Chapter 6

Problem 1:
For the regular expressions:
\((a \cup bc \cup c)^*\) in our posted solutions to Exercise 25 of Chapter 2 in Homework 1
\((b^*ab^*ab^*)^* \cup b^*\) in our posted solutions to Exercise 26 of Chapter 2 in Homework 1.

1. Construct a finite automaton.
2. Convert your finite automaton into an equivalent regular grammar.

Solution 1:

For regular expression: \((a \cup bc \cup c)^*\)

part 1

Figure 1: Basic NFAs for \(a\), \(b\), \(c\) and \(bc\)
By combining the NFAs above with λ-transitions we get the NFA below:

![Image of NFA](image)

Figure 2: Combining NFAs to create NFA with λ-transitions

A reduced NFA can be obtained by the following steps:

- $q_0, q_1, q_2, q_7,$ and q_4 are merged into one state called Q_0
- q_8 and q_9 are merged into one state called Q_1
- q_3, q_5, q_6, q_{10}, and q_{11} into one state called Q_2

![Image of Reduced NFA](image)

Figure 3: Reduced NFA

part 2

Based on the NFA in Figure 3, we construct the grammar:

- $S \rightarrow aQ_2 | cQ_2 | bQ_1 | Q_2$
- $Q_1 \rightarrow cQ_2$
- $Q_2 \rightarrow S | \lambda$

On removing the chain rules we get:

- $S \rightarrow aQ_2 | cQ_2 | bQ_1 | \lambda$
- $Q_1 \rightarrow cQ_2$
- $Q_2 \rightarrow aQ_2 | cQ_2 | bQ_1 | \lambda$
For regular expression: \((b^*ab^*ab^*)^* \cup b^* \)

part 1

![NFA Diagram](image)

Figure 4: NFA for Chap2 26

part 2

Based on the NFA in Figure 4, we construct the grammar:

\[
S \rightarrow Q_1 \mid Q_5 \mid Q_6 \\
Q_1 \rightarrow bQ_1 \mid aQ_2 \\
Q_2 \rightarrow bQ_2 \mid aQ_3 \\
Q_3 \rightarrow bQ_3 \mid aQ_4 \\
Q_4 \rightarrow bQ_4 \mid Q_1 \mid Q_6 \\
Q_5 \rightarrow bQ_5 \mid Q_6 \\
Q_6 \rightarrow \lambda
\]

Removing \text{chain rules} we obtain the following grammar which is in regular form.

\[
S \rightarrow bQ_1 \mid aQ_2 \mid \lambda \\
Q_1 \rightarrow bQ_1 \mid aQ_2 \\
Q_2 \rightarrow bQ_2 \mid aQ_3 \\
Q_3 \rightarrow bQ_3 \mid aQ_4 \\
Q_4 \rightarrow bQ_4 \mid bQ_1 \mid aQ_2 \mid \lambda \\
Q_5 \rightarrow bQ_5 \mid \lambda \\
Q_6 \rightarrow \lambda
\]

Problem 2: For the NFAs from:
Exercise 23 of Chapter 5 and
Exercise 36 of Chapter 5

1. Convert the finite automaton into an equivalent regular expression.
2. Convert your finite automaton into an equivalent regular grammar.

Solution 2:
Exercise 23 of Chapter 5

part a
Figure 5: NFA for Chap5 Question 23

Figure 6: Step1: Remove q_1 from NFA Chap 5-23

Start to eliminate the state q_1, and the result is shown in Figure 6. The regular expression is

$$a^*(ab^+)(ab^+ \cup aa^*ab^+)^*$$

Note: this regular expression is equivalent to $(a^+b^+)^+$.

$$
\begin{align*}
& a^*(ab^+)(ab^+ \cup aa^*ab^+)^* \\
& \equiv a^+b^+(ab^+ \cup aa^*b^+)^* \\
& \equiv a^+b^+(a^+b^+)^* \\
& \equiv (a^+b^+)^+
\end{align*}
$$

part b

Based on the NFA in Figure 5, we can construct the regular grammar:

$$
\begin{align*}
S & \rightarrow aS \mid aQ_1 \\
Q_1 & \rightarrow bQ_1 \mid bQ_2 \\
Q_2 & \rightarrow aQ_1 \mid aS \mid \lambda
\end{align*}
$$

