CS 4732: Computer Animation

Particles, Flocks, Herds, Schools

Robert W. Lindeman
Associate Professor
Interactive Media & Game Development
Department of Computer Science
Worcester Polytechnic Institute
gogo@wpi.edu
Control vs. Automation

- Director's imagination -> infinite
- Time to make movie/game -> finite
- Budget to make movie/game -> finite
- Number of animators -> finite

Q: What to do?

A: Automate the animation process

Other benefits:
- Movement can be made more organic
- Mimics some rules of nature
- Can scale number of elements
 - As long as you scale processing power!
Particle Systems

□ Good at modeling "fuzzy" objects
■ Dynamic and fluid
■ Fire, clouds, water

□ Stochastic procedural modeling
■ Complex systems can be modeled with little human effort
■ Level of detail can be adjusted
□ fewer particles
Particle Systems: Examples

- Genesis Effect from *Star Trek II*
Basic Model of Particle Systems

- A collection of many minute particles

- For each animation frame:
 - New particles are generated, and assigned a set of properties
 - Old particles die, and are removed
 - Remaining particles change their properties, e.g., position, shape, color
 - The frame is rendered based on this new state

- Creation and attribute manipulation are procedural
 - Can be the result of computations
Changing Particle Properties

- How should the properties of the particles change over time?
 - Where does each particle move to?
 - How does its color change?

- Can be based on *anything*
 - Look at neighboring particles
 - Look at scene objects, like obstacles
 - Look at time
 - Look at distance traveled
 - Look at anything you want!
Basic Algorithm

Set up particle
While Animation In Progress
 If Particle Not Dead Then
 Add Particle Direction * Speed To Particle Position
 Add Particle Acceleration To Particle Speed
 Modify Particle Speed
 Modify Particle Energy
 If Particles Energy < Threshold Then
 Mark Particle As Dead
 End If
 If Particle Hits Object Then
 Modify Particle Position, Direction, Speed and Energy
 End If
 End If
Display Particle
End While
Example: Movement of Particles

- S_t is the state of all particles at time t
- At $t=0$: S_0

Images: Greg M. Johnson (http://www.geocities.com/pterandon/boids.html)
Example: Movement of Particles

- Compute the influence of all other particles within some range
 - Attraction, repulsion

Images: Greg M. Johnson
(http://www.geocities.com/pterandon/boids.html)
Example: Movement of Particles

- Add all forces together, and use that to update the current position

Images: Greg M. Johnson
(http://www.geocities.com/pterandon/boids.html)
Example: Movement of Particles

Wait, there might be other forces

Whatever the goal is of the scene

Images: Greg M. Johnson
(http://www.geocities.com/pterandon/boids.html)
Example: Movement of Particles

- Again, sum these as the forces on the particle
- Repeat these steps for each particle

Images: Greg M. Johnson (http://www.geocities.com/pterandon/boids.html)
Particle Systems: More Examples

- Fire
- Explosions
Particle Systems: Final Thoughts

- In many cases, ignore self collisions
 - What does it look like when two fire particles colliding?

- Very general framework!
 - We can make special cases to get specific effects
 - Just change rules, objects, etc.

- How would you represent this system in code?
Flocks, Herds, and Schools

- A **flock** consists of a group of discrete **boids** moving in a visually complex fashion.

- There appears to be some central control, but evidence indicates that the motion is just the aggregate result of individual object motions.

Problem

- How do we simulate the motions of a flock in computer animation?
Behavioral Systems

- Special instance of particle systems

- **Flock** is a group of objects that exhibit the general class of polarized (aligned), non-colliding, aggregate motion.

- **Boid** is a simulated bird-like object, *i.e.*, it exhibits this type of behavior. It can be a fish, dinosaur, etc.
Flocking Solutions

- Well, we could use key-framing for each one
 - We know what we are getting
 - Tough to handle collisions
 - VERY animator-intensive work!
 - Does not scale well

- Instead, allow each object to determine its own behavior
General Approach

- Each boid maintains
 - An internal state
 - A set of behaviors

- Fits very nicely into a C++ (Java, etc.) class
 - Each boid is an instance of this class

- Three main behavioral rules
 - Separation
 - Alignment
 - Cohesion
Three Rules

- **Separation**
 - Steer to avoid crowding local flockmates

- **Alignment**
 - Steer towards the average heading of local flockmates

- **Cohesion**
 - Steer to move toward the average position of flockmates
Three Rules, Restated

- Avoid collisions with neighbors and obstacles
- Attempt to match velocity (speed and direction) of neighbors
- Attempt to stay close to neighbors

These are not orthogonal
- Collision avoidance helps establish a minimum distance to neighbors
- Velocity matching maintains it
Boid Brain

- Each boid has access to whole scene
- Each one only considers flockmates in neighborhood
 - Typically defined using a radius
 - Think of fish in murky water, birds in fog
More Rules?

