Homework #1
Solutions
Please email me if you see any errors or have any questions.

Each question is worth 10 points.

#1. Let given the alphabet $\Sigma = \{a, b\}$, and the languages over Σ: $L_1 = \{aaa\}^*$, $L_2 = \{a, b\} \{a, b\} \{a, b\} \{a, b\}$ and $L_3 = L_2^*$, describe the strings in
 a) L_2
 b) L_3
 c) $L_1 \cap L_3$

 a) $L_2 = \{aaaa, aaab, aaba, aabb, abaa, abab, abba, abbb, baaa, baab, baba, babb, bbaa, bbab, bbba, bbbb\}$

 b) $L_3 = \{w \in \{a, b\}^* : |w| = 4n, n \geq 0\}$

 c) $L_1 \cap L_3 = \{a^n : n = 12k, k \geq 0\}$

#2. Give regular expressions for the following:

 a) The set of strings over $\{a, b, c\}$ where all the a’s precede all the b’s which precede all the c’s (there may be no a’s, b’s or c’s)

 $a^*b^*c^*$

 b) The set of strings over $\{0, 1\}$ which contain the substring 00 and the substring 11.

 $((0U1)^*00 (0U1)^*11 (0U1)^*) U ((0U1)^*11 (0U1)^*00 (0U1)^*)$

 c) The set of strings over $\{a, b\}$ which do not contain the substring ab.

 $b^* a^*$

#3. a) Let G be the grammar:

 $S \rightarrow 0 | 1 | 0 S 0 | 1 S 1 | \lambda | 0 0 | 1 1$

 a) Show a leftmost derivation of $0 1 1 1 1 0$

 Note: any derivation will be leftmost (or rightmost!)

 $S \rightarrow 0 S 0 \rightarrow 0 1 S 1 0 \rightarrow 0 1 1 S 1 1 0 \rightarrow 0 1 1 1 1 0$
b) Create a parse tree for 0 1 1 1 0

![Parse Tree](image)

c) Show that this grammar is ambiguous

Two leftmost derivations for 00 (among others):
1. \(S \rightarrow 0 0 \)
2. \(S \rightarrow 0 S 0 \rightarrow 0 0 \) (using \(S \rightarrow \lambda \))

d) Describe \(L(G) \) using set notation

\[
L(G) = \{w \in \{0,1\}^* \mid w = w^R\}
\]

b) Construct grammars to generate the languages of #2

a)
\[
S \rightarrow aS \mid B \\
B \rightarrow bB \mid C \\
C \rightarrow cC \mid \lambda
\]

b)
\[
S \rightarrow 0 S \mid 1 S \mid 0 0 A \mid 1 1 B \\
A \rightarrow 0 A \mid 1 A \mid 1 1 C \\
B \rightarrow 0 B \mid 1 B \mid 0 0 C \\
C \rightarrow 0 C \mid 1 C \mid \lambda
\]

c)
\[
S \rightarrow b A \mid A \mid \lambda \\
A \rightarrow a A \mid \lambda
\]

#4. Explain briefly and clearly why (how) all finite alphabets can be replaced with a two symbol alphabet. Do this in general (for any length alphabet) and then show your method for the alphabet \{a,b,c\} and the string \(b b c a \).

Given the alphabet \{a₁,a₂, a₃, ..., aₙ\} and the two symbol alphabet \{ b₁,b₂\}. Represent the symbols as follows:
\(a_1 = b_1 \)
\(a_2 = b_1 b_1 \)
\(a_3 = b_1 b_1 b_1 \)
\[\vdots \]
\(a_n = b_1 b_1 b_1 \ldots b_1 \) (\(n \) b_1 's)

Use b_2 as a separator between symbols. So if the string is \(a_3 \ a_1 \ a_2 \), it can now be represented by \(b_1 \ b_1 \ b_1 \ b_2 \ b_1 \ b_1 \ b_2 \ b_1 \)

So for \{a,b,c\} using the two symbol alphabet \{a,b\},

\(a = a \)
\(b = a \ a \)
\(c = a \ a \ a \)
and \(b \ b \ c \ a \) is \(a \ a \ b \ a \ a \ b \ a \ a \ a \ b \ a \)

#5. For the CFG G defined by

\(S \rightarrow 0 \ S \mid S \ 1 \mid 0 \mid 1 \)

prove by induction on the depth of the parse tree that no string in the language has \(10 \) as a substring.

Basis. depth(tree) = 1. The only 2 trees are

\[
\begin{array}{c}
S \\
| \\
0 \\
\end{array} \quad \begin{array}{c}
S \\
| \\
1 \\
\end{array}
\]

and neither of them are \(10 \).

Induction Hypothesis

Assume for trees of depth \(k, k \geq 1 \) that none contain \(10 \) as a substring.

Induction Step

Consider trees of depth \(k + 1 \):

Case 1
where \(S \) is a parse tree of depth \(k \) and will not generate \(1 \ 0 \) as a substring by the induction hypothesis. Prefixing this string with 0 still will not generate a string with a substring \(1 \ 0 \).

Case 2

where \(S \) is a parse tree of depth \(k \) and will not generate \(1 \ 0 \) as a substring by the induction hypothesis. Suffixing this string with 1 still will not generate a string with a substring \(1 \ 0 \).