IMGD 3000 - Technical Game Development I:
Intro to AI in Games, Part 2

by

Robert W. Lindeman

gogo@wpi.edu
Motivation

- Particle systems can add nice realism to an environment
 - Fairly simplistic "rules"
 - No collision detection
- NPCs can be implemented in a similar fashion
 - Complex behavior \Rightarrow more-complex rules
 - Combination of "standard" and special purpose algorithms
Sample Uses of AI in Games (recap)

- Bad guys guarding something
- Bad guys looking for you
- Bad guys trying to beat you to something
- Bad guys trying to beat you (literally)
- Good guys working with you
- Other people just minding their own business
Flocks, Herds, and Schools

- A flock consists of a group of discrete boids moving in a visually complex fashion.
- There appears to be some central control, but evidence indicates that the motion is just the aggregate result of individual object motions.

Problem
- How do we simulate the motions of a flock in games?
Behavioral Systems

- Special instance of particle systems

- **Flock** is a group of objects that exhibit the general class of polarized (aligned), non-colliding, aggregate motion.

- **Boid** is a simulated bird-like object, *i.e.*, it exhibits this type of behavior. It can be a fish, dinosaur, *etc.*

- Allow each object to determine its own behavior
General Approach

- Each boid maintains
 - An internal state
 - A set of behaviors

- Fits very nicely into a C++ (Java, etc.) class
 - Each boid is an instance of this class

- Three main behavioral rules
 - Separation
 - Alignment
 - Cohesion
Three Rules

- **Separation**
 - Steer to avoid crowding local flockmates

- **Alignment**
 - Steer towards the average heading of local flockmates

- **Cohesion**
 - Steer to move toward the average position of flockmates
Three Rules, Restated

- Avoid collisions with neighbors and obstacles
- Attempt to match velocity (speed and direction) of neighbors
- Attempt to stay close to neighbors
- These are not orthogonal
 - Collision avoidance helps establish a minimum distance to neighbors
 - Velocity matching maintains it
Boid Brain

- Each boid has access to whole scene
- Each one only considers flockmates in neighborhood
 - Typically defined using a radius
 - Think of fish in murky water, birds in fog
More Rules?

☐ What else could you do with this?
More Rules?

- Seek and flee
 - Food vs. Food?
- Pursue and Evade
- Wander
- Arrival
- Containment
- Wall following
- Path following
- Leader following
Problems with Behavioral Techniques

- Trade control for automation
 - Difficult to get exact desired effect

- Solution: Follow the leader
 - How to define leader

- Solution: Use only for background
 - Use something else for foreground characters

- Need to consider every boid
 - O(n²) complexity!
 - How can we fix this?
Behavioral Systems: Examples

- Bats and penguins in *Batman Returns*
- All battle scenes in *Lord of the Rings*
- Most battle scenes in *Star Wars*

- Add some stochastic behaviors in order to deter uniformity
References

- http://www.red3d.com/cwr/boids/
- http://www.red3d.com/cwr/steer/
- http://www.devmaster.net/articles/particle_systems/