plat-
forms such as Pregel [21], PowerGraph [12], and Spark-
GraphX [11], and can be integrated with techniques
that apply a graph pre-partitioning step.

• Scalability to Large Graphs even with Limited
Compute Clusters: As our experiments show, Bermuda’s
optimizations—especially the reduction in communi-
cation overheads—enable the scalability to very large
graphs, while the state-of-art technique fail to finish
the job given the same resources.

The rest of the paper is organized as follows. We introduce
the preliminaries in Section 2. The core of Bermuda and its
optimizations are presented in Section 3. The experimental
evaluation, and related work are presented in Sections 4,
and 5, respectively. Finally, the conclusion remarks are
included in Section 6.

Figure 1: Adjacency List Example.

Symbol Definition

G(V,E) A simple graph
Nv Adjacent nodes of v in G
NH

v Adjacent nodes of v with higher degree
dv Degree of v in G

d̂v Effective Degree of v in G
4vuw A triangle formed by u, v and w
4(v) The set of triangles that contains v
4(G) The set of all triangles in G

Table 1: Summary of Notations.

2. PRELIMINARIES
In this section, we first introduce several preliminary con-

cepts and notations, and formally define the triangle listing
problem. We then overview existing sequential algorithms
for triangle listing, and highlight the key components of the
MapReduce computing paradigm. Finally, we present naive
parallel algorithms using MapReduce and discuss the open
optimization opportunities, which will form the core of the
proposed Bermuda technique.

2.1 Triangle Listing Problem
Suppose we have a simple undirected graph G(V,E), where

V is the set of vertices (nodes), and E is the set of edges.
Let n = |V | and m = |E|. Let Nv = {u|(u, v) ∈ E} denote
the set of adjacent nodes of node v, and dv = |Nv| denote
the degree of node v. We assume that G is stored in the
most popular format for graph data, i.e., the adjacency list
representation (as shown in Figure 1). Given any three
distinct vertices u, v, w ∈ V , they form a triangle 4uvw, iif
(u, v), (u,w), (v, w) ∈ E. We define the set of all triangles that
involve node v as 4(v) = {4uvw| (v, u), (v, w), (u,w) ∈ E}.
Similarly, we define 4(G) =

⋃
v∈V 4(v) as the set of all

triangles in G. For convenience, Table 1 summarizes the
graph notations that are frequently used in the paper.

Definition 1. Triangle Listing Problem: Given a
large-scale distributed graph G(V,E), our goal is to report all
triangles in G, i.e., 4(G), in a highly distributed way.

2.2 Sequential Triangle Listing
In this section, we present a sequential triangle listing

algorithm which is widely used as the basis of parallel ap-
proaches [2, 24,31]. In this work, we also use it as the basis
of our distributed approach.

A naive algorithm for listing triangles is as follows. For
each node v ∈ V , find the set of edges among its neighbors,
i.e., pairs of neighbors that complete a triangle with node
v. Given this simple method, each triangle (u, v, w) is listed

Algorithm 1 NodeIterator++

Preprocessing step
1: for each (u, v) ∈ E do
2: if u � v, store u in NH

v

3: else store v in NH
u

Triangle Listing
4: 4(G)← ∅
5: for each v ∈ V do
6: for each u ∈ NH

v do
7: for each w ∈ NH

v

⋂
NH

u do
8: 4(G)←4(G)

⋃
{4vuw}

six times—all six permutations of u, v and w. Several other
algorithms have been proposed to improve on and eliminate
the redundancy of this basic method, e.g., [5, 28]. One of
the algorithms, known as NodeIterator++ [28], uses a total
ordering over the nodes to avoid duplicate listing of the same
triangle. By following a specific ordering, it guarantees that
each triangle is counted only once among the six permuta-
tions. Moreover, the NodeIterator++ algorithm adopts an
interesting node ordering based on the nodes’ degrees, with
ties broken by node IDs, as defined blow:

u � v ⇐⇒ du > dv or (du = dv and u > v) (1)

This degree-based ordering improves the running time
by reducing the diversity of the effective degree d̂v. The
running time of NodeIterator++ algorithm is O(m3/2). A
comprehensive analysis can be found in [28].

The standard NodeIterator++ algorithm performs the
degree-based ordering comparison during the final phase, i.e.,
the triangle listing phase. The work in [2] and [31] further
improves on that by performing the comparison u � v for
each edge (u, v) ∈ E in the preprocessing step (Lines 1-3,
Algorithm 1). For each node v and edge (u, v), node u is
stored in the effective list of v (NH

v) if and only if u � v, and
hence NH

v = {u : u � v and (u, v) ∈ E}. The preprocessing
step cuts the storage and memory requirement by half since
each edge is stored only once. After the preprocessing step,
the effective degree of nodes in G is O(

√
m) [28]. Its correct-

ness proof can be found in [2]. The modified NodeIterator++
algorithm is presented in Algorithm 1.

2.3 MapReduce Overview
MapReduce is a popular distributed programming frame-

work for processing large datasets [9]. MapReduce, and its
open-source implementation Hadoop [33], have been used for
many important graph mining tasks [24,31]. In this paper,
our algorithms are designed and analyzed in the MapReduce
framework.

Computation Model. An analytical job in MapReduce
executes in two rigid phases, called the map and reduce
phases. Each phase consumes/produces records in the form
of key-value pairs—We will use the keywords pair, record, or
message interchangeably to refer to these key-value pairs. A
pair is denoted as 〈k; val〉, where k is the key and val is the
value. The map phase takes one key-value pair as input at a
time, and produces zero or more output pairs. The reduce
phase receives multiple key-listOfValues pairs and produces
zero or more output pairs. Between the two phases, there
is an implicit phase, called shuffling/sorting, in which the
mappers’ output pairs are shuffled and sorted to group the
pairs of the same key together as input for reducers.

Algorithm 2 MR-Baseline

Map: Input: 〈v;NH
v 〉

1: emit 〈v; (v,NH
v)〉

2: for each u ∈ NH
v do

3: emit 〈u; (v,NH
v)〉

Reduce:Input:[〈u; (v,NH
v)〉]

4: initiate NH
u

5: for each 〈u; (v,NH
v)〉 do

6: for each w ∈ NH
u ∩NH

v do
7: emit 4vuw

Bermuda will leverage and extend some of the basic func-
tionality of MapReduce, which are:

• Key Partitioning: Mappers employ a key partition-
ing function over their outputs to partition and route
the records across the reducers. By default, it is a
hash-based function, but can be replaced by any other
user-defined logic.

• Multi-Key Reducers: Typically, the number of dis-
tinct keys in an application is much larger than the
number of reducers in the system. This implies that a
single reducer will sequentially process multiple keys—
along with their associated groups of values—in the
same reduce instance. Moreover, the processing order is
defined by key sorting function used in shuffling/sorting
phase. By default, a single reduce instance processes
each of its input groups in total isolation from the other
groups with no sharing or communication.

