13. Reinforcement Learning

[Read Chapter 13]
[Exercises 13.1, 13.2, 13.4]

• Control learning
• Control policies that choose optimal actions
• Q learning
• Convergence
Control Learning

Consider learning to choose actions, e.g.,

- Robot learning to dock on battery charger
- Learning to choose actions to optimize factory output
- Learning to play Backgammon

Note several problem characteristics:

- Delayed reward
- Opportunity for active exploration
- Possibility that state only partially observable
- Possible need to learn multiple tasks with same sensors/effectors
One Example: TD-Gammon

[Tesauro, 1995]
Learn to play Backgammon
Immediate reward
• +100 if win
• -100 if lose
• 0 for all other states
Trained by playing 1.5 million games against itself
Now approximately equal to best human player
Reinforcement Learning Problem

Goal: Learn to choose actions that maximize

\[r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots, \text{ where } 0 \leq \gamma < 1 \]
Markov Decision Processes

Assume

- finite set of states S
- set of actions A
- at each discrete time agent observes state $s_t \in S$ and chooses action $a_t \in A$
- then receives immediate reward r_t
- and state changes to s_{t+1}
- Markov assumption: $s_{t+1} = \delta(s_t, a_t)$ and $r_t = r(s_t, a_t)$
 - i.e., r_t and s_{t+1} depend only on current state and action
 - functions δ and r may be nondeterministic
 - functions δ and r not necessarily known to agent
Agent’s Learning Task

Execute actions in environment, observe results, and

- learn action policy $\pi : S \rightarrow A$ that maximizes

$$E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots]$$

from any starting state in S

- here $0 \leq \gamma < 1$ is the discount factor for future rewards

Note something new:

- Target function is $\pi : S \rightarrow A$
- but we have no training examples of form $\langle s, a \rangle$
- training examples are of form $\langle \langle s, a \rangle, r \rangle$
Value Function

To begin, consider deterministic worlds...

For each possible policy π the agent might adopt, we can define an evaluation function over states

$$V^\pi(s) \equiv r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots$$

$$\equiv \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

where r_t, r_{t+1}, \ldots are generated by following policy π starting at state s

Restated, the task is to learn the optimal policy π^*

$$\pi^* \equiv \arg\max_{\pi} V^\pi(s), (\forall s)$$
$r(s,a)$ (immediate reward) values

$Q(s,a)$ values

$V^*(s)$ values

One optimal policy
What to Learn

We might try to have agent learn the evaluation function V^{π^*} (which we write as V^*)

It could then do a lookahead search to choose best action from any state s because

$$\pi^*(s) = \text{argmax}_a [r(s,a) + \gamma V^*(\delta(s,a))]$$

A problem:

- This works well if agent knows $\delta: S \times A \rightarrow S$, and $r: S \times A \rightarrow \mathbb{R}$
- But when it doesn’t, it can’t choose actions this way
Define new function very similar to V^*

$$Q(s, a) \equiv r(s, a) + \gamma V^*(\delta(s, a))$$

If agent learns Q, it can choose optimal action even without knowing δ!

$$\pi^*(s) = \arg\max_a [r(s, a) + \gamma V^*(\delta(s, a))]$$

$$\pi^*(s) = \arg\max_a Q(s, a)$$

Q is the evaluation function the agent will learn
Training Rule to Learn Q

Note Q and V^* closely related:

$$V^*(s) = \max_{a'} Q(s, a')$$

Which allows us to write Q recursively as

$$Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t))$$
$$= r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$$

Nice! Let \hat{Q} denote learner’s current approximation to Q. Consider training rule

$$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$

where s' is the state resulting from applying action a in state s
Q Learning for Deterministic Worlds

For each s, a initialize table entry $\hat{Q}(s, a) \leftarrow 0$

Observe current state s

Do forever:

- Select an action a and execute it
- Receive immediate reward r
- Observe the new state s'
- Update the table entry for $\hat{Q}(s, a)$ as follows:
 $$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')$$
- $s \leftarrow s'$
Updating \hat{Q}

\[\hat{Q}(s_1, a_{right}) \leftarrow r + \gamma \max_{a'} \hat{Q}(s_2, a') \]
\[\leftarrow 0 + 0.9 \max\{63, 81, 100\} \]
\[\leftarrow 90 \]

notice if rewards non-negative, then

\[(\forall s, a, n) \quad \hat{Q}_{n+1}(s, a) \geq \hat{Q}_n(s, a) \]

and

\[(\forall s, a, n) \quad 0 \leq \hat{Q}_n(s, a) \leq Q(s, a) \]
\(\hat{Q} \) converges to \(Q \). Consider case of deterministic world where see each \(\langle s, a \rangle \) visited infinitely often.