Exercise 36 of Chapter 5

part a
Figure 7: NFA for Chap5 Question 36

Figure 8: Step 1: Create a new accepting state

Figure 9: Step 2: remove State q_1

Figure 10: Step 3: remove State q_2

Figure 11: Step 3: removing the loop on q_0
The regular expression is: \(a^* b^+ c^* \cup a^* b^* \cup a^* c^+ \)

part b

Based on the NFA in Figure 7, we can construct the grammar:

\[
S \rightarrow aS \mid cQ_1 \mid Q_2 \\
Q_1 \rightarrow cQ_1 \mid \lambda \\
Q_2 \rightarrow bQ_2 \mid bQ_1 \mid \lambda
\]

On removing the chain rule we get the regular grammar:

\[
S \rightarrow aS \mid cQ_1 \mid bQ_2 \mid bQ_1 \mid \lambda \\
Q_1 \rightarrow cQ_1 \mid \lambda \\
Q_2 \rightarrow bQ_2 \mid bQ_1 \mid \lambda
\]

Problem 3:

For the regular grammar in our posted solutions of Exercise 9 of Chapter 4 in Homework 2, and the regular grammar for solution of Exercise 25 of Chapter 3 in Homework 1.

1. Construct a finite automaton based on the grammar.
2. Convert your finite automaton into an equivalent regular expression.

Solution 3:

Regular grammar in our posted solutions of Exercise 9 of Chapter 4 in Homework 2:

\[
S \rightarrow aA \mid a \mid cC \mid c \mid bB \mid b \\
A \rightarrow aA \mid a \mid bB \mid b \\
B \rightarrow bB \mid b \\
C \rightarrow cC \mid c \mid bB \mid b
\]

part a

```

part b
We eliminate the state A first, and then state C, and state B to get the regular expression. The detailed steps are shown in Figure 12 to 20.
```

6
Figure 12: Step 1: remove State A

\[a^* \overline{a} U a^* b U a \overline{b} U c = a^* U a^* b U U c \]

\[a^* b = a^* b \]

\[a^* U b U U c \]

Figure 13: Step 2: remove State C

\[a^* U a^* b U U U c \]

\[a^* b \]

\[b \]

\[b \]

\[b \]

\[cc^*(b U c) = c^* b U cc^* \]

Figure 14: Step 3: remove State B

\[a^* U a^* b U U U c U c^* b U cc^* = a^* U c^* U a^* b U U U c^* b \]

\[(a^* b U U U c^* b) b^* = (a^* b U U U c^* b) b^* \]

\[c^* b U cc^* \]

\[(a^* b U b U c^* b) b^* = a^* b^* U b b^* U c b b^* \]

Figure 15: Step 3: reduce the number of arcs
We can see the regular expression is
\[a^+ \cup c^+ \cup a^+b \cup b \cup c^+b \cup a^+bb^+ \cup bb^+ \cup c^+bb^+ \]

Actually, it is equivalent to the regular expression \(a^+ \cup c^+ \cup (a^+b \cup b \cup c^+)b^* \) in our HW2 solution, because:
\[
\begin{align*}
\equiv & \quad a^+ \cup c^+ \cup a^+b \cup b \cup c^+b \cup a^+bb^+ \cup bb^+ \cup c^+bb^+ \\
\equiv & \quad a^+ \cup c^+ \cup b^+ \cup a^+b \cup c^+b \cup a^+bb^+ \cup c^+bb^+ \\
\equiv & \quad a^+ \cup c^+ \cup a^+bb^* \cup bb^* \cup c^+bb^* \\
\equiv & \quad a^+ \cup c^+ \cup (a^+b \cup b \cup c^+)b^*
\end{align*}
\]

Regular grammar for solution of Exercise 25 of Chapter 3 in Homework 1
\[
\begin{align*}
S & \to aA \mid bC \mid aB \mid bD \mid \lambda \\
C & \to aA \mid bC \mid \lambda \\
A & \to aC \mid bA \\
D & \to aD \mid bB \mid \lambda \\
B & \to aB \mid bD
\end{align*}
\]

part a

Figure 16: NFA obtained from the grammar
Figure 17: Step 1: Adding a new accepting state

