
The Effectiveness of Request Redirection on CDN Robustness

Abstract

It is becoming increasingly common to construct net-
work services using redundant resources geographically
distributed across the Internet. Content Distribution Net-
works are a prime example. Such systems distribute
client requests to an appropriate server based on a va-
riety of factors---e.g., server load, network proximity,
cache locality--in an effort to reduce response time and
increase the system capacity under load. This paper ex-
plores the design space of strategies employed to redi-
rect requests, and defines a class of new algorithms that
carefully balance load, locality, and proximity. We use
large-scale detailed simulations to evaluate the various
strategies. These simulations clearly demonstrate the ef-
fectiveness of our new algorithms, which yield a 60-91%
improvement in system capacity when compared with
the best published CDN technology, yet user-perceived
response latency remains low and the system scales well
with the number of servers.

1 Introduction
As the Internet becomes more integrated into our every-
day lives, the availability of information services built
on top of it becomes increasingly important. However,
overloaded servers and congested networks present chal-
lenges to maintaining high accessibility. To alleviate
these bottlenecks, it is becoming increasingly common
to construct network services using redundant resources,
so-called Content Distribution Networks (CDN) [1, 13,
21]. CDNs deploy geographically-dispersed server sur-
rogates and distribute client requests to an "appropriate"
server based on various considerations.

CDNs are designed to improve two performance met-
rics: response time and system throughput. Response
time, usually reported as a cumulative distribution of
latencies, is of obvious importance to clients, and rep-
resents the primary marketing case for CDNs. System
throughput, the average number of requests that can be
satisfied each second, is primarily an issue when the sys-
tem is heavily loaded, for example, when a flash crowd
is accessing a small set of pages, or a Distributed Denial
of Service (DDoS) attacker is targeting a particular site
[15]. System throughput represents the overall robust-
ness of the system since either a flash crowd or a DDoS

L i m i n W a n g , V i v e k Pai and L a r r y P e t e r s o n

Department o f Computer Science
Princeton University

{imwang, vivek, llp}@cs, princeton, edu

attack can make portions of the information space inac-
cessible.

Given a sufficiently widespread distribution of servers,
CDNs use several, sometimes conflicting, factors to de-
cide how to distribute client requests. For example, to
minimize response time, a server might be selected based
on its network proximity. In contrast, to improve the
overall system throughput, it is desirable to evenly bal-
ance the load across a set of servers. Both through-
put and response time are improved if the distribution
mechanism takes locality into consideration by selecting
a server that is likely to already have the page being re-
quested in its cache.

Although the exact combination of factors employed
by commercial systems is not clearly defined in the lit-
erature, evidence suggests that the scale is tipped in fa-
vor of reducing response time. This paper addresses the
problem of designing a request distribution mechanism
that is both responsive across a wide range of loads, and
robust in the face of flash crowds and DDoS attacks.
Specifically, our main contribution is to explore the de-
sign space of strategies employed by the request redirec-
tots, and to define a class of new algorithms that care-
fully balance load, locality, and proximity. We use large-
scale detailed simulations to evaluate the various strate-
gies. These simulations clearly demonstrate the effec-
tiveness of our new algorithms: they produce a 60-91%
improvement in system capacity when compared with
published information about commercial CDN technol-
ogy, user-perceived response latency remains low, and
the system scales well with the number of servers. We
also discuss several implementation issues, but evaluat-
ing a specific implementation is beyond the scope of this
paper.

2 Building Blocks
The idea of a CDN is to geographically distribute a col-
lection of server surrogates that cache pages normally
maintained in some set of backend servers. Thus, rather
than let every client try to connect to the original server,
it is possible to spread request load across many servers.
Moreover, if a server surrogate happens to reside close
to the client, the client's request could be served without
having to cross a long network path. In this paper, we
observe this general model of a CDN, and assume any

USENIX Association 5th Symposium on Operating Systems Design and Implementation 345

of the server surrogates can serve any request on behalf
of the original server. Where to place these surrogates,
and how to keep their contents up-to-date, has been ad-
dressed by other CDN research [1, 13, 21]. Here, we
make no particular assumptions about servers' strategic
locations.

Besides a large set of servers, CDNs also need to pro-
vide a set of request redirectors, which are middleware
entities that forward client requests to appropriate servers
based on one of the strategies described in the next sec-
tion. To help understand these strategies, this section first
outlines various mechanisms that could be employed to
implement redirectors, and then presents a set of hashing
schemes that are at the heart of redirection.

