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A model-theoretic approach can establish security theorems, which are formulas expressing authen-
tication and non-disclosure properties of protocols. Security theorems have a special form, namely
quantified implications ∀~x .(φ ⊃ ∃~y .ψ).

Models (interpretations) for these formulas are skeletons, partially ordered structures consisting
of a number of local protocol behaviors. Realized skeletons contain enough local sessions to explain
all the behavior, when combined with some possible adversary behaviors.

We show two results. (1) If φ is the antecedent of a security goal, then there is a skeleton Aφ

such that, for every skeleton B, φ is satisfied in B iff there is a homomorphism from Aφ to B. (2) A
protocol enforces ∀~x .(φ ⊃ ∃~y .ψ) iff every realized homomorphic image of Aφ satisfies ψ .

Since the program CPSA finds the minimal realized skeletons, or “shapes,” that are homomorphic
images of Aφ , if ψ holds in each of these shapes, then the goal holds.

1 Introduction

Much work has been done in recent years on cryptographic protocol analysis. A central problem is, given
a protocol, to determine whether a formula, expressing a security goal about its behaviors in the presence
of an adversary, is true. If the protocol achieves the goal, one would like some explanation why. If it
does not achieve the goal, one would like a counterexample. A security goal is a quantified implication:

∀~x .(φ0 ⊃ ∃~y .ψ). (1)

The hypothesis φ0 is a conjunction of atomic formulas describing regular behavior. The conclusion ψ

is a disjunction of zero or more such conjunctions, i.e. ψ is
∨

1≤i≤k φi. When the φi describe desired
behaviors of other regular participants, who are intended to be peers in protocol runs, then this goal is an
authentication goal. It says that each protocol run contains at least one peer execution from k different
possibilities among which the protocol may allow the participants to choose.

When k = 0, ψ is the empty disjunction false. If φ0 mentions an unwanted disclosure, (1) says the
disclosure cannot occur. Hence, security goals with k = 0 express secrecy goals.1

Our models are skeletons, partially ordered sets of regular strands, i.e. local behaviors of regular
participants. A skeleton A defines a set of executions, namely executions in which images of these
strands can be found. We use A, σ |= Φ in the classical sense, to mean that the formula Φ is satisfied in
the skeleton A, when the variable assignment σ determines how variables free in Φ are interpreted.

A skeleton A is an execution if it is realized. This means that the message transmissions in A—
when combined with possible adversary behavior—suffice to explain every message received in A. A
counterexample to a goal G is a realized skeleton C such that, for some variable assignment σ , C,σ |= φ ,
and for every extension σ ′ of σ , C,σ ′ |= ¬ψ . C is a counterexample to G only if C is realized, even
though |= is also well-defined for non-realized skeletons.
∗Supported by the MITRE-Sponsored Research program. Author’s address: guttman@{mitre.org,wpi.edu}.
1We will use φ ,φi, etc., for conjunctions of 0 or more atomic formulas, and ψ for disjunctions

∨
1≤i≤k φi where 0≤ k.
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We focus on the homomorphisms among models. A homomorphism is a structure-preserving map,
which may embed one skeleton into a larger one; may identify one strand with another strand that sends
and receives similar messages; and may fill in more information about the parameters to the strands.
As usual, homomorphisms preserve satisfaction for atomic formulas. Suppose H is a homomorphism
H : A 7→ B. And suppose A, σ |= φ , i.e. the skeleton A satisfies the atomic formula φ under an assign-
ment σ , which maps variables occurring in φ to values that may appear in A. Then B, H ◦σ |= φ .

This holds for conjunctions of atomic formulas also. Thus, a security goal ∀~x .(φ0⊃∃~y .ψ), concerns
the homomorphic images of skeletons satisfying φ0. If any homomorphic image C is realized, then C
should satisfy the disjunction ψ , i.e. C should satisfy at least one of the disjuncts φi for 1≤ i≤ k.

We already have a method for constructing homomorphisms from a skeleton A to realized skele-
tons [8]. The Cryptographic Protocol Shapes Analyzer CPSA is a program that—given a protocol Π and
a skeleton of interest A—generates all of the minimal, essentially different realized skeletons that are
homomorphic images of A. We call these minimal, essentially different skeletons shapes, and there are
frequently very few of them.

Main Results. We show how a single run of the search for shapes checks the truth of a security goal.
To determine whether Π achieves a goal G = ∀~x .(φ0 ⊃ ∃~y .ψ), we find the shapes for the single skeleton
Aφ0 . Two technical results are needed to justified this.

• For any security hypothesis φ0, a single skeleton Aφ0 characterizes φ0. I.e., for all B:

∃σ . B, σ |= φ0 iff ∃H . H : Aφ0 7→ B.

• There exists a realized C that is a counterexample to G iff there exists some shape H : Aφ 7→ B
where B provides a counterexample.

Our main results suggest a recipe for evaluating a goal G = ∀~x .(φ ⊃ ∃~y .ψ) for a protocol Π.

1. Construct the skeleton Aφ .

2. Ask CPSA what shapes are accessible in Π, starting from Aφ .

3. As CPSA delivers shapes, check that each satisfies some disjunct φi.

4. If the answer is no, this shape is a counterexample to G.

5. If CPSA terminates with no counterexample, then G is achieved.

Since the problem is undecidable [9], it is also possible that CPSA will not terminate. Step 3 is easy, since
each φi is a conjunction of atomic formulas, and each shape is a finite (typically small) structure.

