IMGD 3000 - Technical Game Development I: Illumination

by
Robert W. Lindeman
gogo@wpi.edu
3D Illumination and Shading

- Problem: Model light/surface point interactions to determine final color and brightness
- Actual light computation is too costly!
- Apply the lighting model at a set of points across the entire surface
Illumination Model

- The governing principles for computing the illumination

- An illumination model usually considers

 - Light attributes (intensity, color, position, direction, shape)
 - Object surface attributes (color, reflectivity, transparency, etc.)
 - Interaction among lights and objects
Basic Light Sources

- Light intensity can be independent or dependent of the distance between object and the light source

Point light Spot light Directional light Area light
Local Illumination

- Only consider the light, the observer position, and the object material properties
Global Illumination

- Take into account the interaction of light from all the surfaces in the scene

- Example:
 - Ray Tracing
 - Model light rays bouncing around

![Diagram showing ray tracing example with objects 1, 2, 3, and 4.]
Global Illumination (cont.)

- Example:
 - Radiosity
 - Model *energy* moving from emitters (e.g., lights) into the scene
 - View independent
Simple Local Illumination

- Reduce the complex workings of light to three components
 - Ambient
 - Diffuse
 - Specular

- Final illumination at a point (vertex) = ambient + diffuse + specular

- Materials reflect each component differently
 - Use different material reflection coefficients
 - K_a, K_d, K_s
Ambient Light Contribution

- Ambient light = background light
- Light that is scattered by the environment
 - *It's just there*
- **Frequently assumed to be constant**
- Very simple approximation of global illumination
- No direction: independent of light position, object orientation, observer’s position/orientation

\[
\text{Ambient} = I \times K_a
\]
Diffuse Light Contribution

- Diffuse light: The illumination that a surface receives from a light source that reflects equally in all directions.
 - Eye point does not matter.
Diffuse Light Calculation

- Need to decide how much light the object point receives from the light source
 - Based on Lambert’s Law

Receive more light Receive less light
Diffuse Light Calculation (cont.)

- Lambert’s law: the radiant energy D that a small surface patch receives from a light source is:

$$\text{Diffuse} = K_d \times I \times \cos(\theta)$$

K_d: diffuse reflection coefficient
I: light intensity
θ: angle between the light vector and the surface normal

light vector
(vector from object to light)

N: surface normal
Diffuse Light Examples

$I = 1.0$

$K_d = 0.0$ 0.2 0.4

0.6 0.8 1.0
Specular Light Contribution

- The bright spot on the object
- The result of total reflection of the incident light in a concentrate region

Sees no specular

Sees lots of specular
Specular Light Calculation

- How much reflection you can see depends on where you are
 - But for non-perfect surface you will still see specular highlight when you move a little bit away from the ideal reflection direction

Φ is deviation of view angle from mirror direction

- When φ is small, you see more specular highlight
Specular Light Calculation (cont.)

- Phong lighting model
 - Not Phong shading model
 - The effect of 'f' in the Phong model

\[
\text{Specular} = K_s \times I \times \cos^f(\phi)
\]
Specular Light Examples

$K_s = 0.25$

$K_s = 0.5$

$K_s = 0.75$

$f = 3$ $f = 6$ $f = 9$ $f = 25$ $f = 200$
Putting It All Together

- Illumination from a light
 \[\text{Illum} = \text{ambient} + \text{diffuse} + \text{specular} \]
 \[= K_a \times I + K_d \times I \times \cos(\theta) + K_s \times I \times \cos^f(\phi) \]

- If there are N lights
 \[\text{Total illumination for a point } P = \sum (\text{Illum}) \]

- Some more terms to be added
 - Self emission
 - Global ambient
 - Light distance attenuation and spot light effect
Putting It All Together (cont.)

- **Illum = ambient + diffuse + specular**

![Image showing the components of illumination: color and ambient, diffuse, and specularity.]
Ambient Lighting Example
Diffuse Lighting Example
Specular Lighting Example
Polygon Shading Models

- Flat shading
 - Compute lighting once and assign the color to the whole polygon (or mesh)
Gouraud Shading

- Lighting is calculated for each of the polygon vertices
- Colors are interpolated for interior pixels
Colored Wireframe
Colored Hidden-Line Removal
Ambient Term Only
Flat Shading
Diffuse Shading + Interp. Normals
Gouraud Shading
Ambient + Diffuse + Specular
Ambient + Diffuse + Specular + Interpolated Normals
Radiosity
Radiosity + Texture Mapping
Texture Mapping + Ray Tracing