2.1 Redirector Mechanisms

Several mechanisms can be used to redirect requests [3],
including augmented DNS servers, HTTP-based redi-
rects, and smart intermediaries such as routers or proxies.

A popular redirection mechanism used by current
CDNs is to augment DNS servers to return different
server addresses to clients. Without URL rewriting that
changes embedded objects to point to different servers,
this approach has site-level granularity, while schemes
that rewrite URLs can use finer granularity and thus
spread load more evenly. Client-side caching of DNS
mappings can be avoided using short expiration times.

Servers can perform the redirection process them-
selves by employing the HTTP "redirect" response.
However, this approach incurs an additional round-trip
time, and leaves the servers vulnerable to overload by
the redirection task itself. Server bandwidth is also con-
sumed by this process.

The redirection function can also be distributed across
intermediate nodes of the network, such as routers or
proxies. These redirectors either rewrite the outbound
requests, or send HTTP redirect messages back to the
client. I f the client is not using explicit (forward mode)
proxying, then the redirectors must be placed at choke
points to ensure traffic in both forward and reverse di-
rections is handled. Placing proxies closer to the edge
yields well-confined easily-identifiable client popula-
tions, while moving them closer to the server can result
in more accurate feedback and load information.

To allow us to focus on redirection strategies and to
reduce the complexity of considering the various com-
binations outlined in this section, we make the follow-
ing assumptions: redirectors are located at the edge of
a client site, they receive the full list of server surro-
gates through DNS or some other out-of-band communi-
cation, they rewrite outbound requests to pick the appro-
priate server, and they passively learn approximate server
load information by observing client communications.
We do not rely on any centralization, and all redirec-

tors operate independently, Our experiments show that
these assumptions--in particular, the imperfect informa-
tion about server load--do not have a significant impact
on the results.

2 .2 H a s h i n g S c h e m e s

Our geographically dispersed redirectors cannot eas-
ily adapt the request routing schemes suited for more
tightly-coupled LAN environments [17, 25], since the
latter can easily obtain instantaneous state about the en-
tire system. Instead, we construct strategies that use
hashing to deterministically map URLs into a small
range of values. The main benefit of this approach is
that it eliminates inter-redirector communication, since
the same output is produced regardless of which redirec-
tot receives the URL. The second benefit is that the range
of resulting hash values can be controlled, trading preci-
sion for the amount of memory used by bookkeeping.

The choice of which hashing style to use is one com-
ponent of the design space, and is somewhat flexible.
The various hashing schemes have some impact on com-
putational time and request reassignment behavior on
node failure/overload. However, as we discuss in the
next section, the computational requirements of the vari-
ous schemes can be reduced by caching.

Modulo Hashing - In this "classic" approach, the
URL is hashed to a number modulo the number of
servers. While this approach is computationally efficient,
it is unsuitable because the modulus changes when the
server set changes, causing most documents to change
server assignments. While we do not expect frequent
changes in the set of servers, the fact that the addition of
new servers into the set will cause massive reassignment
is undesirable.

Consistent Hashing [19, 20] - In this approach, the
URL is hashed to a number in a large, circular space, as
are the names of the servers. The URL is assigned to the
server that lies closest on the circle to its hash value. A
search tree can be used to reduce the search to logarith-
mic time. If a server node fails in this scheme, its load
shifts to its neighbors, so the addition/removal of a server
only causes local changes in request assignments.

Highest Random Weight [31] - This approach is the
basis for CARP [8], and consists of generating a list of
hash values by hashing the URL and each server's name
and sorting the results. Each URL then has a determin-
istic order to access the set of servers, and this list is tra-
versed until a suitably-loaded server is found. This ap-
proach requires more computation than Consistent Hash-
ing, but has the benefit that each URL has a different
server order, so a server failure results in the remain-
ing servers evenly sharing the load. To reduce compu-
tation cost, the top few entries for each hash value can be
cached.

346 5th Symposium on Operating Systems Design and Implementation USENIX Association

3 Strategies
This section explores the design space for the request
redirection strategies. As a quick reference, we summa-
rize the properties of the different redirection algorithms
in Table 1, where the strategies are categorized based on
how they address locality, load and proximity.