The Language of Goals. For each protocol, we define a first order language L (Π), in which for-
mulas (1) are security goals. L (Π) expresses authentication and secrecy goals [17] for Π, including
“injective agreement”, as adapted to strand spaces [13].2 It talks only about the roles. One can say which
roles executed, and how far they executed in partial executions, and with what parameters. Saying that
different roles executed with the same values for certain parameters is important.

However, L (Π) is carefully designed to limit expressiveness. L (Π) says nothing about the forms
of messages, and there are no function symbols for encryption or pairing. The protocol Π determines the
forms of messages, so to speak behind L (Π)’s back in the semantics. Thus, L (Π) need only stipulate
the underlying parameters, when describing what has happened.

2 L (Π) does not express observational indistinguishability properties, or “strong secrecy” [1].
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A benefit of this approach is that related protocols Π,Π′ may have similar languages, or indeed
identical languages, when corresponding roles use the same parameters to compose messages of different
concrete forms. This makes the languages L (Π) suited to analyze protocol transformations (as in [15])
to determine when security goals are preserved. We used them (with inessential differences) in [14],
where we gave a syntactic criterion that ensures the safety of combining pairs of protocols. When Π1,Π2
meet the criterion, then any goal (1) in L (Π1) that Π1 meets is still achieved by Π1 ∪Π2. Combining
Π1 with Π2 to form Π1∪Π2 is a simple sort of transformation of Π1.

Some Related Work. To document a protocol meeting a security goal, one might like to provide a
proof, e.g. in Paulson’s style [19], or in the Protocol Composition Logic [6]. One might also view a
counterexample as a syntactic object much like a proof. Symbolic constraint solving techniques (start-
ing with [11, 18, 20]) treat them in this way, using rules, including unification, to construct them. The
“adversary-centered” approach of Selinger [21] also leads to a proof-like treatment of protocol coun-
terexamples, and to a model-theoretic view of achieving goals. To show that a goal is met, one exhibits
a model in which axioms are satisfied, but the adversary’s knowledge does not include any intended se-
crets. These axioms describe the behavior of the regular (non-compromised) participants. The model is
a set that is invariant under disclosures effected by the protocol, but in which the secrets do not appear.

We give another model-theoretic approach to achieving goals, but from a “protocol-centered” point
of view rather than an “adversary-centered” one. In contrast to Selinger, who expresses authentication
properties of a protocol Π by means of secrecy properties of an expanded protocol Π′, we represent
secrecy properties as the special case of authentication properties where k = 0, as indicated above.

Chein and Mugnier also use homomorphisms to evaluate the truth of implications, e.g. [4, 5], in the
context of conceptual graphs. However, that context is quite different, since their formulas are graph-like
objects, whereas our interpretations are graph-like structures. Our framework is tuned to the specific
case of cryptographic protocols; for instance, there is no analog of “realized” in their framework.

Structure of this Paper. We start with some examples of protocol goals in a simple protocol that does
not achieve all of them, and a corrected protocol that does (Section 2). In Section 3, we define the
first order classical languages L (Π) that express security goals for each protocol Π. Section 4 defines
skeletons and homomorphisms between them, and gives a semantics for L (Π) using skeletons. We show
next in Section 5 that each conjunction φ of atomic formulas has a characteristic skeleton. In Section 6,
we show how to use the characteristic skeletons to check security goals.

Strand Spaces. A strand is a (linearly ordered) sequence of nodes n1 ⇒ . . .⇒ n j, each of which
transmits or receives some message msg(ni). A strand may represent the behavior of a principal in
a single local session of a protocol, in which case it is a regular strand of that protocol, or it may
represent a basic adversary activity. Basic adversary activities include receiving a plaintext and a key and
transmitting the result of the encryption, and receiving a ciphertext and its matching decryption key, and
transmitting the resulting plaintext.

A protocol Π is a finite set of strands, which are the roles of the protocol. A strand s is an instance
of a role ρ ∈Π, if s = α(ρ), i.e. if s results from ρ by applying a substitution α to parameters in ρ .

Message t1 is an ingredient of t2, written t1v t2, if t1 is used to construct t2 other than as an encryption
key; i.e. v is the smallest reflexive, transitive relation such that t1 v t1 ˆt2, and t2 v t1 ˆt2, and t1 v {|t1|}t2 .

A message t originates on a strand node n if (1) t v msg(n); (2) n is a transmission node; and (3)
m⇒+ n implies t 6vmsg(m). A value that originates only once in an execution is uniquely originating,
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A
{|{|k|}sk(A)|}pk(B)//

��

{|{|k|}sk(A)|}pk(B) // B

��
• {|s|}koo •{|s|}koo

Figure 1: Blanchet’s “Simple Example Protocol”

i.e. a freshly chosen value. A value that originates nowhere in an execution may nevertheless be used
within regular strands to encrypt or decrypt. However, if the adversary uses a value to encrypt or decrypt,
then the key must have been received, and must therefore have originated somewhere. Hence non-
originating values represent uncompromised long term keys. For more detail, see the Appendix.

2 Examples

Blanchet’s Example. We start from an example suggested by Blanchet [2], as shown in Fig. 1. A
principal A wishes to have B transmit a secret to A alone. A has a private signature key sk(A), with a
public verification key known to B. B has a private decryption key with a public encryption key pk(B)
known to A. A transmits a freshly chosen symmetric key k to B, signed by A and encrypted for B. B then
uses k to encipher the secret s.