Figure 18: Step 2: remove State C
Figure 19: Step 3: remove State D

Figure 20: Step 4: remove State A

Figure 21: Step 5: remove State B
The regular expression is:
\[b^+ \cup \lambda \cup ba^* \cup b^+ab^* \cup ab^*ab^* \cup aa^*ba^* \cup ba^*ba^*
\equiv b^+ \cup \lambda \cup ba^* \cup b^+ab^* \cup ab^*ab^* \cup a^*ba^* \cup ba^*ba^*\]

Problem 4: Solution 4:

Chap 6.7.a

Let \(H = \{ w \in L \text{ and } w \text{ ends with } aa \} \)

Let \(L_1 \) be the language over \(\{ a, b, c \} \) that contains strings ending with \(aa \). \(L_1 \) is described by the regular expression \((a \cup b \cup c)^*aa \). And so \(L_1 \) is regular.

A language that contains all strings that belong to both \(L \) and \(L_1 \) can be obtained by the intersection of the two languages. Therefore \(H = L \cap L_1 \). The regularity of \(H \) then follows from the closure of the regular languages under intersection.

Chap 6.7.b

Let \(H = \{ w \in L \text{ or } w \text{ contains an } a \} \)

Let \(L_1 \) be the language over \(\{ a, b, c \} \) of strings that contain an \(a \). \(L_1 \) is described by the regular expression \((a \cup b \cup c)^*a(a \cup b \cup c)^* \). And so \(L_1 \) is regular.

A language that contains any string that belongs to either \(L \) or \(L_1 \) or both, can be obtained by the union of the two languages. Therefore \(H = L \cup L_1 \). The regularity of \(H \) then follows from the closure of the regular languages under union.

Chap 6.7.c

Let \(H = \{ w \in L \text{ is a palindrome over } \{ a, b \} \} \)

Any \(w \notin L \) belongs to \(\bar{L} \). We know that \(\bar{L} \) is regular as regular languages are closed under complement.

Let \(L_1 \) be the language over \(\{ a, b, c \} \) of strings that contain an \(a \). We have shown in the previous part(b) that this language is regular. Any \(w \) that does not contain an \(a \) then belongs to \(\bar{L}_1 \). We know that \(\bar{L}_1 \) is regular as regular languages are closed under complement.

A language that contains all strings that belong to both \(\bar{L} \) AND \(\bar{L}_1 \), can be obtained by the intersection of the two languages. Therefore \(H = \bar{L} \cap \bar{L}_1 \). The regularity of \(H \) then follows from the closure of the regular languages under complement and intersection.

Chap 6.7.d

Let \(H = \{ uv | u \in L \text{ and } v \notin L \} \)

Any \(v \notin L \) belongs to \(\bar{L} \). We know that \(\bar{L} \) is regular as regular languages are closed under complement.

A language that contains strings formed by the concatenation of two strings belonging to two separate languages, can be obtained by the concatenation of the two languages. Therefore \(H = \bar{L}L \). The regularity of \(H \) then follows from the closure of the regular languages under complement and concatenation.

Chap 6.14.a

By way of contradiction, we assume \(L = \{ w \mid w \text{ is a palindrome over } \{ a, b \} \} \) is regular. Let \(M \) be a DFA that accepts \(L \), and \(k \) be the number of states in \(M \). Consider the string \(z \) equal to \(a^kba^k \). Clearly, \(z \in L \).
By the pumping lemma, z can be written as uvw where:

1. $v \neq \lambda$
2. $\text{length}(uv) \leq k$
3. $uv^i w \in L$ for all $i \geq 0$

However, by condition 2, v must consist of only a’s. Pumping v would produce the string $uv^2 w$ where the number of a before the b is more than the number of a after the b. Therefore, $uv^2 w$ is not a palindrome, and $uv^2 w \notin L$, yielding a contradiction.

Thus, L is not regular.

Chap 6. 14. b
By way of contradiction, we assume $L = \{a^n b^m | n < m\}$ is regular. Let M be a DFA that accepts L, and k be the number of states in M. Consider the string z equal to $a^k b^{k+1}$. Clearly, $z \in L$.