2.4 Triangle Listing in MapReduce
Both [31] and [2] use the NodeIterator++ algorithm as

the basis of their distributed algorithms. [31] identifies the
triangles by checking the existence of pivot edges, while
[2] uses set intersection of effective adjacency list (Line 7,
Algorithm 1). In this section, we present the MapReduce
version of the NodeIterator++ algorithm similar to the one
presented in [2], referred to as MR-Baseline (Algorithm 2).

The general approach is the same as in the NodeIterator++
algorithm. In the map phase, each node v needs to emit two
types of messages. The first type is used for the initiation
its own effective adjacency list in the reduce side, referred to
as a core message (Line 1, Algorithm 2). The second type is
used for identifying triangles, referred to as pivot messages
(Lines 2-3, Algorithm 2). All pivot messages from v to its
effective adjacent nodes are identical. In the reduce phase,
each node u will receive a core message from itself, and a
pivot message from adjacent nodes with the lower degree.
Then, each node identifies the triangles by performing a set
intersection operation (Lines 5-6, Algorithm 2).

We omit the code of the pre-processing procedure since
its implementation is straightforward in MapReduce. In
addition, we will exclude the pre-processing cost for any
further consideration since it is typically dominated by the
actual running time of the triangle listing algorithm, plus it
is the same overhead for all algorithms.

2.4.1 Analysis and Optimization Opportunities
The algorithm correctness and overall computational com-

plexity follow the sequential case. Our analysis will thus
focus on the space usage of the intermediate data and the

execution efficiency captured in terms of the wall-clock exe-
cution time. For the convenience of analysis, we assume that
each edge (u, v) requires one memory word.

Intermediate Data Size. As presented in [31], the total
number of intermediate records generated by MR-Baseline

can be O(m
3
2) in the worst case, where m is the number

of edges. The size of this intermediate data can be much
larger than the original graph size. Thus, issues related
network congestion and job failure may arise with massive
input graphs. Indeed, the network congestion resulting from
transmitting a large amount of data during the shuffle phase
can be a bottleneck, degrading the performance, and limiting
the scalability of the algorithm.

Execution Time. It is far from trivial to list the factors
contributing to the execution time of a map-reduce job. In
this work, we consider the following two dominating factors
of the triangle list algorithm. The first one is the total size
of the intermediate data generated and shuffled between the
map and reduce phases. And the second factor is the variance
and imbalance among the mappers’ workloads. We refer to
the imbalanced workload among mappers as “map skew”.
Map skew leads to the straggler problem, i.e., a few mappers
take significantly longer time to complete than the rest, thus
they delay the progress of the entire job [20, 27]. We use the
variance of the map output size to measure the imbalance
among mappers. More specifically, the bigger the variance
of the mappers’ output sizes, the greater the imbalance and
the more serious the straggler problem. The map output
variance is defined as in the following theorem.

Theorem 1. For a given graph G(V,E), let a random
variable x denotes the effective degree for any vertex in G and
the variance of x is denotes as Var(x). Then, the expectation
of x (E(x)) equals the average degree computed as E(x) = m

n
.

For typical graphs, V ar(x) 6= 0 and E(x) 6= 0 always hold.
Since each mapper starts with approximately the same input
size (say receives c graph nodes), the variance of the output
size among mappers is close to 4cE(X)2V ar(x).

Proof. Let function g(x) be the map output size gener-
ated by single node with the effective degree x, then g(x) = x2

(Line 2-3, Algorithm 2). Thus, the total size of map output
generated by c nodes in a single mapper Ti(X) =

∑c
i=1 g(xi).

Since x1, x2, ..xc are independent and identically distributed
random variables, V ar(T (x)) = c∗V ar(g(x)). Apply delta
method [23] to estimate Var(g(x)) as follows:

V ar(g(x)) ≈ g′(x)2V ar(x) ≈ (2x)2V ar(x)

The approximate variance of g(x) is then

V ar(g(x)) ≈ 4E(x)2V ar(x)

Here, the variance of the total map output size among map-
pers is close to 4cE(X)2V ar(x).

Opportunities for Optimization: In the plain Hadoop,
each reduce instance processes its different keys (nodes) in-
dependent from each others. Generally, this is good for
parallelization. However, in triangle listing, it involves sig-
nificant redundancy in communication. In the map phase,
each node sends the identical pivot message to each of its
effective neighbors in NH

v (Lines 2-3, Algorithm 2) even
though many of them may reside in and get processed by
the same reduce instance. For example, if a node v has 1,000
effective neighbors on reduce worker j, then v sends the same

message 1,000 times to reduce worker j. In web-scale graphs,
such redundancy in intermediate data can severely degrade
the performance, drastically consume resources, and in some
cases causes job failures.

3. Bermuda TECHNIQUE
With the MR-Baseline Algorithm, one node needs to send

the same pivot message to multiple nodes residing in the
same reducer. Therefore, the network traffic can be reduced
by sending only one message to the destination reducer, and
either have main-memory cache or distributing the message
to actual graph nodes within each reducer. Although this
strategy seems quite simple, and other systems such as GPS
and X-Pregel [3,26] have implemented it, the trick lies on how
to efficiently perform the caching and sharing. In this section,
we propose new effective caching strategies to maximize the
sharing benefit while encountering little overhead. We also
present novel theoretical analysis for the proposed techniques.

In the frameworks of GPS and X-Pregel, adjacency lists
of high degree nodes are used for identifying distinct desti-
nation reducer and distributing the message to target nodes
in the reduce side. This method requires extensive mem-
ory and computations for message sharing. In contrast, in
Bermuda, each node uses the universal key partition function
to group its destination nodes. Thus, each node would only
send the same pivot message to each reduce instance only
once. At the same time, reduce instances will adopt different
message-sharing strategies to guarantee the correctness of
algorithm. As a result, Bermuda achieves a trade off between
reducing the network communication—which is known to
be a big bottleneck for map-reduce jobs—and increasing the
processing cost and memory utilization.

In the following, we present two modified algorithms with
different message-sharing strategies.

3.1 Bermuda Edge-Centric Node++
A straightforward (and intuitive) approach for sharing the

pivot messages within each reduce instance is to organize
either the pivot or core messages in main-memory for effi-
cient random access. We propose the Bermuda Edge-Centric
Node++ (Bermuda-EC) algorithm, which is based on the
observation that for a given input graph, it is common to
have the number of core messages smaller than the number
of pivot messages. Therefore, the main idea of Bermuda-EC
algorithm is to first read the core messages, cache them in
memory, and then stream the pivot messages, and on-the-fly
intersect the pivot messages with the needed core messages
(See Figure 2). The MapReduce code of the Bermuda-EC
algorithm is presented in Algorithm 3.