Authentication Goals of A. A wants the protocol to ensure that s came from B.
To establish this, we attribute some assumptions to A, from which it may follow that B has transmit-

ted s. A has had a run of her side of the protocol, so the execution will contain the two nodes of the strand
shown on the left of the figure. We must assume that B’s private decryption key pk(B)−1 is uncompro-
mised, in the sense that this private key never originates. It is thus used only by regular participants in
accordance with the protocol, and never by an adversary. Moreover, we assume that the symmetric key
k originates only once, namely, on A’s first node. In particular, the adversary can not send it until after
receiving k. In a word, the adversary will not guess k.

A0 summarizes these assumptions, as shown on the left in Fig. 2. Here nonA0 is the set of long
term keys assumed uncompromised for the sake of this analysis, and uniqueA0

is the set of fresh values
assumed uniquely originating. We call a diagram of this kind a skeleton.

We want now to “analyze” this assumption, by which we mean, to find all shapes accessible from
A0. The shapes give all the minimal, essentially different executions (realized skeletons) accessible from
A0. CPSA reports a single shape, shown on the right of Fig. 2 as A1. This is what A desired, as B sent s
on its transmission node at lower right.

The antecedent of the implication expressing this goal concerns the starting point; is it φ A =

Init2(n2,a,b,k,s)∧Unq(k)∧Non(sk(a))∧Non(inv(pk(a))).

The predicate Init2(n2,a,b,k,s) says that n2 is the second node of an initiator strand with the given
parameters. The remaining conjuncts express the supplementary assumptions about non-compromised
long term keys and a fresh session key. The fact that the only shape we obtain is A1, which has a
responder’s second node with the desired parameters, validates:

φ
A ⊃ ∃m . Resp2(m,a,b,k,s).
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A
t0 //

��
• {|s|}koo

A0

7→ A
t0 //

��

≺ t0 // B

��
• �

{|s|}koo •{|s|}koo

A1

{pk(B)−1}= nonA0 = nonA1 ,{k}= uniqueA0
= uniqueA1

Figure 2: Skeletons A0,A1, input and output for CPSA, with t0 = {|{|k|}sk(A)|}pk(B)

The conclusion of this implication describes some of the additional structure contained in A1.

Confidentiality of s. The analysis for A’s confidentiality goal is similar. We again use the same as-
sumptions, augmented by the pessimistic assumption that s is compromised. We represent this using a
trick: We use a listener node • s← that “hears” the value s shorn of any cryptographic protection. Here
we must also assume that s ∈ uniqueA2

, since otherwise possibly the adversary will simply guess (re-
originate) s. Thus, we start the analysis with the form shown in Fig. 3. We now reach an impasse: CPSA

reports that no shape exists, starting from A2. Thus, A2 is dead: No realized skeleton can result from it.
We express this confidentiality goal in the form:

φ
A∧Unq(s)∧Lsn(m,s)⊃ false.

The conjunct Lsn(m,s) describes the listener node m that “hears” the value s. This listener node is
incompatible with the other assumptions φ A. Thus, A achieves her goals using this protocol.

Authentication Goal for B. Unfortunately, the situation is less favorable for B. We start the analysis
with the skeleton A3, shown on the left in Fig. 4. It represents the hypothesis φ B:

Resp2(m,a,b,k,s)∧Unq(k)∧Non(sk(a))∧Non(inv(pk(a)))

We obtain the form A4 shown on the right in Fig. 4. Unfortunately, we have learnt nothing about the

A
t0 //

��
• {|s|}koo • s←

67→ ·

{pk(B)−1}= nonA0 {k,s}= uniqueA0

Figure 3: A2, for A’s confidentiality analysis, with no shapes
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{|{|k|}sk(A)|}pk(B) // B

��
•{|s|}koo

A3

7→ A
{|{|k|}sk(A)|}pk(C) // ≺

{|{|k|}sk(A)|}pk(B) // B

��
•{|s|}koo

A4

{sk(A),pk(B)−1}= nonA3 = nonA4 {k}= uniqueA3
= uniqueA4

Figure 4: A3,A4, for B’s authentication goal

recipient C for whom A intended this key. Possibly pk(C)−1 is compromised. Thus, the adversary can
decrypt {|{|k|}sk(A)|}pk(C) and use B’s public key to construct {|{|k|}sk(A)|}pk(B). Thus, skeleton A4 is
realized, but validates only:

φ
B ⊃ ∃n,c . Init1(n,a,c,k).

The expected initiator has got to step 1 of a run with some c, who—the protocol ensures—has originated
the key k. However, since possibly C 6= B, confidentiality for k and s may fail.

The details of the CPSA run make clear how to fix the protocol. This requires us to replace t0 with
{|{|kˆB|}sk(A)|}pk(B), which includes B’s identity under A’s signature. In fact, Blanchet [2] makes a more
complicated suggestion, using the component {|kˆAˆB|}sk(A). However, the CPSA analysis is very precise,
and indicates that only the responder’s identity needs to be included inside the signature.

3 Language

We now consider the logical representation of our example authentication and confidentiality goals.

