1.2.2) [5 pts] The headers of the iris.arff dataset:

```arff
@RELATION iris
@ATTRIBUTE sepallength REAL
@ATTRIBUTE sepalwidth REAL
@ATTRIBUTE petallength REAL
@ATTRIBUTE petalwidth REAL
@ATTRIBUTE class {Iris-setosa, Iris-versicolor, Iris-virginica}

@DATA
...
```

1.3.3) [2 pts] The min/max of numeric attributes:

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>sepallength</td>
<td>4.3</td>
<td>7.9</td>
</tr>
<tr>
<td>sepalwidth</td>
<td>2</td>
<td>4.4</td>
</tr>
<tr>
<td>petallength</td>
<td>1</td>
<td>6.9</td>
</tr>
<tr>
<td>petalwidth</td>
<td>0.1</td>
<td>2.5</td>
</tr>
</tbody>
</table>

2.3.1) [2 pts] ZeroR predicts the majority class. Since all classes are evenly distributed, ZeroR just returns the first attribute listed “Iris-setosa” as the target class.

2.3.2) [2 pts] (Testing is using 10-fold cross validation)

```
Correctly Classified Instances    50   33.3333 %
Incorrectly Classified Instances   100  66.6667 %
Total Number of Instances         150
```

2.3.3) [5 pts] Confusion Matrix:

```
a b c <-- classified as
50 0 0 | a = Iris-setosa
50 0 0 | b = Iris-versicolor
50 0 0 | c = Iris-virginica
```

Since ZeroR classification predicts the Iris-setosa for all test instances, we will have that column contain non-zeros in the confusion matrix, while all the others will be zeros.

2.5.1) [2 pts] OneR:

```
petallength:
  < 2.45  -> Iris-setosa
  < 4.85  -> Iris-versicolor
  >= 4.85 -> Iris-virginica
```
2.5.2) [2 pts] (Testing is using 10-fold cross validation)

Correctly Classified Instances 141 94%
Incorrectly Classified Instances 9 6%
Total Number of Instances 150

2.5.3) [2 pts] Confusion Matrix:

\[
a \ b \ c \ \\ 50 \ 0 \ 0 \ | \ a = \text{Iris-setosa} \\
0 \ 44 \ 6 \ | \ b = \text{Iris-versicolor} \\
0 \ 3 \ 47 \ | \ c = \text{Iris-virginica}
\]

2.5.4) [10 pts]

By plotting the petallength attribute against any other, we can see a clear separation between the classes represented by the different colors with the same separating values found with the previous OneR rule. This fact is provided by the high 94% classification accuracy using only OneR with the mentioned attribute.

3.1.3) [4 pts] The result of applying supervised discretization:

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Attribute value</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>sepallength</td>
<td>(inf,5.55]</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>(5.55,6.15]</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>(6.15,inf]</td>
<td>55</td>
</tr>
<tr>
<td>sepalwidth</td>
<td>(inf,2.95]</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>(2.95,3.35]</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>(3.35,inf]</td>
<td>36</td>
</tr>
<tr>
<td>petallength</td>
<td>(inf,2.45]</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>(2.45,4.75]</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>(4.75,inf]</td>
<td>55</td>
</tr>
<tr>
<td>petalwidth</td>
<td>(inf,0.8]</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>(0.8,1.75]</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>(1.75,inf]</td>
<td>46</td>
</tr>
</tbody>
</table>

3.2) [7 pts] ZeroR predicts class value: Iris-setosa

Correctly Classified Instances 50 33.3333 %
Incorrectly Classified Instances 100 66.6667 %
Total Number of Instances 150

\[
a \ b \ c \ \\ 50 \ 0 \ 0 \ | \ a = \text{Iris-setosa} \\
50 \ 0 \ 0 \ | \ b = \text{Iris-versicolor} \\
50 \ 0 \ 0 \ | \ c = \text{Iris-virginica}
\]
We notice that there are no differences between the result of this experiment and the result of using ZeroR on the original dataset. This is because the ZeroR classifier does not rely on any attribute but instead only returns the majority class as the result, and we know that supervised discretization never changes the class attribute.

3.2) [7 pts] OneR returns the following rule:

\[
\begin{align*}
\text{petalwidth:} \\
'(-\infty, 0.8]' & \rightarrow \text{Iris-setosa} \\
'(0.8, 1.75]' & \rightarrow \text{Iris-versicolor} \\
'(1.75, \infty)' & \rightarrow \text{Iris-virginica}
\end{align*}
\]

This time, the result returned by OneR when applied to discretized data is different than the one applied to the raw data. This is expected since the attributes have changed from numeric to nominal, and we know that OneR finds the attribute that best distinguishes the class value of the training data (using entropy), and in this case it happens to be \textit{petalwidth}. One interesting remark is that the classification accuracy is still the same as before coincidentally.