In order to avoid pivot message redundancy, a universal
key partitioning function is utilized by mappers. The corre-
sponding modification in the map side is as follows. First,
each node v employs a universal key partitioning function h()
to group its destination nodes (Line 3, Algorithm 3). This
grouping captures the graph nodes that will be processed by
the same reduce instance. Then, each node v sends a pivot
message including the information of NH

v to each non-empty
group (Lines 4-6, Algorithm 3). Following this strategy, each
reduce instance receives each pivot message exactly once
even if it will be referenced multiple times.

Moreover, we use tags to distinguish core and pivot mes-
sages, which are not listed in the algorithm for simplicity.
Combined with the MapReduce internal sorting function,

Algorithm 3 Bermuda-EC

Map: Input:(〈v;NH
v 〉)

Let h(.) be a key partitioning function into [0,k-1]
1: j ← h(v)
2: emit 〈j; (v,NH

v)〉
3: Group the set of nodes in NH

v by h(.)
4: for each i ∈ [0, k − 1] do
5: if gpi 6= ∅ then
6: emit 〈i; (v,NH

v)〉

Reduce:Input:[〈i; (v,NH
v)〉]

7: initiate all the core nodes’ NH
u in main memory

8: for each pivot message 〈i; (v,NH
v)〉 do

9: for each u ∈ NH
v and h(u) = i do

10: for each w ∈ NH
v ∩NH

u do
11: emit 4vuw

Figure 2: Bermuda-EC Execution.

Bermuda-EC guarantees that all core messages are received
by the reduce function before any of the pivot messages as
illustrated in Figure 2. Therefore, it becomes feasible to
cache only the core messages in memory, and then perform
the intersection as the pivot messages are received.

The corresponding modification in the reduce side is as
follows. For a given reduce instance Ri, it first reads
all the core message into main-memory (Line 7, Algo-
rithm 3). Then, it iterates over all pivot message. Each
pivot message is intersected with the cached core messages
for identifying the triangles. As presented in the MR-
Baseline algorithm (Algorithm 2), each pivot message (v,NH

v)
needs to be processed in reduce instance Ri only for nodes
u : u ∈ NH

v where h(u) = i. Interestingly, this information
is encoded within the pivot message. Thus, each pivot mes-
sage is processed for all its requested core nodes once received
(Lines 9-11, Algorithm 3).

3.1.1 Analysis of Bermuda-EC
Extending the analysis in Section 2.4, we demonstrate

that Bermuda-EC achieves improvement over MR-Baseline
w.r.t both space usage and execution efficiency. Furthermore,
we discuss the effect of the number of reducers k on the
algorithm performance.

Theorem 2. For a given number of reducers k, we have:

• The expected total size of the map output is O(km).

• The expected size of core messages to any reduce in-

stance is O(m/k).

Proof. As shown in Algorithm 3, the size of the map
output generated by node v is at most k ∗ d̂v. Thus, the total
size of the map output T is as follows:

T <
∑
v∈V

kd̂v = k
∑
v∈V

d̂v = km

For the second bound, observe that a random edge is present
in a reduce instance Ri and represented as a core message
with probability 1/k. By following the Linearity of Expecta-
tion, the expected number of the core messages to any reduce
instance is O(m ∗ 1

k
).

Space Usage. Theorem 2 shows that when k �
√
m (the

usual case for massive graphs), then the total size of the map
output generated by Bermuda-EC algorithm is significantly
less than that generated by the MR-Baseline algorithm. In
other words, Bermuda-EC is able to handle even larger graphs
with limited compute clusters.

Execution Time. A positive consequence of having a
smaller intermediate result is that it requires less time for
generating and shuffling/sorting the data. Moreover, the
imbalance of the map outputs is also reduced significantly
by limiting the replication factor of the pivot messages up
to k. The next theorem shows the approximate variance of
the number of the intermediate result from mappers. When
k < E(x), it implies smaller variance among the mappers
than that of the MR-Baseline algorithm. Together, Bermuda-
EC achieves better performance and scales to larger graphs
compared to the MR-Baseline algorithm.

Theorem 3. For a given graph G(V,E), let a random
variable x denotes the effective degree of any node in G and
the variance of x is denotes as Var(x). Then the expecta-
tion of x (E(x)) equals the average degree and computed as
E(x) = m

n
. For typical graphs, V ar(x) 6= 0 and E(x) 6= 0

always hold. Since each mapper starts with approximately the
same input size (say receives c graph nodes), the variance of
the map output’s size under the Bermuda-EC Algorithm is
O(2ck2V ar(x)), where k represents the number of reducers.

Proof. Assume the number of reducers is k. Given a
graph node v, where its effective degree d̂v = x. Let random
variable y(x) be the number of distinct reducers processing
the effective neighbors of v, and thus y(x) ≤ k. Then,
the size of the map output generated by a single node u
would be xy, denoted as g(x)(Lines 3-4, Algorithm 3). Thus,
the total size of the map output generated by c nodes in
a single mapper T (X) =

∑c
i=1 g(xi). Since x1, x2, ..xc are

independent and identically distributed random variables,
then V ar(T (x)) = c ∗ V ar(g(x)). The approximate variance
of g(x) is as follows

V ar(xy) = E(x2y2)− E(xy)2

< E(x2y2)

< k2E(x2)

< k2(E(x)2 + V ar(x))

< 2k2V ar(x)

As presented in [28], E(x2) ≈ m
3
2

n
and E(x) = m

n
. Thus

E(x2)

E(x)2
≈ n√

m
. In many real graphs where n2 > m it implies

n√
m

>
√
m > 2. It implies E(x2) > 2E(x)2, thus V ar(x) =

E(x2)− E(x)2 > E(x)2.

We now study in more details the effect of parameter k
(the number of reducers) on the space and time complexity
for the Bermuda-EC algorithm.

Effect on Space Usage. The reducers number k trades
off the memory used by a single reduce instance and the size
of the intermediate data generated during the MapReduce
job. The memory used by a single reducer should not exceed
the available memory of a single machine, i.e., O(m/k) should
be sub-linear to the size of main memory in a single machine.
In addition, the total space used by the intermediate data
must also remain bounded, i.e., O(km) should be no larger
than the total storage. Given a cluster of machines, these two
constraints define the bounds of k for a given input graph
G(V,E).

Effect on Execution Time. The reducers number k
trades off the reduce computation time and the time for shuf-
fling and sorting. As the parallelization degree k increases,
it reduces the computational time in the reduce phase. At
the same time, the size of the intermediate data, i.e., O(km)
increases significantly as k increases (notice that m is very
large), and thus the communication cost becomes a bottle-
neck in the job’s execution. Moreover, the increasing variance
among mappers O(2ck2V ar(x)) implies a more significant
straggler problem which slows down the execution progress.

In general, Bermuda-EC algorithm favors the smaller set-
ting of k for higher efficiency while subjects to memory bound
that the expected size of core message O(m/k) should not
exceed the available memory of a single reduce instance.