Role Predicates. We need to be able to describe the different kinds of nodes that are present in a
skeleton, namely the initiator’s first and second nodes, and the responder’s first and second nodes, each
of which has a number of parameters. We must be able to express these parameters, because we know
(e.g.) that whether the initiator’s first node has B or C as its responder identity parameter makes all the
difference. On the other hand, the form of the messages is defined in the protocol, and is thus irrelevant
to describing what goals are achieved. Thus, for Blanchet’s simple example protocol, we suggest four
protocol-specific predicates:

Init1(m,a,b,k) Resp1(m,a,b,k)
Init2(m,a,b,k,s) Resp2(m,a,b,k,s)

Suppose that we are given a variable assignment σ that associates values σ(m),σ(a), etc. to the variables
m,a, etc. Then we read Init1(m,a,b,k) as asserting that σ(m) is a node, which is the first step of an
initiator strand, and the initiator is σ(a), its intended responder is σ(b), and it has created the key σ(k)
for this session. We read Init2(m,a,b,k,s) as asserting that σ(m) is a node, which is the second step of
an initiator strand, and the initiator is σ(a), its intended responder is σ(b), the session key is σ(k), and
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the intended secret is σ(s). Thus, if Init2(m,a,b,k,s), then we know that m is preceded by a node n
such that Init1(n,a,b,k) is true under the same σ . Analogous explanations hold for the responder role.

These role predicates are similar to those used by Cervesato, Durgin et al. [3, 10] in multiset rewriting.
We also need a role predicate Lsn(m,v), which says, under an assignment σ , that σ(m) is a listener

node that receives that value σ(v). The language L (Π), where Π is Blanchet’s example protocol,
contains these five role predicates.

Shared Vocabulary. All languages L (Π) also contain some additional predicates. Preceq(m,n) ex-
presses the causal partial ordering �. Col(m,n) says that σ(m) and σ(n) are collinear, i.e. they lie on the
same strand. Non(v) and Unq(v) express the assumptions that σ(v) ∈ non and σ(v) ∈ unique, resp.

In Section 2, we also used the function symbols sk,pk, and inv to talk about the long term keys
signature keys of principals, their long term public encryption keys, and the inverses of those keys.

This is the full language L (Π) where Π is Blanchet’s example protocol. As it happens, the language
L (Π′), for the corrected version of the protocol, is identical. The roles are the same, each with the same
number of nodes, and with the same parameters. Thus, nothing in the language needs to change.

Apparently, for every goal G ∈L (Π), if G is achieved in Blanchet’s example protocol Π, then G
is also achieved in its correction Π′. Moreover, additional formulas are achieved in Π′. A satisfactory
theory of protocol transformation should give ways to prove (or disprove) intuitions like this one.

The Languages L (Π). For each protocol Π, L (Π) is a language for talking about its executions. We
use typewriter font x,m, etc. for syntactic items such as variables or predicates within the language.

Suppose that Π has r protocol-specific roles {ρ1, . . . ,ρr}, where each role ρi is of length |ρi|, and
the listener role. We let {RP0,1, . . . ,RPr,|ρr|} be a collection of 1 + ∑i |ρi| predicate symbols. RP0,1 is
the listener role predicate, which we will write as Lsn(m,v), indicating that node m receives the value
v. Each remaining predicate RPi j takes parameters (m,v1, . . . ,vk) where the jth node on role ρi, and its
predecessors, have involved k parameters.

We write fv(Φ),bv(Φ) for the free and bound variables of any formula Φ, defined in the usual way.
The empty disjunction

∨
i∈ /0 φi is identical with false; a one-element disjunction or conjunction is iden-

tical with its single disjunct or conjunct.
Definition 3.1 1. L (Π) is the classical first order quantified language with vocabulary:

Variables (unsorted) ranging over messages and nodes;
Function symbols sk, pk, inv;3

Predicate symbols equality u = v, falsehood false (no arguments), and:
• Non(v), and Unq(v);
• Col(m,n) and Preceq(m,n);
• One role predicate RPi j for each ρi ∈Π and j with 1≤ j ≤ |ρi|.

The predicate RPi j(m,v1, . . . ,vk) for the jth node on ρi has as arguments: a variable m
for the node, and variables v` for each of the k parameters that have appeared in any of
ρi’s first j messages.

2. A security claim φ is a conjunction of atomic formulas of L (Π) such that two conditions hold:
(a) Any two role predicate conjuncts have different variables as their first arguments n,n′.
(b) If a conjunct is not a role predicate, then each variable or key term that appears as an

argument to it also appears as argument to some role predicate RPi j(n,t1, . . . ,ti).

3We call terms built with these unary function symbols key terms.
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3. A sentence ∀~x .(φ ⊃ ∃~y .ψ) is a security goal if (1) the ~xs and ~ys are disjoint; (2) φ is a security
claim; and (3) ψ is a disjunction

∨
i φi of conjunctions φi of atomic formulas.

The conditions in Clauses 2a–2b on security claims φ allow us to construct a single skeleton Aφ to
characterize φ (Thm. 5.2). Without Clause 2a, we would have to be rather careful in our choice of
message algebras and protocols to ensure that there is a single “most general” role that applies when
two roles can have common instances. The role predicate RPi j in Clause 2b serves as an implicit sort
declaration for the variables x appearing in it. The sorts of parameters within the role ρi determines the
set of values that may lead to true instances of this atomic formula.

We have already illustrated three security goals earlier, in Section 2; or, more precisely, we have
shown three formulas whose universal closures are security goals. Another relevant example is the
“missing” confidentiality goal that a responder would have wanted, but was actually not achieved by Π

but only by its correction Π′. It is the universal closure of:

Resp2(n2,a,b,k,s)∧Unq(k)∧Non(sk(a))∧Non(inv(pk(a)))∧Lsn(m,s)⊃ false.