4) [15 pts] //CODE
- calculateCutPoints()
- calculateCutPointsByMDL()
- calculateCutPointsForSubset()
- FayyadAndiranisMDL()
...

Outline of the supervised Discretize algorithm:

\begin{itemize}
 \item Do for each attribute:
 \begin{itemize}
 \item sort the instances by this attribute values
 \item consider possible breakpoint (ex: breakpoint is not allowed to separate items of the same class)
 \item calculate the entropy for each possible cut
 \item choose the cut that minimize the entropy
 \item repeat this process on the lower/upper parts of the range recursively, with MDL as stopping criterion.
 \end{itemize}
\end{itemize}

The minimum description length (MDL) criterion is defined as:

\[
gain > \frac{\log_2(N-1)}{N} + \frac{\log_2(3^k-2)-kE+k_1E_1+k_2E_2}{N}
\]

\[
N = \#\ \text{instances} \\
\text{Original set: } k \text{ classes, entropy } E \\
\text{First subset: } k_1 \text{ classes, entropy } E_1 \\
\text{Second subset: } k_2 \text{ classes, entropy } E_2
\]
Part II [35 pts]

2) [15 pts] The census-income.arff file headers:

```
@relation census-income-data

@attribute age real
@attribute workclass { Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked }
@attribute fnlwgt real
@attribute education { Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool }
@attribute education-num real
@attribute marital-status { Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse }
@attribute occupation { Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspect, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces }
@attribute relationship { Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried }
@attribute race { White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black }
@attribute sex { Female, Male }
@attribute capital-gain real
@attribute capital-loss real
@attribute hours-per-week real
@attribute native-country { United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinidad&Tobago, Peru, Hong, Holand-Netherlands }
@attribute class { >50K, <=50K }
```

@data

39, State-gov, 77516, Bachelors, 13, Never-married, Adm-clerical, Not-in-family, White, Male, 2174, 0, 40, United-States, <=50K
50, Self-emp-not-inc, 83311, Bachelors, 13, Married-civ-spouse, Exec-managerial, Husband, White, Male, 0, 0, 13, United-States, <=50K
38, Private, 215646, HS-grad, 9, Divorced, Handlers-cleaners, Not-in-family, White, Male, 0, 0, 40, United-States, <=50K
53, Private, 234721, 11th, 7, Married-civ-spouse, Handlers-cleaners, Husband, Black, Male, 0, 0, 40, United-States, <=50K
28, Private, 338409, Bachelors, 13, Married-civ-spouse, Prof-specialty, Wife, Black, Female, 0, 0, 40, Cuba, <=50K
37, Private, 284582, Masters, 14, Married-civ-spouse, Exec-managerial, Wife, White, Female, 0, 0, 40, United-States, <=50K
49, Private, 160187, 9th, 5, Married-spouse-absent, Other-service, Not-in-family, Black, Female, 0, 0, 16, Jamaica, <=50K
52, Self-emp-not-inc, 209642, HS-grad, 9, Married-civ-spouse, Exec-managerial, Husband, White, Male, 0, 0, 45, United-States, >50K
31, Private, 45781, Masters, 14, Never-married, Prof-specialty, Not-in-family, White, Female, 14084, 0, 50, United-States, >50K
42, Private, 159449, Bachelors, 13, Married-civ-spouse, Exec-managerial, Husband, White, Male, 5178, 0, 40, United-States, >50K

4) [10 pts] The ReplaceMissingValues filter works on each attribute in the dataset and replaces all missing values “?” with either the mean/mode of the attribute depending on the type of this attribute. This means for nominal attributes, missing values will be replaced by the majority (mode) value. Similarly for numeric attributes, missing values are replaced by the mean (average) value.

5) [10 pts] Resample filter: Produces a random subsample of a dataset using either sampling with replacement or without replacement [...].

- **invertSelection**: works only for sampling without replacement. The resulting instances from the sampling process are the instances NOT considered in the final set of instances (instead, all the other unselected instances). Note that if the sampleSizePercent is used, we end up with (100 - sampleSizePercent)% of the original dataset size.
- **noReplacement**: choose sampling with/without replacement
- **randomSeed**: a seed passed to the random number generator. Can be used to reproduce experiments.
- **sampleSizePercent**: size of the final subsample as a percentage of the original dataset.