Category Strategy

Random Random
Static R-CHash

R-HRW
Static LR-CHash
+Load LR-HRW

CDR
Dynamic FDR

FDR-Global
Network NPR-CHash
Proximity NPLR-CHash

NP-FDR

Hashing Dynamic Load
Scheme Server Set Aware

No
CHash No No
HRW No No

CHash No Yes
HRW No Yes
HRW Yes Yes
HRW Yes Yes
HRW Yes Yes

CHash No No
CHash No Yes
HRW Yes Yes

Table 1: Properties of Request Redirection Strategies

The first category, Random, contains a single strategy,
and is used primarily as a baseline. We then discuss
four static algorithms, in which each URL is mapped
onto a fixed set of server replicas--the Static category
includes two schemes based on the best-known pub-
lished algorithms, and the Static+Load category contains
two variants that are aware of each replica's load. The
four algorithms in these two static categories pay in-
creasing attention to locality. Next, we introduce two
new algorithms---denoted CDR and FDR-- that factor
both toad and locality into their decision, and each URL
is mapped onto a dynamic set of server replicas. We
call this the Dynamic category. Finally, we factor net-
work proximity into the equation, and present another
new algorithm---denoted NP-FDRwthat considers all
aspects of network proximity, server locality, and load.

3.1 Random
In the random policy, each request is randomly sent to
one of the server surrogates. We use this scheme as a
baseline to determine a reasonable level of performance,
since we expect the approach to scale with the number of
servers and to not exhibit any pathological behavior due
to patterns in the assignment. It has the drawback that
adding more servers does not reduce the working set of
each server. Since serving requests from main memory is
faster than disk access, this approach is at a disadvantage
versus schemes that exploit URL locality.

3.2 Static Server Set
We now consider a set of strategies that assign a fixed
number of server replicas to each URL. This has the ef-
fect of improving locality over the Random strategy.

3o2.1 Replicated Consistent Hashing

"In the Replicated Consistent Hashing (R-CHash) strat-
egy, each URL is assigned to a set of replicated servers.
The number of replicas is fixed, but configurable. The
URL is hashed to a value in the circular space, and
the replicas are evenly spaced starting from this origi-
nal point. On each request, the redirector randomly as-
signs the request to one of the replicas for the URL.
This strategy is intended to model the mechanism used
in published content distribution networks, and is virtu-
ally identical 1 to the scheme described in [19] and [20]
with the network treated as a single geographic region.

3.2.2 Replicated Highest Random Weight

The Replicated Highest Random Weight (R-HRW) strat-
egy is the counterpart to R-CHash, but with a different
hashing scheme used to determine the replicas. To the
best of our knowledge, this approach is not used in any
existing content distribution network. In this approach,
the set of replicas for each URL is determined by us-
ing the top N servers from the ordered list generated by
Highest Random Weight hashing. Versus R-CHash, this
scheme is less likely to generate the same set of repli-
cas for two different URLs. As a result, the less-popular
URLs that may have some overlapping servers with pop-
ular URLs are also likely to have some other less-loaded
nodes in their replica sets.

3.3 Load-Aware Static Server Set

The Static Server Set schemes randomly distribute re-
quests across a set of replicas, which shares the load but
without any active monitoring. We extend these schemes
by introducing load-aware variants of these approaches.
To perform fine-grained load balancing, these schemes
maintain local estimates of server load at the redirectors,
and use this information to pick the least-loaded member
of the server set. The load-balanced variant of R-CHash
is called LR-CHash, while the counterpart for R-HRW
is called LR-HRW.

3.4 Dynamic Server Set

We now consider a new category of algorithms that dy-
namically adjust the number of replicas used for each
URL in an attempt to maintain both good server locality
and load balancing. By reducing unnecessary replica-
tion, the working set of each server is reduced, resulting
in better file system caching behavior.

1The scheme described in these papers also includes a mechanism
to use coarse-grained load balancing via virtual server names. When
server overload is detected, the corresponding content is replicated
across all sewers in the region, and the degree of replication shrinks
over time. However, the schemes are not described in enough detail to
replicate.

USENIX Association 5th Symposium on Operating Systems Design and Implementation 347

3,4.1 C oa r se D y n a m i c Repl ica t ion

Coarse Dynamic Replication (CDR) adjusts the num-
ber of replicas used by redirectors in response to server
load and demand for each URL. Like R-HRW, CDR
uses HRW hashing to generate an ordered list of servers.
Rather than using a fixed number of replicas, however,
the request target is chosen using coarse-grained server
load information to select the first "available" server on
the list.