Axiomatizing Protocols. L (Π) is specifically intended to limit expressiveness, and there is no way
to axiomatize the behavior of protocols within it. However, the slightly larger language L +(Π) appears
sufficient to axiomatize protocol behaviors, and derive security goals. It adds to L (Π):

Function symbols concat(v1,v2) and enc(v1,v2), representing the concatenation of two messages
v1,v2 and the encryption of a message v1 using a second message v2 as key; and
msgAt(n1) returning the message transmitted or received on the node n1;

Predicate symbols Xmit(n1) and Rcv(n1), true if n1 is a transmission node or reception node, resp.

A few inductively defined notions such as “message t0 is found only within the set of encryptions S in
message t1” [8, extended version, Def. 6] must be introduced using these primitives. The property of a
skeleton being realized can then be expressed as a closed sentence. With these notions, the reasoning
encoded in CPSA could be carried out axiomatically, at least in theory, within L +(Π). The important
theorems would be the security goals, which lie within the sublanguage L (Π).

4 Skeletons, Homomorphisms, and Satisfaction

Before we define the satisfaction relation A, σ |= φ , we must define the skeletons that we have already
worked with in Section 2. We start by summarizing our assumptions about the message algebra; more
detail may be found in Appendix A.

Message Algebra. Let A0 be an algebra equipped with some operators and a set of homomorphisms
η : A0→ A0. We call members of A0 atoms.

For the sake of definiteness, we will assume here that A0 is the disjoint union of infinite sets of nonces,
atomic keys, names, and texts. The operator sk(a) maps names to (atomic) signature keys, and K−1 maps
an asymmetric atomic key to its inverse, and a symmetric atomic key to itself. Homomorphisms η are
maps that respect sorts, and act homomorphically on sk(a) and K−1.

Let X is an infinite set disjoint from A0; its members—called indeterminates—act like unsorted
variables. A is freely generated from A0∪X by two operations: encryption {|t0|}t1 and tagged concate-
nation tag t0 ˆt1, where the tags tag are drawn from some set TAG. For a distinguished tag nil, we write
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nil t0 ˆt1 as t0 ˆt1 with no tag. In {|t0|}t1 , a non-atomic key t1 is a symmetric key. Members of A are called
messages.

A homomorphism α = (η ,χ) : A→ A consists of a homomorphism η on atoms and a function
χ : X → A. It is defined for all t ∈ A by the conditions:

α(a) = η(a), if a ∈ A0 α({|t0|}t1) = {|α(t0)|}α(t1)
α(x) = χ(x), if x ∈ X α(tag t0 ˆt1) = tag α(t0)ˆα(t1)

Thus, atoms serve as typed variables, replaceable only by other values of the same sort, while indetermi-
nates x are untyped. Indeterminates x serve as blank slots, to be filled by any χ(x) ∈ A. Indeterminates
and atoms are jointly parameters.

This A has the most general unifier property, which we will rely on. That is, suppose that for v,w∈A,
there exist α,β such that α(v) = β (w). Then there are α0,β0, such that α0(v) = β0(w), and whenever
α(v) = β (w), then α and β are of the forms γ ◦α0 and γ ◦β0.

Skeletons. A skeleton is a partially ordered set of nodes, together with assumptions non about uncom-
promised long term keys and unique about freshly chosen values. We write s ↓ i for the ith node along s,
using 1-based indexing.

A skeleton A consists of (possibly partially executed) role instances, i.e. a finite set of nodes, nodes(A),
with two additional kinds of information:

1. A partial ordering �A on nodes(A);

2. Sets uniqueA,nonA of atomic values assumed uniquely originating and non-originating in A.

nodes(A) and �A must respect the strand order, i.e. if n1 ∈ nodes(A) and n0⇒ n1, then n0 ∈ nodes(A)
and n0 �A n1. If a ∈ uniqueA, then a must originate at most once in nodes(A). If a ∈ nonA, then a
must originate nowhere in nodes(A), though a or a−1 may be the key encrypting some ingredient of
n ∈ nodes(A).

A is a preskeleton if it meets the conditions except that some values a ∈ uniqueA may originate more
than once in nodes(A). If A is a preskeleton, and it is possible to extract a skeleton by identifying
nodes and atoms, then there is a canonical, most general way to do so [8, extended version, Prop. 6].
The canonical skeleton extracted from A is called the hull of A. We write hullA for the homomorphism
(Def. 4.1) that maps a preskeleton A to its hull.

A skeleton A is a skeleton for a protocol Π if all of its strands are strands of Π.
A is realized if it can occur without additional activity of regular participants; i.e., for every reception

node n, the adversary can construct msg(n) via the Dolev-Yao adversary actions,4 using as inputs:

1. the messages msg(m) where m≺A n and m is a transmission node;

2. indeterminates x; and

3. any atomic values a such that a 6∈ (nonA ∪ uniqueA), or such that a ∈ uniqueA but a originates
nowhere in A.

Definition 4.1 Let A0,A1 be preskeletons, α a homomorphism on A, and ζ : nodesA0 → nodesA1 . H =
[ζ ,α] is a (skeleton) homomorphism if

1a. For all n∈A0, msg(ζ (n)) = α(msg(n)), with the same direction, either transmission or reception;

1b. For all s, i, if s ↓ i ∈ A, then there is an s′ s.t. for all j ≤ i, ζ (s ↓ j) = s′ ↓ j;

4The Dolev-Yao adversary actions are: concatenating messages and separating the pieces of a concatenation; encrypting a
given plaintext using a given key; and decrypting a given ciphertext using the matching decryption key.
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2. n�A0 m implies ζ (n)�A1 ζ (m);

3. α(nonA0)⊆ nonA1;

4a. α(uniqueA0
)⊆ uniqueA1

;

4b. If a ∈ uniqueA0
and a originates at n ∈ nodesA0 , then α(a) originates at ζ (n) ∈ nodesA1 .