Unfortunately, for processing web-scale graphs such as
ClueWeb with more than 80 billion edges (and total size of
approximately 700GBs)—which as we will show the state-
of-art techniques cannot actually process—the number of
reducers needed for Bermuda-EC for acceptable performance
is in the order of 100s. Although, this number is very rea-
sonable for most mid-size clusters, the intermediate results
O(km) will be huge, which leads to significant network con-
gestion.

Disk-Based Bermuda-EC: A generalization to the pro-
posed Bermuda-EC algorithm that guarantees no failure even
under the case where the core messages cannot fit in a re-
ducer’s memory is the Disk-Based Bermuda-EC variation.
The idea is straightforward and relies on the usage of the
local disk of each reducer. The main idea is as follows: (1)
Partition the core messages such that each partition fits into
main memory, and (2) Buffer a group of pivot messages,
and then iterate over the core messages one partition at a
time, and for each partition, identify the triangles as in the
standard Bermuda-EC algorithm. Obviously, such method
trades off between disk I/O (pivot message scanning) and
main-memory requirement. For a setting of reduce number k,
the expected size of core messages in a single reduce instance
is O(m/k), thus the expected number of rounds is O(m

kM
)

where M represents the size of available main-memory for
single reducer. The expected size of pivot message reaches

O(m). Therefore, the total disk I/O reaches O(m2

kM
). In the

case of massive graph, it implies longer time.

3.2 Bermuda Vertex-Centric Node++
As discussed in Section 3.1, the Bermuda-EC algorithm

assumes that the core messages can fit in the memory of a

Algorithm 4 Bermuda-VC

Map: Input:(〈v; (NL
v , NH

v)〉)
Let h(.) be a key partitioning function into [0,k-1]
Let l(.) be a key comparator function

1: emit 〈v; (v,NL
v , NH

v)〉
2: Group the set of nodes in NH

v by h(.)
3: for each i ∈ [0, k − 1] do
4: if gpi 6= ∅ then
5: gpi ⇐ sort(gpi)basedonl(.)
6: u⇐ gpi.first
7: APv,i ⇐ accessPattern(gpi)
8: emit 〈u; (v,APv,i, N

H
v)〉

Reduce:Input:[〈u; (v,APv,i, N
H
v)〉]

9: initiate the core node u’ NL
u , NH

u in main memory
10: for each pivot message 〈u; (v,APv,i, N

H
v)〉 do

11: for each w ∈ NH
v

⋂
NH

u do
12: emit 4vuw

13: Put (v,APv,j , N
H
v) into shared buffer

14: NL
u ← NL

u − {v}
15: for each r ∈ NL

u do
16: Fetch (r, APr,i, N

H
r) from shared buffer

17: for each w ∈ NH
r

⋂
NH

u do
18: emit 4ruw

single reducer. However, it is not always guaranteed to be
the case, especially in web-scale graphs.

One crucial observation is that the access pattern of the
pivot messages can be learned and leveraged for better re-
usability. In MapReduce, a single reduce instance processes
many keys (graph nodes) in a specific sequential order. This
order is defined based on the key comparator function. For
example, let h() be the key partitioning function and l() be
key comparator function within the MapReduce framework,
then h(u) = h(w) = i and l(u,w) < 0 implies that the reduce
instance Ri is responsible for the computations over nodes
u, w, and also the computations of node u precede that of
node w. Given these known functions, the relative order
among the keys in the same reduce instance becomes known,
and the access pattern of the pivot message can be predicted.
The knowledge of the access pattern of the pivot messages
holds a great promise for proving better caching and better
memory utilization.

Inspired by these facts, we propose the Bermuda-VC algo-
rithm which supports random access over the pivot messages
by caching them in main-memory while streaming in the
core messages. More specifically, Bermuda-VC will reverse
the assumption of Bermuda-EC, where we now try to make
the pivot messages arrive first to reducers, get them cached
and organized in memory, and then the core messages are
received and processed against the pivot messages. Although
the size of the pivot messages is usually larger than that of
the core messages, their access pattern is more predictable
which will enable better caching strategies as we will present
in this section. The Bermuda-VC algorithm is presented in
Algorithm 4.

The Bermuda-VC algorithm uses a shared buffer for
caching the pivot messages. And then, for the reduce-side
computations over a core node u, the reducer compares u’s
core message with all related pivot messages—some are as-
sociated with u’s core message, while the rest should be

Figure 3: Bermuda-VC Execution.

residing in the shared buffer. Bermuda-VC algorithm ap-
plies the same scheme to avoid generating redundant pivot
messages. It utilizes a universal key partitioning function to
group effective neighbors NH

v of each node v. In order to
guarantee the availability of the pivot messages, a universal
key comparator function is utilized to sort the destination
nodes in each group (Line 5, Algorithm 4). As a result,
destination nodes are sorted based on their processing order.
The first node in group gpi indicates the earliest request of
a pivot message. Hence, each node v sends a pivot message
to the first node of each non-empty group by emitting key
value pairs where key equals the first node ID (Lines 6-8,
Algorithm 4).

Combined with the sorting phase of the MapReduce frame-
work, Bermuda-VC guarantees the availability of all needed
pivot messages of any node u when u’s core message is re-
ceived by a reducer, i.e., the needed pivot messages are either
associated with u itself or associated with another nodes
processed before u.

The reducers’ processing mechanism is similar to that of the
MR-Baseline algorithm. Each node u reads its core message
for initiating NH

u and NL
v (Line 9), and then it iterates over

every pivot message associated with key u against its effective
adjacency list NH

v to enumerate the triangles (Lines 10-12).
As discussed before, not all expected pivot messages are
carried with key u. The rest of the related pivot messages
reside in the shared buffer. Here, NL

v is used for fetching
the rest of these pivot messages (Line 14, Algorithm 4),
and enumerating the triangles (Lines 15-18, Algorithm 4).
Moreover, the new coming pivot messages associated with
node u are pushed into the shared buffer for further access
by other nodes (Line 13). Figure 3 illustrates the reduce-side
processing flow of Bermuda-VC. In the following sections,
we will discuss in more details the management of the pivot
messages in the shared buffer.

3.3 Message Sharing Management
It is obvious that the best scenario is to have the shared

buffer fits into the main memory of each reduce instance.
However, that cannot be guaranteed. In general, there are
two types of operations over the shared buffer inside a reduce
instance, which are: “Put” for adding new incoming pivot
messages into the shared buffer (Line 13), and “Get” for
retrieving the needed pivot messages (Lines 15-18). For
massive graphs, the main memory may not hold all the

Figure 4: Various access Patterns for Pivot Messages.

pivot messages. This problem is similar to the classical
caching problem studied in [16,25], where a reuse-distance
factor is used to estimate the distances between consecutive
references of a given cached element, and based on that
effective replacement policies can be deployed. We adopt the
same idea in Bermuda-VC.