Proof: Define a full interval to be an interval during which each \(\langle s, a \rangle \) is visited. During each full interval the largest error in \(\hat{Q} \) table is reduced by factor of \(\gamma \)

Let \(\hat{Q}_n \) be table after \(n \) updates, and \(\Delta_n \) be the maximum error in \(\hat{Q}_n \); that is

\[
\Delta_n = \max_{s,a} |\hat{Q}_n(s, a) - Q(s, a)|
\]

For any table entry \(\hat{Q}_n(s, a) \) updated on iteration \(n + 1 \), the error in the revised estimate \(\hat{Q}_{n+1}(s, a) \) is

\[
|\hat{Q}_{n+1}(s, a) - Q(s, a)| = |(r + \gamma \max_{a'} \hat{Q}_n(s', a')) - (r + \gamma \max_{a'} Q(s', a'))|
\]

\[
= \gamma |\max_{a'} \hat{Q}_n(s', a') - \max_{a'} Q(s', a')|
\]

\[
\leq \gamma \max_{a'} |\hat{Q}_n(s', a') - Q(s', a')|
\]

\[
\leq \gamma \max_{s'',a''} |\hat{Q}_n(s'', a') - Q(s'', a')|
\]

\[
|\hat{Q}_{n+1}(s, a) - Q(s, a)| \leq \gamma \Delta_n
\]
Note we used general fact that

\[\max_a f_1(a) - \max_a f_2(a) \leq \max_a |f_1(a) - f_2(a)| \]
Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V, Q by taking expected values

$$V^\pi(s) \equiv E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots]$$
$$\equiv E[\sum_{i=0}^{\infty} \gamma^i r_{t+i}]$$

$$Q(s, a) \equiv E[r(s, a) + \gamma V^*(\delta(s, a))]$$
Nondeterministic Case

Q learning generalizes to nondeterministic worlds

Alter training rule to

$$\hat{Q}_n(s, a) \leftarrow (1 - \alpha_n)\hat{Q}_{n-1}(s, a) + \alpha_n[r + \max_{a'} \hat{Q}_{n-1}(s', a')]$$

where

$$\alpha_n = \frac{1}{1 + \text{visits}_n(s, a)}$$

Can still prove convergence of \hat{Q} to Q [Watkins and Dayan, 1992]
Temporal Difference Learning

Q learning: reduce discrepancy between successive Q estimates

One step time difference:

$$Q^{(1)}(s_t, a_t) \equiv r_t + \gamma \max_a \hat{Q}(s_{t+1}, a)$$

Why not two steps?

$$Q^{(2)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \gamma^2 \max_a \hat{Q}(s_{t+2}, a)$$

Or n?

$$Q^{(n)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \cdots + \gamma^{(n-1)} r_{t+n-1} + \gamma^n \max_a \hat{Q}(s_{t+n}, a)$$

Blend all of these:

$$Q^\lambda(s_t, a_t) \equiv (1-\lambda) \left[Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \lambda^2 Q^{(3)}(s_t, a_t) \right]$$
Temporal Difference Learning

\[Q^\lambda(s_t, a_t) \equiv (1-\lambda) \left[Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \lambda^2 Q^{(3)}(s_t, a_t) + \ldots \right] \]

Equivalent expression:

\[Q^\lambda(s_t, a_t) = r_t + \gamma \left[(1 - \lambda) \max_a \hat{Q}(s_t, a_t) + \lambda Q^\lambda(s_{t+1}, a_{t+1}) \right] \]

TD(\lambda) algorithm uses above training rule

- Sometimes converges faster than \(Q \) learning
- converges for learning \(V^* \) for any \(0 \leq \lambda \leq 1 \) (Dayan, 1992)
- Tesauro’s TD-Gammon uses this algorithm
Subtleties and Ongoing Research

- Replace \hat{Q} table with neural net or other generalizer
- Handle case where state only partially observable
- Design optimal exploration strategies
- Extend to continuous action, state
- Learn and use $\hat{\delta} : S \times A \rightarrow S$
- Relationship to dynamic programming