We write H : A0 7→ A1 when H is a homomorphism from A0 to A1. When α(a) = α(a)′ for every a that
is an ingredient or is used for encryption in dom(ζ ), then [ζ ,α] = [ζ ,α ′]; i.e., [ζ ,α] is the equivalence
class of pairs under this relation.

The condition for [ζ ,α] = [ζ ,α ′] implies that the action of α on atoms not mentioned in the A0 is
irrelevant. We write H(n) for ζ (n) or H(a) for α(a), when H = [ζ ,α]. Evidently, preskeletons and
homomorphisms form a category, of which skeletons and homomorphisms are subcategory.

In Section 2, we have already given examples of homomorphisms. Each of the shapes we have
considered is a homomorphic image of its starting point. Thus, for instance, we have homomorphisms
A0 7→ A1 and A3 7→ A4. A2 is dead in the sense that there is no realized B such that A2 7→ B.

Our first CPSA run in Section 2 tells us that every homomorphism from A0 to a realized skeleton goes
“by way of” A1 [8]. That is, if B is realized and H : A0 7→ B, then H = H1 ◦H0 where H0 : A0 7→ A1.
Thus, any realized skeleton accessible from A0 has at least the structure contained in A1, homomorphisms
being structure-preserving maps.

In Figs. 2 and 4, the homomorphism simply adds nodes. I.e. ζ is an embedding and α is the identity.
However, in other homomorphisms, ζ may be a bijection and α does the work, mapping distinct values
to the same result. In other cases ζ is non-injective, mapping two distinct strands in source to the same
strand in the target. For instance, suppose that A is a preskeleton but not a skeleton, because some
a ∈ uniqueA originates on two strands. If the map hullA is well defined, then hullA must map both
strands on which a originates to the same strand in the target skeleton. Hence, non-trivial hullA maps are
examples of non-injective homomorphisms.

Semantics for L (Π). The semantics for L (Π) are classical, with each structure a skeleton for the
protocol Π. This requirement builds the permissible behaviors of Π directly into the semantics without
requiring an explicit axiomatization.

An assignment σ for A is a partial function from variables of L (Π) to A∪nodes(Π). By convention,
if σ is undefined for any variable x in fv(Ψ), then A, σ 6|= Ψ. We write σ1⊕σ2 for the partial function
that—for σ1 and σ2 with disjoint domains—acts as either σi on the domain of that σi.

Definition 4.2 Let A be a skeleton for Π. Extend any assignment σ to key terms of L (Π) via the rules:
σ(sk(t)) = sk(σ(t)), σ(inv(t)) = (σ(t))−1.

Satisfaction. A,σ |= Φ is defined via the standard Tarski inductive clauses for the classical first order
logical constants, and the base clauses:

A,σ |= u = v iff σ(u) = σ(v);
A,σ |= Non(v) iff σ(v) ∈ nonA;
A,σ |= Unq(v) iff σ(v) ∈ uniqueA;
A,σ |= Col(m,n) iff σ(m),σ(n) ∈ nodes(A), and either σ(m)⇒∗ σ(n) or σ(n)⇒∗ σ(m);
A,σ |= Preceq(m,n) iff σ(m)�A σ(n);

and, for each role ρi ∈Π and index j on ρi, the predicate RPi j(m,v1, . . . ,vk) obeys the clause

A,σ |= RPi j(m,v1, . . . ,vk) iff σ(m) ∈ nodes(A), and
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σ(m) is an instance of the jth node on role ρi,
with the parameters σ(v1), . . . ,σ(vk).

We write A |= Φ when A,σ |= Φ for all σ , e.g. when Φ is a sentence satisfied by A.

In protocols where there are two different roles ρi,ρh that differ only after their first j nodes—typically,
because they represent different choices at a branch point after the jth node [16, 12]—the two predicates
RPi j and RPh j are equivalent, as Def. A.1 makes precise.

Lemma 4.3 Suppose φ is an atomic formula, and H : A 7→ B. If A, σ |= φ , then B, H ◦σ |= φ .

5 Characteristic Skeletons

We write σ |̀ fv(Φ) for the partial function σ restricted in domain to the free variables of Φ.

Definition 5.1 A pair A,σ∗ is characteristic for a formula Φ iff A, σ∗ |= Φ and, for all B,σ ,

B,σ |= Φ implies ∃!H . H : A 7→ B and σ |̀ fv(Φ) = H ◦σ∗. (2)

If there is such a σ∗, then A is a characteristic skeleton for Φ.

Being a homomorphic image of this A characterizes satisfiability of Φ. A has minimal structure needed
to make Φ true, in the sense that Φ is satisfiable in any A′ just in case A′ results from A by a structure-
preserving map (a homomorphism). From the form of the definition, A,σ∗ is universal among interpre-
tations satisfying Φ, and such a A,σ∗ will be unique to within isomorphism.

Constructing a Characteristic Skeleton. In order to construct a characteristic skeleton cs(φ) for a
security claim φ =

∧
1≤i≤` φi, we treat the successive atomic formulas φ j in turn. As we do so, we

maintain two data structures. One is an assignment σ which summarizes what atomic value or node we
have associated to each variable we have seen so far. Initially σ is the empty function. The other is
the characteristic skeleton cs(

∧
1≤i≤ j−1 φi) constructed from the part of the formula seen so far. This is

initially the empty skeleton. If φ is unsatisfiable, then instead of returning cs(φ),σ we must fail.
We assume that the conjuncts of φ have been reordered if necessary so that atomic formulas con-

taining role predicates precede atomic formulas of the other forms. For convenience, we also eliminate
equations by replacing the left hand side by the right hand side throughout the remainder of the formula.