Figure 1 shows how a request redirector picks the des-
tination server for each request. This decision process is
done at each redirector independently, using the load sta-
tus of the possible servers. Instead of relying on heavy
communications between servers and request redirectors
to get server load status, we use local load information
observed by each redirector as an approximation. We
currently use the number of active connections to infer
the load level, but we can also combine this information
with response latency, bandwidth consumption, etc.

find_server(url, S) {
foreach server s~ in server set S,

weight~ = hash(url, address(sd);
sort weight;
foreach server sj in decreasing order of weightj {

if satisfy_load_criteria(sj) then {
targetServer ~-- sj;
stop search;

)
}
if targetServer is not valid then

tar9etServer ~-- server with highest weight;
route request url to targetServer;

Figure 1: Coarse Dynamic Replication

As the load increases, this scheme changes from using
only the first server on the sorted list to spreading re-
quests across several servers. Some documents normally
handled by "busy" servers will also start being handled
by less busy servers. Since this process is based on ag-
gregate server load rather than the popularity of individ-
ual documents, servers hosting some popular documents
may find more servers sharing their load than servers
hosting collectively unpopular documents. In the pro-
cess, some unpopular documents will be replicated in
the system simply because they happen to be primarily
hosted on busy servers. At the same time, if some doc-
uments become extremely popular, it is conceivable that
all of the servers in the system could be responsible for
serving them.

3.4.2 F ine D y n a m i c Repl ica t ion

A second dynamic algorithm--Fine Dynamic Repli-
cation (FDR)--addresses the problem of unnecessary
replication in CDR by keeping information on URL pop-
ularity and using it to more precisely adjust the number
of replicas. By controlling the replication process, the
per-server working sets should be reduced, leading to
better server locality, and thereby better response time
and throughput.

The introduction of finer-grained bookkeeping is an
attempt to counter the possibility of a "ripple effect" in
CDR, which could gradually reduce the system to round-
robin under heavy load. In this scenario, a very popu-
lar URL causes its primary server to become overloaded,
causing extra load on other machines. Those machines,
in turn, also become overloaded, causing documents des-
tined for them to be served by their secondary servers.
Under heavy load, it is conceivable that this displacement
process ripples through the system, reducing or eliminat-
ing the intended locality benefits of this approach.

find_server(url, S) {
walk_entry ~-- walkLenHash(url);
w_len ~-- walk_entry.length;
foreach server s~ in server set S,

weig hti = hash(url, address(s/));
sort weight;
8candidate 4 - - least-loaded server of top w_len servers;
if satisfy_load_criteria(Scandidate) then {

targetServer ~-- 8 ca n d id a t e ;

if (w_len > 1 &&
timenowO - walk_entry.lastUpd > ehgThresh)

walk_entry.length - - ;
} else {

foreach rest server sj in decreasing weight order {
if satisfy_load_criteria(sj) then {

targetServer ~-- sj;
stop search;

}
}
walk_entry.length ~-- actual search steps;

}
if walk_entry.length changed then

walk_entry.lastUpd ~ timenowO;
if targetServer is not valid then

targetServer ~-- server with highest weight;
route request url to targetServer;

Figure 2: Fine Dynamic Replication

To reduce extra replication, FDR keeps an auxiliary
structure at each redirector that maps each URL to a
"walk length," indicating how many servers in the HRW

348 5th Symposium on Operating Systems Design and Implementation USENIX Association

list should be used for this URL. Using a minimum
walk length of one provides minimal replication for most
URLs, while using a higher minimum will always dis-
tribute URLs over multiple servers. When the redirector
receives a request, it uses the current walk length for the
URL and picks the least-loaded server from the current
set. If even this server is busy, the walk length is in-
creased and the least-loaded server is used.

This approach tries to keep popular URLs from over-
loading servers and displacing tess-popular objects in the
process. The size of the auxiliary structure is capped by
hashing the URL into a range in the thousands to mil-
lions. Hash collisions may cause some URLs to have
their replication policies affected by popular URLs. As
long as the the number of hash values exceeds the num-
ber of servers, the granularity will be significantly bet-
ter than the Coarse Dynamic Replication approach. The
redirector logic for this approach is shown in Figure 2.
To handle URLs that become less popular over time, with
each walk length, we also keep the time of its last modifi-
cation. We decrease the walk length if it has not changed
in some period of time.