Interestingly, in addition to the reuse distance, all access
patterns of each pivot message can be easily estimated in
our context. The access pattern AP of a pivot message
is defined as the sequence of graph nodes (keys) that will
reference this message. In particular, the access pattern of
a pivot message from node v to reduce instance Ri can be
computed based on the sorted effective nodes gpi received
by Ri. Several interesting metrics can be derived from this
access pattern. For example, the first node in gpi indicates
the occurrence of the first reference, the size of gpi equals
the cumulative reference frequency. Such access pattern
information is encoded within each pivot message (Lines 7-8,
Algorithm 4). With the availability of this access pattern,
effective message sharing strategies can be deployed under
limited memory.

As an illustrative example, Figure 4 depicts different access
patterns for four pivot messages {m1, m2, m3, m4}. The
black bars indicate requests to the corresponding pivot mes-
sage, while the gaps represent the re-use distances (which are
idle periods for this message). Pivot messages may exhibit
entirely different access patterns, e.g., pivot message m1 is
referenced only once, while others are utilized more than
once, and some pivot messages are used in dense consecutive
pattern in a short interval, e.g., m2 and m3. Inspired by
these observations, we propose two heuristic-based replace-
ment policies, namely usage-based tracking, and bucket-based
tracking. They trade off the tracking overhead with memory
hits as will be described next.

3.3.1 Usage-Based Tracking
Given a pivot message originated from node v, the total

use frequency is limited to
√
m, referring to the number of its

effective neighbors, which is much smaller than the expected
number of nodes processed in a single reducer, which is
estimated to n/k. This implies that each pivot message may
become useless (and can be discard) as a reducer progresses,
and it is always desirable to detect the earliest time at which
a pivot message can be discarded to maximize the memory’s
utilization.

The main idea of the usage-based tracking is to use a usage
counter per pivot message in the shared buffer. And then,
the tracking is performed as follows. Each Put operation
sets the counter as the total use frequency. And, only the

Figure 5: Read and Write Back-up files

pivot messages whose usage counter is larger than zero are
added to the shared buffer. Each Get operation decrements
the counter of the target pivot message by one. Once the
counter reached zero, the corresponding pivot message is
evicted from the shared buffer.

The usage-based scheme may fall short in optimizing sparse
and scattered access patterns. For example, as shown in Fig-
ure 4, the reuse distance of message m4 is large. Therefore,
the usage-based tracking strategy has to keep m4 in the
shared buffer although it will not be referenced for a long
time. What’s worse, such scattered access is common in
massive graphs. Therefore, pivot messages may unnecessar-
ily overwhelm the available memory of each single reduce
instance.

3.3.2 Bucket-Based Tracking
We introduce the Bucket-based tracking strategy to opti-

mize message sharing over scattered access patterns. The
main idea is to manage the access patterns of each pivot mes-
sage at a smaller granularity, called a bucket. The processing
sequence of keys/nodesis sliced into buckets as illustrated in
Figure 4. In this work, we use the range partitioning method
for balancing workload among buckets. Correspondingly, the
usage counter of one pivot message is defined per bucket,
i.e., each message will have an array of usage counters of a
length equals to the number of its buckets. For example, the
usage count of m4 in the first bucket is 1 while in the second
bucket is 0. Therefore, for a pivot message that will remain
idle (with no reference) for a long time, its counter array will
have a long sequence of adjacent zeros. Such access pattern
information can be computed in the map function, encoded
in access pattern (Line 7 in Algorithm 4), and passed to the
reduce side.

The corresponding modification of the Put operation is
as follows. Each new pivot message will be pushed into
the shared buffer (in memory) and backed up by local files
(in disk) based on its access pattern. Figure 5 illustrates
this procedure. For the arrival of a pivot message with the
access pattern [1, 0, .., 1, 3], the reduce instance actively adds
this message into back-up files for buckets Bp−1 (next-to-
last bucket) and Bp (last bucket). And then, at the end of
each bucket processing and before the start of processing
the next bucket, all pivot messages in the shared buffer are
discarded, and a new set of pivot messages is fetched from
the corresponding back-up file into memory(See Figure 5).

The Bucket-based tracking strategy provides better mem-
ory utilization since it prevents the long retention of unnec-
essary pivot messages. In addition, usage-based tracking can
be applied to each bucket to combine both benefits, which is
referred to as the bucket-usage tracking strategy.

3.4 Analysis of Bermuda-VC
In this section, we show the benefits of the Bermuda-VC

algorithm over the Bermuda-EC algorithm. Furthermore, we
discuss the effect of parameter p, which is the the number of
buckets, on the performance.

Under the same settings of the number of reducers k, the
Bermuda-VC algorithm generates more intermediate message
and takes longer execution time. Firstly, the Bermuda-VC
algorithm generates the same number of pivot messages while
generating more core messages (i.e., additional NL

v for ref-
erence in the reduce side). Thus, the total size of the extra
NL

v core message is
∑

v∈V NL
v = m. Such noticeable size

of extra core messages requires additional time for generat-
ing and shuffling. Moreover, an additional computational
overhead (Lines 13-14) is required for the message sharing
management.

However, because of the proposed sharing strategies, the
Bermuda-VC algorithm can work under smaller settings
for k—which are settings under which the Bermuda-EC
algorithm will probably fail. In this case, the benefits brought
by having a smaller k will exceed the corresponding cost. In
such cases, Bermuda-VC algorithm will outperform Bermuda-
EC algorithm.

Moreover, compared to the disk-based Bermuda-EC algo-
rithm, the Bermuda-VC algorithm has a relatively smaller
disk I/O cost because the predictability of the access pattern
of the pivot messages, which enable purging them early, while
that is not applicable to the core messages. Notice that, for
any given reduce instance, the expected usage count of pivot
message from u is dHu /k. Thus, the expected usage count for
any pivot message is E(dHu)/k, equals m/nk. Therefore, the
total disk I/O with pivot messages is at most m2/nk, smaller
than disk I/O cost of Bermuda-EC algorithm m2/Mk, where
M stands for the size of the available memory in a single
machine.

Effect of the number of buckets p: At a high level,
p trades off the space used by the shared buffer with the I/O
cost for writing and reading the back-up files. Bermuda-VC
algorithm favors smaller settings of p in the capacity of main-
memory. As p decreases, the expected number of reading
and writing decreases, however the total size of the pivot
messages in the shared buffer may exceed the capacity of
the main-memory. For a setting of p, the expected size of
the pivot messages for any bucket is O(m/kp). Therefore, a
visible solution for O(m/kp) ≤ M is ≥ O(m/kM). In this
work, p is set as O(m/kM) where m is the size of the input
graph, and M is the size of the available memory in a single
machine.

4. EXPERIMENTS
In this section, we present an experimental evaluation

of the MR-Baseline, Bermuda-EC, and Bermuda-VC algo-
rithms. We also compare Bermuda algorithms against GP
(Graph Partitioning algorithm for triangle listing) [31]. The
objective of our experimental evaluation is to show that the
proposed Bermuda method improves both time and space
complexity compared to the MR-Baseline algorithm. More-
over, compared to Bermuda-EC, Bermuda-VC is able to
get better performance under the proposed message caching
strategies.