Base Case. If ` = 0, so that φ =
∧

1≤i≤0 φi = true, then let cs(φ) be the empty skeleton, and let σ0 be
the empty (nowhere defined) substitution.

Recursive Step. Let φ =
∧

1≤i≤`+1 φi, and let A` = cs(
∧

1≤i≤` φi) be a characteristic skeleton for all but
the last conjunct, relative to σ`. We take cases on the form of the last conjunct, φ`+1:

RPi j(m,t1, . . . ,tk): By clause 2a in Defn. 3.1, the variable m is not in the domain of σ`. If
variables appearing in t1, . . . ,tk, are not in the domain of σ`, select atoms of appropriate
sorts, not yet appearing in A`, letting σ ′ be the result of extending σ` with these choices.
Let n1⇒ . . .⇒ n j be the first j nodes of the role ρi, instantiated with the values σ ′(t1), . . . ,
σ ′(tk). If any nλ (with 1≤ λ ≤ j) originates any value a ∈ nonσ`

, then we must fail.
Otherwise, let the preskeleton A′ be the result of adding n1⇒ . . .⇒ n j to A`, and let A`+1
be its hull. If the hull is undefined, fail. Otherwise, define σ`+1 = (hullA′ ◦σ ′)⊕ (m 7→ n j).
Return A`+1,σ`+1.
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Non(t): By clause 2b in Defn. 3.1, σ`(t) = v is well defined. If the result of adding v to nonA`

is a skeleton, then this skeleton is A`+1. Otherwise, we fail. Let σ`+1 = σ`.
Unq(t): By clause 2b in Defn. 3.1, σ`(t) = v is well defined. If the result of adding v to

uniqueA`
is a preskeleton A′ whose hull is a well-defined skeleton, then this skeleton is A`+1.

Otherwise, we fail. Let σ`+1 = hullA′ ◦σ`.
Preceq(m,n): By clause 2b in Defn. 3.1, σ`(m) and σ`(n) are well defined. Let A`+1 be A`

with the ordering enriched so that σ`(m) �A`+1 σ`(n), failing if the latter introduces a cycle
because in fact σ`(n)�A`

σ`(m). Let σ`+1 = σ`.
Col(m,n): By clause 2b in Defn. 3.1, σ`(m) = s ↓ k and σ`(n) = s′ ↓ k′ are well defined. If

one strand, e.g. s, is at least as long as the other, we would like to map the successive nodes
of s′ to nodes of s. However, their messages and directions in A` may not be the same. If
the directions (transmit vs. receive) conflict, then we must fail. Otherwise, if the successive
messages are unequal, we may succeed by unifying them.
Let β be the most general unifier such that, for each i where both s ↓ i and s′ ↓ i are defined,

β (msg(s ↓ i)) = β (msg(s′ ↓ i)).

Let A′ be the preskeleton resulting from applying β throughout A, failing if this is impossible
because any value in nonA′ would originate somewhere. Let A′′ be the preskeleton resulting
from omitting β (s′), and identifying its nodes with those of β (s), failing if this identification
introduces any cycle into the ordering. If A′′ does not have a well defined hull, then fail.
Otherwise, let that hull be A`+1. Let σ`+1 = hullA′′ ◦β ◦σ`.

Theorem 5.2 If a security claim φ =
∧

1≤i≤` φi is unsatisfiable, the procedure above fails. If φ is satisfi-
able, then the procedure returns a pair A,σ that is characteristic for φ .

Proof: We follow the inductive definition of cs(φ).

Base Case. Let ` = 0, and φ = true. Then cs(true) is the empty skeleton A0. In fact, every B satisfies
true via the empty substitution, and there exists exactly one homomorphism H : A0 7→ B.

Recursive Step. Let φ =
∧

1≤i≤`+1 φi, and let φ− =
∧

1≤i≤` φi be its predecessor, with all but the last
conjunct of φ . Let A` = cs(φ−) be a characteristic skeleton for all but the last conjunct, relative to
σ`. In particular, φ− is satisfiable. If φ is unsatisfiable, then we need to check we will fail at this
step. If this step succeeds, then we need to show that A`+1,σ`+1 are characteristic for cs(φ).
Suppose that, for any B,τ , we have B,τ |= φ . Then B also satisfies φ−, so by the induction hypoth-
esis, there is a unique homomorphism H` = [ζ`,α`] : A` 7→ B to within isomorphism. Moreover,
τ |̀ fv(φ−) = α` ◦σ`. We take cases on the form of the last conjunct, φ`+1. In each case, H` can be
adjusted to form a unique homomorphism H`+1 : A`+1 7→ B, to within isomorphism.
We use the same notation as in the corresponding cases of the definition of cs.