What else could you do with this?
More Rules:
http://www.red3d.com/cwr/steer/

- Seek and flee
 - Food vs. Food?
- Pursue and Evade
- Wander
- Arrival
- Containment
- Wall following
- Path following
- Leader following
Problems with Behavioral Techniques

- Trade control for automation
 - Difficult to get exact desired effect

- Solution: Follow the leader
 - How to define leader

- Solution: Use only for background
 - Use something else for foreground characters

- Need to consider every boid
 - O(n^2) complexity!
 - How can we fix this?
Interacting with the Environment

- We need a way of steering clear of obstacles
 - Just add more force vectors
Problems with Force Fields

- Does not allow boids to get close to objects
- Can lead to stopping
- Tough to move through an opening
- Collision prediction can be used to test if action is needed
 - Ray/sphere intersection test
Knowledge of the Environment

- Boids actually have *perfect* knowledge of the environment
 - Just a database lookup!
- Can led to “super powers”
 - Seeing through walls
- Can use “vision” (“hearing”, etc.) to limit accessible knowledge to be local
Vision of a Boid

- Based on “real” vision
 - Limited Field of View (FoV)
 - Visual occlusion
 - Can use only FoV to simplify things

- Can use:
 - Ray casting
 - Simplified Z-buffer

- Once an object is “seen”, access more info from the database
 - E.g., prey vs. predator
Memory of a Boid

☐ Since vision is fleeting, maybe we need to remember some things
 ■ Can build a map as you fly, e.g., an occupancy map using an oct-tree
 ■ Doesn’t work for dynamic environments

☐ Maybe we need something deeper
 ■ Model more-intelligent behavior
 ■ An open-ended problem in AI
 ☐ If you think boids are tough, try humans!
Autonomous Behavior

- Modeling cognitive processes
- Must solve the similar problem to simple behavioral motion
 - Balancing various needs and desires
- Cycle for boid decision making
 - Model objects in the local environment
 - Reason about its current state
 - External environment
 - Internal, time-varying urges, desires, emotions
 - Plan a reaction to its current circumstances
 - Carry out actions
Autonomous Behavior (cont.)

- Can get very complex, very quickly!
 - Need to stop at some point
 - Remember: Good enough is good enough!
- Senses (e.g., vision, touch)
- Perception
- Memory
- Causal knowledge
- Common sense reasoning
- Emotions
- Predispositions
Internal State

- Current feelings can change the weights of different forces
 - Hungry, survival, etc.

- Can divide them into
 - Imperatives
 - Things that *must* get done
 - Desires
 - Things that *should* be done, if possible
 - Idle
 - What to do when I’m not doing anything else
Levels of Behavior

- Can divide things up into levels

Knowledge of the world

Reasoning unit

Sequence of actions

Planner

Strategy

Movement coordinator

Motor activities

DOF manipulator

Internal state
Keeping Control

- All of this is about automation
 - What about control?

- Pure automation needs to be tempered with some control
 - At various levels
 - Influence can be used in proportion to animator’s desire
 - Action sequences
 - Strategic goals
 - Motor control

R.W. Lindeman - WPI Dept. of Computer Science
Interactive Media & Game Development
Crowd Simulation: Two Main uses

- Visual effects
 - Usually mix
 - live (foreground) action with
 - CG (background) action
 - http://vimeo.com/channels/belalsalem

- Simulation
 - Precision is key
 - Crowds in/out of a stadium or theme park
Crowd Simulation: Differences

- Can be multidirectional
- Can involve psychology
 - Avoidance is primary activity
 - High-density areas:
 - Avoid 5-feet ahead
 - Rotate body, side step
 - Low-density areas:
 - Avoid 100-feet ahead
 - Change paths, move to “open” side, or to the right
 - Pass people by slowing, overtaking, speeding up
Crowd Simulation: Internal Structure

- Subgroups form based on
 - Common urges (going to lunch)
 - Belief systems (political allies)
 - Emotional state (soccer fans)

- Belief system can change
 - Experience, senses, learning, cause/effect
TJ Laughlin’s WPI Thesis Work

- People are complex
 - Traits
 - Age, gender, etc.
 - Tendencies
 - Likes dislikes, etc.
 - Mood
 - Changing of weights
- Social circles
 - Who am I with?
 - Who can see me?
Behavioral Systems: Examples

- Bats and penguins in *Batman Returns*
- All battle scenes in *Lord of the Rings*
- Most battle scenes in *Star Wars*

- Add some stochastic behaviors in order to deter uniformity

- Rob, show Reynolds PlayStation Videos!
References

- http://www.red3d.com/cwr/boids/
- http://www.red3d.com/cwr/steer/