By the pumping lemma, z can be written as uvw where:

1. $v \neq \lambda$
2. $\text{length}(uv) \leq k$
3. $uv^i w \in L$ for all $i \geq 0$

However, by condition 2, v must consist of only a’s. Pumping v would produce the string $uv^2 w$ which contains at least as many a’s and b’s. Therefore, $uv^2 w \notin L$, yielding a contradiction. Thus, L is not regular.

Chap 6. 14. c
By way of contradiction, we assume $L = \{a^i b^j c^{2j} | i \geq 0, j \geq 0\}$ is regular. Let M be a DFA that accepts L, and k be the number of states in M. Consider the string z equal to $b^k c^{2k}$. Clearly, $z \in L$.

By the pumping lemma, z can be written as uvw where:

1. $v \neq \lambda$
2. $\text{length}(uv) \leq k$
3. $uv^i w \in L$ for all $i \geq 0$

However, by condition 2, v must consist of only b’s. Pumping v would produce the string $uv^2 w$ which could not contain as twice as many c’s as b’s. Therefore, $uv^2 w \notin L$, yielding a contradiction. Thus, L is not regular.

Chap 6. 14. d
By way of contradiction, we assume $L = \{ww | w \in \{a, b\}^*\}$ is regular. Let M be a DFA that accepts L, and k be the number of states in M. Consider the string z equal to $a^k b a^k b$. Clearly, $z \in L$.

By the pumping lemma, z can be written as uvw where:

1. $v \neq \lambda$
2. $\text{length}(uv) \leq k$
3. $uv^i w \in L$ for all $i \geq 0$
However, by condition 2, \(v\) must consist of only \(a\)'s. Pumping \(v\) would produce the string \(uv^2w\) where the number of \(a\)'s before the first \(b\) is greater than the number of \(a\)'s between the two \(b\)s. Therefore, \(uv^2w \notin L\), yielding a contradiction. Thus, \(L\) is not regular.

Chap 6. 14. f

\(L\) is the set of string over \(\{a, b\}^*\) in which the number of \(a\)'s is a perfect cube. By way of contradiction, we assume \(L\) is regular. Let \(M\) be a DFA that accepts \(L\), and \(k\) be the number of states in \(M\). Consider the string \(z\) equal to \(a^{k^3}\). Clearly, \(z \in L\), because \(\text{number of } a(z) = k^3\).

By the pumping lemma, \(z\) can be written as \(uvw\) where:

1. \(v \neq \lambda\)
2. \(\text{length}(uv) \leq k\)
3. \(uv^iw \in L\) for all \(i \geq 0\)

However, by condition 1, \(v\) must not be \(\lambda\). It means that \(0 < \text{length}(v) \leq k\). Because \(v\) consists of \(a\)s, we have \(\text{number of } a(v) = \text{length}(v)\), and \(0 < \text{number of } a(v) \leq k\). This observation can be used to compute the upper bound of \(\text{number of } a(uv^2w)\):

\[
\text{number of } a(uv^2w) = \text{number of } a(uvw) + \text{number of } a(v) \\
= k^3 + \text{length}(v) \\
\leq k^3 + k \\
< k^3 + 3k^2 + 3k + 1 \\
= (k + 1)^3
\]

Thus, \(uv^2w\) must not be in \(L\). The assumption that \(L\) is regular yields a contradiction and therefore \(L\) is not regular.

Chap 6. 15

Prove that the set of nonpalindromes over \(\{a, b\}\) is not a regular language.

We shall prove this by way of contradiction. Let us assume that \(H\) be the set of nonpalindromes over \(\{a, b\}\) and that \(H\) is regular. Then \(\overline{H}\) that is the set of palindromes over \(\{a, b\}\) will also be regular. However we have proved in Exercise 6.14, part(a) that \(\overline{H}\) is not regular. This implies that the complement of \(\overline{H}\) that is equal to \(H\) is also not regular. This contradicts our assumption of \(H\) being regular.

Chap 6. 16

Let \(L\) be a regular language and let \(L_1 = \{uu | u \in L\}\) be the language \(L\) “doubled”. Is \(L_1\) necessarily regular? Prove your answer.

No, \(L_1\) is not necessarily regular. Let us take the language \(\{ww | w \in \{a, b\}^*\}\) in exercise 6.14, part(d). We have shown that this language is not regular even though the language \(\{a, b\}^*\) is regular.