All experiments are performed on a shared-nothing com-
puter cluster of 30 nodes. Each node consists of one quad-core

Nodes
Undirected

Edges
Avg

Degree
Size

Twitter 4.2 ∗ 107 2.4 ∗ 109 57 24GB
Yahoo 1.9 ∗ 108 9.0 ∗ 109 47 67GB
ClueWeb12 9.6 ∗ 108 8.2 ∗ 1010 85 688GB

Table 2: Basic statistics on the datasets.

MR
Baseline

Bermuda
EC and VC

Reduction
Factor (RF)

Twitter 3.0 ∗ 1011 1.2 ∗ 1010 30
Yahoo 1.4 ∗ 1011 1.9 ∗ 1010 7.5
ClueWeb12 3.0 ∗ 1012# 2.6 ∗ 1011 11.5

Table 3: The size of pivot messages generated (and shuffled)
by MR-Baseline and Bermuda algorithms along with the
reduction factor. (#: Indicate a counted number without
actual generation).

Intel Core Duo 2.6GHZ processors, 8GB RAM, 400GB disk,
and interconnected by 1Gb Internet. Each node runs Linux
OS and Hadoop version 2.4.1. Each node is configured to run
up to 4 map and 2 reduce tasks concurrently. The replication
factor is set to 3 unless otherwise is stated.

4.1 Datasets
We use three large real-world graph datasets for our eval-

uation. Twitter is one representative social network which
captures current biggest micro-blogging community. Edges
represent the friendship among users 1. Yahoo is one of the
largest real-world web graphs with over one billion vertices
2, where edges represent the link among web pages. And
ClueWeb12 is one subset of real-world web with six billion
vertices 3.

In our experiments, we consider each edge of the input to
be undirected. Thus, if an edge (u,v) appears in the input,
we also add edge (v, u) if it does not already exist. The graph
sizes varies from 4.2 ∗ 107 of Twitter , 1.9 ∗ 108 of Yahoo, to
9.6 ∗ 108 of ClueWeb12, with different densities; ClueWeb12
is the largest but also the sparest dataset. The statistics on
the three datasets are presented in Table 2.

4.2 Experiment Result

4.2.1 Bermuda Technique
Bermuda directly reduces the size of intermediate records

by removing redundancy. We experimentally verify the re-
duction of the pivot messages as reported in Table 3. In
the case of the Twitter dataset, Bermuda’s output is around
30x less than that generated by the MR-Baseline algorithm.
Furthermore, in the case of ClueWeb, the size of the interme-
diate result generated by the MR-Baseline algorithm exceeds
the available disk capability of the cluster. The reported
number in Table 3 is obtained through a counter without
actual record generation. The drastic difference in the size of
the pivot messages has a large impact on the running time.
In the case of Twitter, MR-Baseline takes more than 4 hours
to generate and transform 300 billion records. Whereas, the

1http://an.kaist.ac.kr/traces/WWW2010.html
2http://webscope.sandbox.yahoo.com.2015
3http://www.lemurproject.org /clueweb12/webgraph.php/.

(a) Twitter

(b) Yahoo

Figure 6: The distribution of mappers elapsed times for
MR-Baseline and Bermuda-EC algorithms. All runs were
measured on Twitter and Yahoo datasets using 158 and 600
mappers, respectively. The distribution of Bermuda-VC is
similar to Bermuda-EC.

Bermuda-EC and Bermuda-VC algorithms only generate and
transform 12 billion records under the settings of k = 20,
which takes 9 minutes on average.

Moreover, Bermuda methods handle the map-side imbal-
ance more effectively. As discussed in Section 2.4, the size of
the intermediate records generated by the MR-Baseline algo-
rithm heavily depends on the degree distribution of the input
nodes. Whereas Bermuda mitigates the effect of skewness
by limiting the replication factor of the pivot messages up to
k. Figure 6 shows the distribution of the mappers’ elapsed
times on the Twitter and Yahoo dataset, respectively.

Figure 6a illustrates the map-side imbalance problem of
the MR-Baseline Algorithm as indicated by the heavy-tailed
distribution of the elapsed time (the x-axis). The majority
of the map tasks finish in less than 100 minutes, but there
are a handful of map tasks that take more than 200 minutes.
The mappers that have the longest completion time received
high degree nodes to pivot on. This is because for a node of
effective degree d̂, the MR-Baseline algorithm generates O(d̂2)
pivot messages. Figure 6a shows a significantly more balanced
workload distribution under the Bermuda algorithms. This
is indicated by a smaller spread out between the fastest
and slowest mappers , which is around 10 minutes. This
is because for a node of effective degree d̂, Bermuda would
generate only O(min(k, d̂)d̂) pivot messages. Therefore, the
variance of mappers’ outputs is significantly reduced. Figure
6b manifests the same behavior over the Yahoo dataset. This
empirical observation is in accordance with our theoretical

Figure 7: The total shuffle messages vs. memory for each
reduce worker. All metrics were measured on Twitter and
Yahoo datasets where k values range from 5 to 50.

Figure 8: The running of Bermuda-EC algorithm on Twitter
and Yahoo dataset. The Yahoo graph can not fit into memory
when k < 20. The ClueWeb dataset are not presented in here
because the Bermuda -EC algorithm failed on the dataset.

analysis and Theorems 1 and 3. Thus, Bermuda methods
outperform the MR-Baseline Algorithm.

4.2.2 Effect of the number of reducers
In Bermuda-EC, the number of reducers k trades off be-

tween the memory used by each reducer and the used disk
space. Figure 7 illustrates such trade off on the Twitter and
Yahoo datasets. Initially, as k increases, the increase of the
storage overhead is small while the reduction of memory is
drastic. In the case of the Yahoo dataset, as k increases,
the size of the core messages decreases, and can fit in the
available main-memory. As k increases further, the decrease
in the memory requirements gets smaller, while the increase
of the disk storage grows faster. For a given graph G(V,E)
and a given cluster of machines, the range of k is bounded by
two factors, the total disk space available and the memory
available on each individual machine. In the case of Yahoo,
k should be no smaller than 20, otherwise the core messages
cannot fit into the available main memory.

Figure 8 illustrates the runtime of the Bermuda-EC al-
gorithm under different settings of k over the Twitter and
Yahoo datasets. In the case of Twitter, the elapsed time
reduces as k initially increases. We attribute this fact to the
increase of parallel computations. As k continues to increase,
this benefit disappears and the total runtime slowly increases.
We attribute the increase of the execution time to the fol-
lowing two factors: (1) The increasing size of intermediate

Figure 9: The running of Disk-Based Bermuda-EC algorithm
on Yahoo dataset, where k ≤ 20.

records O(km), and (2) The higher variance of the map-side
workload O(2ck2V ar(x)). As shown in Figure 8, the effect of
k varies from one graph to another. In the case of the Yahoo
dataset, the communication cost dominates the overall perfor-
mance early, e.g., under k = 20. We attribute these different
behaviors to the nature of the input datasets. Twitter—as
one typical social network—has a lot of candidate triangles.
In contrast, Yahoo is one typical hyperlink network with
sparse connections and relatively fewer candidate triangles.