As a final note, both dynamic replication approaches
require some information about server load, specifically
how many outstanding requests can be sent to a server
by a redirector before the redirector believes it is busy.
We currently allow the redirectors to have 300 outstand-
ing requests per server, at which point the redirector lo-
cally decides the server is busy. It would also be possi-
ble to calibrate these values using both local and global
information--using its own request traffic, the redirector
can adjust its view of what constitutes heavy load, and
it can perform opportunistic communication with other
redirectors to see what sort of collective loads are be-
ing generated. The count of outstanding requests already
has some feedback, in the sense that if a server becomes
slow due to its resources (CPU, disk, bandwidth, etc.)
being stressed, it will respond more slowly, increasing
the number of outstanding connections. To account for
the inaccuracy of local approximation of server load at
each redirector, in our evaluations, we also include a ref-
erence strategy, FDR-Global, where all redirectors have
perfect knowledge of the load at all servers.

Conceivably, Consistent Hashing could also be used
to implement CDR and FDR. We tested a CHash-based
CDR and FDR, but they suffer from the "ripple effect"
and sometimes yield even worse performance than load-
aware static replication schemes. Part of the reason is
that in Consistent Hashing, since servers are mapped
onto a circular space, the relative order of servers for
each URL will be effectively the same. This means the
load migration will take an uniform pattern; and the
less-popular URLs that may have overlapping servers
with popular URLs are unlikely to have some other less-

loaded nodes in their replica sets. Therefore, in this pa-
per, we will only present CDR and FDR based on HRW.

3.5 Network Proximity
Many commercial CDNs start server selection with net-
work proximity matching. For instance, [19] indicates
that CDN's hierarchical authoritative DNS servers can
map a client's (actually its local DNS server's) IP ad-
dress to a geographic region within a particular network
and then combine it with network and server load infor-
mation to select a server separately within each region.
Other research [18] shows that in practice, CDNs suc-
ceed not by always choosing the "optimal" server, but by
avoiding notably bad servers.

For the sake of studying system capacity, we m a k e
a conservative simplicifaction by treating the entire net-
work topology as a single geographic region. We could
also simply take the hierarchical region approach as
in [19], however, to see the effect of integrating prox-
imity into server selection, we introduce three strate-
gies that explicitly factor intra-region network proximity
into the decision. Our redirector measures servers' geo-
graphical/topological location information through ping,
traceroute or similiar mechanisms and uses this infor-
mation to calculate an "effective load" when choosing
servers.

To calculate the effective load, redirectors multiply the
raw load metric with a normalized standard distance be-
tween the redirector and the server. Redirectors gather
distances to servers using round trip time (RTT), rout-
ing hops, or similar information. These raw distances
are normalized by dividing by the minimum locally-
observed distance, yielding the standard distance. In our
simulations, we use RTT for calculating raw distances.

FDR with Network Proximity (NP-FDR) is the
counterpart of FDR, but it uses effective load rather than
raw load. Similarly, NPLR-CHash is the proximity-
aware version of LR-CHash. The third strategy, NPR-
CHash, adds network proximity to the load-oblivious
R-CHash approach by assigning requests such that each
surrogate in the fixed-size server set of a URL will get
a share of total requests for that URLinversely propor-
tional tO the surrogate's distance from the redirector. As
a result, closer servers in the set get a larger share of the
load.

The use of effective load biases server selection in fa-
vor of closer servers when raw load values are compa-
rable. For example, in standard FDR, raw load values
reflect the fact that distant servers generate replies more
slowly, so some implicit biasing exists. However, by ex-
plicitly factoring in proximity, NP-FDR attempts to re-
duce global resource consumption by favoring shorter
network journeys.

Although we currently calculate effective load this

USENIX Association 5th Symposium on Operating Systems Design and Implementation 349

way, other options exist. For example, effective load
can take other dynamic load/proximity metrics into ac-
count, such as network congestion status through real
time measurement, thereby reflecting instantaneous load
conditions.

4 Evaluation Methodology

The goal of this work is to examine how these strategies
respond under different loads, and especially how robust
they are in the face of flash crowds and other abnormal
workloads that might be used for a DDoS attack. Attacks
may take the form of legitimate traffic, making them dif-
ficult to distinguish from flash crowds.