RPi j(m,t1, . . . ,tk): This is not jointly satisfiable with φ− iff the new nodes n1⇒ . . .⇒ n j originate
a value a ∈ nonA`

, or if the hull is not defined. In these cases, cs fails.
B,τ |= φ , and, since RPi j(m,t1, . . . ,tk) is its last conjunct B,τ |= RPi j(m,t1, . . . ,tk).
Thus, τ(m) is an instance of ρi ↓ j with parameters τ(t1), . . . ,τ(tk). Naming τ(m) = n′j, we
have n′1⇒ . . .⇒ n′j, and by the construction of cs(φ), we have n1⇒ . . .⇒ n j in cs(φ). Thus,
we can extend the node map ζ` to ζ`+1 by mapping each nλ to n′

λ
. This is the only extension

compatible with τ .
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Moreover, for each new variable v appearing in t1, . . . ,tk, we extend α` by sending σ`+1(v)
to τ(v). By the construction of σ`+1(v), this is a new value, not equal to any value mentioned
in A`. So σ`+1 is a partial function. Moreover, there is no other way to extend σ` compatible
with τ . The resulting α`+1, together with ζ`+1, forms a homomorphism A`1 7→ B, and is
uniquely determined.

Non(t): If not jointly satisfiable with φ−, then σ`+1(t) originates in A`, and cs fails.
Since B,τ |= φ`+1, τ(t) ∈ nonB, so H` is also a homomorphism from A`+1 to B.

Unq(t): The universality of the hullA′ homomorphism among homomorphisms to realized skele-
tons ensures that H` factors through hullA′ .

Preceq(m,n): Since B,τ |= φ`+1, τ(m)�B τ(n), so H` is also a homomorphism from A`+1 to B.
Col(m,n): In the non-failing case, ζ` maps σ`(m) and σ`(n) to nodes on the same strand. Thus,

H` factors through the homomorphism from A` to A`+1.

ut

6 Security Goals

We turn now to our second result, which puts the pieces together.

Theorem 6.1 Suppose that G = ∀~x .(φ ⊃ ∃~y .ψ) is a security goal in L (Π) where φ is satisfiable.
Π achieves G iff, whenever H : cs(φ) 7→ B is a shape, there is a σ such that B, σ |= ψ .

Proof: 1. Suppose that Π achieves G. By Thm. 5.2, cs(φ) is well-defined. By Lemma 4.3, H : cs(φ) 7→
B implies that B satisfies φ . If B is a shape, it is realized. Since Π achieves G, B satisfies ψ .

2. Suppose that Π does not achieves G, so that there is a realized C which satisfies ¬G. Let ψ =∨
1≤i≤` φi. Using the Tarski satisfaction clauses and the disjointness of ~x,~y, we obtain a σC such that

C, σC |= φ ∧
∧

1≤i≤`¬φi.
Since C, σC |= φ , there is a J such that J : cs(φ) 7→ C, and σC |̀ fv(φ) = J ◦σ∗. Using Prop. 8 of the

extended version of [8], J = K ◦H where H : cs(φ) 7→ B is a shape.
If this B satisfies any φi, then so would C by Lemma 4.3. ut

Conclusion. We have explained a way to ensure that a protocol achieves a security goal G. We use
the antecedent φ to choose a skeleton, namely cs(φ). We then obtain the shapes accessible from cs(φ),
e.g. by using CPSA. If any shape does not satisfy any disjunct of the conclusion of G, then we have a
counterexample. If no counterexample is found, then G is achieved.

In future work, we will apply this method to protocol transformation. It suggests a criterion to ensure
that the result Π2 of a protocol transformation preserves all goals achieved by its source protocol Π1.

Acknowledgments. I am grateful to my colleagues, Leonard Monk, John Ramsdell, and Javier Thayer,
for many relevant discussions. Marco Carbone gave valuable comments. John Ramsdell is the author of
the CPSA implementation.
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A Messages and Protocols

Messages are abstract syntax trees in the usual way:

1. Let ` and r be the partial functions such that for t = {|t1|}t2 or t = tag t1 ˆt2, `(t) = t1 and r(t) = t2;
and for t ∈ A0, ` and r are undefined.

2. A path p is a sequence in {`,r}∗. We regard p as a partial function, where 〈〉= Id and cons( f , p) =
p ◦ f . When the rhs is defined, we have: 1. 〈〉(t) = t; 2. cons(`, p)(t) = p(`(t)); and 3.
cons(r, p)(t) = p(r(t)).

3. p traverses a key edge in t if p1(t) is an encryption, where p = p1
_〈r〉_p2.

4. t0 is an ingredient of t, written t0 v t, if t0 = p(t) for some p that does not traverse a key edge in t.

5. t0 appears in t, written t0� t, if t0 = p(t) for some p.

A message t0 originates at a node n1 if (1) n1 is a transmission node; (2) t0 vmsg(n1); and (3) whenever
n0⇒+ n1, t0 6vmsg(n0).

In the tree model of messages, to apply a homomorphism, we walk through, copying the tree, but
inserting α(a) every time an atom a is encountered, and inserting α(x) every time that an indeterminate
x is encountered.

Protocols. A protocol Π is a finite set of strands which includes Lsn[k], representing the roles of the
protocol.

A principal executing a role such as the initiator’s role in Fig. 1 may be partway through its run;
for instance, it may have executed the first transmission node without “yet” having executed its second
event, the reception node.

Definition A.1 Node n is a role node of Π if n lies on some ρ ∈Π.
Let n j be a role node of Π of the form n1⇒ . . .⇒ n j⇒ . . .. Node m j is an instance of n j if, for some

homomorphism α , the strand of m j, up to m j, takes the form: α(n1)⇒ . . .⇒ α(n j) = m j.

That is, messages and their directions—transmission or reception—must agree up to node j. However,
any remainders of the two strands beyond node j are unconstrained. They need not be compatible. When
a protocol allows a principals to decide between different behaviors after step j, based on the message
contents of their run, then this definition represents branching [12, 16]. At step j, one doesn’t yet know
which branch will be taken.
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