For execution efficiency, Bermuda-EC chooses to keep the
relatively small core messages in the main memory, while
allowing a sequential access to the relatively large pivot
messages. For a given web-scale graph, a large setting of k
is required to make the core messages fit into the available
memory of an individual reducer. Unfortunately, the price is
a bigger size of intermediate data O(km), which leads to a
serious network congestion, and even a job failure in some
cases. In the case of the ClueWeb dataset, Bermuda-EC
requires large number of reducers, e.g., in the order of 100s,
which creates a prohibitively large size of intermediate data
(in the order of 100TBs), which is not practical for most
clusters.

Although the disk-based Bermuda-EC algorithm can work
under smaller settings of k, its efficiency is limited because
of a large amount of disk I/Os. Figure 9 presents the run
time of the disk-based Bermuda-EC variation under different
settings of k over the Yahoo dataset. When k ≥ 20, the core
messages can fit into memory, and its runtime is presented
in Figure 8. When k equals 10, the disk-based Bermuda-EC
algorithm takes less time in generating and shuffling the
intermediate data, while more time is taken in the reduce
phase. As expected, the runtime of the reduce step increases
quickly and the benefits induced by the smaller settings of k
disappear.

4.2.3 Message Sharing Management
In Figure 10, we present the empirical results of the differ-

ent caching strategies on the Yahoo dataset where k = 10.
As shown in Figure 10, the size of sharing messages grows
rapidly, then overwhelms the size of the main memory avail-
able to a given reducer, which leads to a job failure. By
tracking the re-use count, the usage-based tracking strategy
is able to immediately discard useless pivot messages when
their counter reaches zero. As a result the increase of the
memory usage is slower. However, the retention of the pivot
message having long re-use distance makes the discard strat-
egy not very effective. By considering the access pattern of

Reduce Progress
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

m
o

ry
 U

s
a

g
e

 (
G

B
)

0

1

2

3

4

5

6

7

8

9

Max-Memory
No Tracking
Usage
Bucket
Bucket-Usage

Figure 10: The cumulative size of sharing messages against
progress for each reducer. All the statics are measured over
the Yahoo dataset with the number of reducers k = 10.

MR-
Baseline

GP
Bermuda-

EC
Bermuda-

VC
Twitter 682 378 52 66
Yahoo 439 622 82 69

ClueWeb12 − − − 1528

Table 4: The run time (in minutes) of all algorithms on dif-
ferent real-world datasets. Bermuda algorithms outperform
the MR-Baseline algorithm in all datasets and show more
than 10x faster performance in twitter dataset.

the pivot messages at a smaller granularity, the bucket-based
strategy avoids the retention of the pivot messages having
too long re-use distance. As shown in Figure 10, the bucket-
based strategy achieves better memory utilization. In the
case of the Yahoo dataset, the size of sharing pivot message
is practical for a commodity machine with the bucket-based
strategy. The combination of the two strategies, i.e., the
bucket-usage strategy can further reduce the size of sharing
message by avoiding the memory storage of idle messages
inside each bucket.

4.2.4 Execution Time Performance
Table 4 presents the runtime of all algorithms on the three

datasets. For the Bermuda-EC algorithm, the number of
reducers k is set to 40 and 20, for the Twitter and Yahoo
datasets, respectively. For the Bermuda-VC algorithm, the
number of reducers k is set to 40, 10, and 10, for the Twitter,
Yahoo and ClueWeb datasets, respectively. The settings
of reducer number k are determined by the cluster and
the given datasets. Only Bermuda-VC manages to list all
triangles in ClueWeb dataset, whereas MR-Baseline, GP and
Bermuda-EC fail to finish due to the lack of disk space. As
shown in Table 4, Bermuda methods outperform the other
algorithms on the Twitter and Yahoo datasets. Bermuda
-EC algorithm shows more than 5x faster performance on the
Twitter dataset compared to the GP algorithm. Moreover,
compared to Bermuda-EC, Bermuda-VC is able to get a
better trade-off between the communication cost and the
reduce-side computations. It shows a better performance
over the Yahoo dataset under k = 10. Moreover, with a
relatively small cluster, Bermuda-VC can scale up to larger
datasets, e.g., ClueWeb graph dataset (688GB), while the
other techniques fail to finish.

5. RELATED WORKS
Triangle listing is a basic operation of the graph analysis.

Many research works have been conducted on this problem,
which can be classified into three categories: in-memory
algorithms, external-memory algorithms and distributed al-
gorithms. Here, we briefly review these works.

In-Memory Algorithm. The majority of previously
introduced triangle listing algorithms are the In-Memory
processing approaches. Traditionally, they can be further
classified as Node-Iterator [1, 4, 28] and Edge-Iterator ones
[8, 15] with the respect to iterator-type. Authors [8, 15,
28]improved the performance of in-memory algorithms by
adopting degree-based ordering. Matrix multiplication is
used to count triangles [1]. However, all these algorithms are
inapplicable to massive graphs which do not fit in memory.

External-Memory Algorithms. In order to handle the
massive graph, several external-memory approaches were
introduced [14, 18, 19]. Common idea of these methods is:
(1) Partition the input graph to make each partition fit into
main-memory, (2) Load each partition individually into main-
memory and identify all its triangles, and then remove edges
which participated in the identified triangle, and (3) After
the whole graph is loaded into memory buffer once, the re-
maining edges are merged, then repeat former steps until no
edges remain. These Algorithms require a lot of disk I/Os
to perform the reading and writing of the edges. Authors
[14,18] improved the performance by reducing the amount
of disk I/Os and exploiting multi-core parallelism. External-
Memory Algorithms show great performance in time and
space. However, the parallelization of external-memory algo-
rithms is limited. External-memory approaches cannot easily
scale up in terms of computing resources and parallelization
degree.

Distributed Algorithms. Another promising approach
to handle triangle listing on large-scale graphs is the dis-
tributed computing. Suri et al. [31] introduced two Map-
Reduce adaptions of NodeIterator algorithm and the well-
known Graph Partitioning (GP) algorithm to count triangles.
The Graph Partitioning algorithm utilizes one universal hash
partition function over nodes to distribute edges into over-
lapped graph partitions, then identifies triangles over all
the partitions. Park et al. [24] further generalized Graph
Partitioning algorithm into multiple rounds, significantly
increasing the size of the graphs that can be handled on a
given system. The authors compare their algorithm with GP
algorithm [31] across various massive graphs then show that
they get speedups ranging from 2 to 5. In this work, we show
such large or even larger speedup (from 5 to 10) can also be
obtained by reducing the size intermediate result directly via
Bermuda methods. Teixeira et al. [32] presented Arabesque,
one distributed data processing platform for implementing
subgraph mining algorithms on the basis of MapReduce
framework. Arabesque automates the process of exploring a
very large number of subgraphs, including triangles. However,
these MapReduce algorithms must generate a large amount
of intermediate data that travel over the network during the
shuffle operation, which degrade their performance. Arifuzza-
man et al. [2] introduced an efficient MPI-based distributed
memory parallel algorithm (Patric) on the basis of NodeItera-
tor algorithm. The Patric algorithm introduced degree-based
sorting preprocessing step for efficient set intersection opera-
tion to speed up execution. Furthermore, several distributed
solutions designed for subgraph mining on large graph were

also proposed [21,29]. Shao et al. introduced the PSgl frame-
work to iteratively enumerate subgraph instance. Different
from other parallel approaches, the PSgl framework com-
pletes relies on the graph traversal and avoids the explicit
join operation. These distributed memory parallel algorithms
achieve impressive performance over large-scale graph mining
tasks. These methods distributed the data graph among the
worker’s memory, thus they are not suitable for processing
large-scale graph with small clusters.

6. CONCLUSION
In this paper, we addressed the problem of listing triangles

over massive graphs using the MapReduce infrastructure.
We proposed the Bermuda technique that aims at reducing
the size of the intermediate data by eliminating the commu-
nication redundancy and enabling data sharing across the
graph nodes. We introduced several optimizations for better
scalability and performance based on the processing order
and the locality of shared intermediate records. An exten-
sive experimental evaluation using real-world graph datasets
confirms that Bermuda achieves significant savings in com-
munication cost, execution time, and space requirements.
The experimental evaluation also shows that Bermuda can
bring the triangle listing over massive graphs to the realm of
feasibility even under relatively small computing clusters.

As part of future work, we plan to generalize our idea
beyond triangle listing to the listing of more complex sub-
graphs. We also plan to study additional optimizations that
could possibly lead to further performance improvements
such as balanced graph partitioning, and graph compression
techniques.

7. REFERENCES
[1] N. Alon, R. Yuster, and U. Zwick. Finding and

counting given length cycles. Algorithmica, 1997.

[2] S. Arifuzzaman, M. Khan, and M. Marathe. Patric: A
parallel algorithm for counting triangles in massive
networks. CIKM, 2013.

[3] N. Bao and T. Suzumura. Towards highly scalable
pregel-based graph processing platform with x10.
WWW, 2013.

[4] V. Batagelj and A. Mrvar. A subquadratic triad census
algorithm for large sparse networks with small
maximum degree. Social networks, 2001.

[5] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis.
Efficient semi-streaming algorithms for local triangle
counting in massive graphs. KDD, 2008.

[6] J. Berry, B. Hendrickson, R. LaViolette, and C. Phillips.
Tolerating the community detection resolution limit
with edge weighting. Physical Review E, 2011.

[7] L. Buriol, G. Frahling, and S. Leonardi. Counting
triangles in data streams. VLDB, 2006.

[8] N. Chiba and T. Nishizeki. Arboricity and subgraph
listing algorithms. SIAM Journal on Computing, 1985.

[9] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. Commun. ACM, 2008.

[10] J. Eckmann and E. Moses. Curvature of co-links
uncovers hidden thematic layers in the world wide web.
Academy of Sciences, 2002.

[11] J. Gonzalez, R. Xin, A. Dave, and D. Crankshaw.
Graphx: Graph processing in a distributed dataflow
framework. GRADES,SIGMOD workshop, 2014.

[12] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. OSDI, 2012.

[13] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim,
J. Kim, and H. Yu. Turbograph: a fast parallel graph
engine handling billion-scale graphs in a single pc.
KDD, 2013.

[14] X. Hu, Y. Tao, and C. Chung. I/O-Efficient algorithms
on triangle listing and counting. ACM Transactions on
Database Systems, 2014.

[15] A. Itai and M. Rodeh. Finding a minimum circuit in a
graph. SIAM, 1978.

[16] G. Keramidas and P. Petoumenos. Cache replacement
based on reuse-distance prediction. ICCD, 2007.

[17] S. Khuller and B. Saha. On finding dense subgraphs.
Automata, 2009.

[18] J. Kim, W. Han, S. Lee, K. Park, and H. Yu. Opt: a
new framework for overlapped and parallel
triangulation in large-scale graphs. SIGMOD, 2014.

[19] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi:
Large-scale graph computation on just a pc. OSDI,
2012.

[20] J. Lin. The curse of zipf and limits to parallelization: A
look at the stragglers problem in mapreduce. LSDR-IR
workshop, 2009.

[21] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system
for large-scale graph processing. SIGMOD, 2010.

[22] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, and
D. Chklovskii. Network motifs: simple building blocks
of complex networks. Academy of Sciences, 2002.

[23] G. W. Oehlert. A note on the delta method. The
American Statistician, 1992.

[24] H. Park, F. Silvestri, U. Kang, and R. Pagh.
MapReduce triangle enumeration with guarantees.
CIKM, 2014.

[25] P. Petoumenos and G. Keramidas. Instruction-based
reuse-distance prediction for effective cache
management. 2009.

[26] S. Salihoglu and J. Widom. Gps: A graph processing
system. SSDBM, 2013.

[27] A. D. Sarma, F. N. Afrati, S. Salihoglu, and J. D.
Ullman. Upper and lower bounds on the cost of a
map-reduce computation. PVLDB, 2013.

[28] T. Schank. Algorithmic aspects of triangle-based
network analysis. Phd in computer science, 2007.

[29] Y. Shao, B. Cui, L. Chen, L. Ma, J. Yao, and N. Xu.
Parallel subgraph listing in a large-scale graph.
SIGMOD, 2014.

[30] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. MSST, 2010.

[31] S. Suri and S. Vassilvitskii. Counting triangles and the
curse of the last reducer. KDD, 2011.

[32] C. H. C. Teixeira, A. J. Fonseca, M. Serafini,
G. Siganos, M. J. Zaki, and A. Aboulnaga. Arabesque:
a system for distributed graph mining. SOSP, 2015.

[33] T. White. Hadoop: The definitive guide. 2010.

	Introduction
	Preliminaries
	Triangle Listing Problem
	Sequential Triangle Listing
	MapReduce Overview
	Triangle Listing in MapReduce
	Analysis and Optimization Opportunities

	Bermuda Technique
	Bermuda Edge-Centric Node++
	Analysis of Bermuda-EC

	Bermuda Vertex-Centric Node++
	Message Sharing Management
	Usage-Based Tracking
	Bucket-Based Tracking

	Analysis of Bermuda-VC

	Experiments
	Datasets
	Experiment Result
	Bermuda Technique
	Effect of the number of reducers
	Message Sharing Management
	Execution Time Performance

	Related Works
	Conclusion
	References