Evaluating the various algorithms described in Sec-
tion 3 on the Internet is not practical, both due to the
scale of the experiment required and the impact a flash
crowd or attack is likely to have on regular users. Sim-
ulation is clearly the only option. Unfortunately, there
has not been (up to this point) a simulator that consid-
ers both network traffic and server load. Existing simu-
lators either focus on the network, assuming a constant
processing cost at the server, or they accurately model
server processing (including the cache replacement strat-
egy), but use a static estimate for the network transfer
time. In the situations that interest us, both the network
and the server are important.

To remedy this situation, we developed a new sim-
ulator that combines network-level simulation with
OS/server simulation. Specifically, we combine the NS
simulator with Logsim, allowing us to simulate net-
work bottlenecks, round-trip delays, and OS/server per-
formance. NS-2 [23] is a packet-level simulator that has
been widely-used to test TCP implementations. How-
ever, it does not simulate much server-side behavior.
Logsim is a server cluster simulator used in previous re-
search on LARD [25], and it provides detailed and accu-
rate simulation of server CPU processing, memory us-
age, and disk access. This section describes how we
combine these two simulators, and discusses how we
configure the resulting simulator to study the algorithms
presented in Section 3.

4.1 Simulator

A model of Logsim is shown in Figure 3. Each server
node consists of a CPU and locally attached disk(s), with
separate queues for each. At the same time, each server
node maintains its own memory cache of a configurablc
size and replacement policy. Incoming requests are first
put into the holding queue, and then moved to the active
queue. The active queue models the parallelism of the
server, for example, in multiple process or thread server
systems, the maximum number of processes or threads
allowed on each server.

inside a server node
r - . ,,

more time needed I',

,o eL --1
~ ~ c a c h e misses

read finished

Req

," active holding
,' queue queue

/

i'
/

I,' Node Abstt action . t

Figure 3: Logsim Simulator

We combined Logsim with NS-2 as follows. We keep
NS-2's event engine as the main event manager, wrap
each Logsim event as a NS-2 event, and insert it into the
NS-2 event queue. All the callback functions are kept
unchanged in Logsim. When crossing the boundary be-
tween the two simulators, tokens (continuations) are used
to carry side-specific information. To speed up the sim-
ulation time, we also re-implemented several NS-2 mod-
ules and performed other optimizations.

On the NS-2 side, all packets are stored and for-
warded, as in a real network, and we use two-way TCP.
We currently use static routing within NS-2, although we
may run simulations with dynamic routing in the future.

On the Logsim side, the costs for the basic request pro-
cessing were derived by performing measurements on a
300MHz Pentium II machine running FreeBSD 2.2.5 and
the Flash web server [24]. Connection establishment and
tear-down costs are set at 145#s, while transmit process-
ing incurs 40#s per 512 bytes. Using these numbers, an
8-KByte document can be served from the main mem-
ory cache at a rate of approximately 1075 requests/sec.
When disk access is needed, reading a file from the disk
has a latency of 28ms. The disk transfer time is 410#s per
4 KBytes. For files larger than 44 KBytes, and additional
14ms is charged for every 44 KBytes of file length in ex-
cess of 44 KBytes. The replacement policy used on the
servers is Greedy-Dual-Size (GDS)[5], as it appears to be
the best known policy for Web workloads. 32MB mem-
ory is available for caching documents on each server
and every server node has one disk. This server is inten-
tionally slower than the current state-of-the-art (it is able
to service approximately 600 requests per second), but
this allows the simulation to scale to a larger number of
nodes.

The final simulations are very heavy-weight, with over
a thousand nodes and a very high aggregate request rate.
We run the simulator on a 4-processor/667MHz Alpha
with 8GB RAM. Each simulation requires 2-6GB of
RAM, and generally takes 20-50 hours of wall-clock
time.

350 5th Symposium on Operating Systems Design and Implementation USENIX Association

402 N e t w o r k Topo l logy

It is not easy to find a topology that is both realistic and
makes the simulation manageable. We choose to use
a slightly modified version the NSFNET backbone net-
work T3 topology, as shown in Figure 4.

In this topology, the round-cornered boxes represent
backbone routers with the approximate geographical lo-
cation label on it. The circles, tagged as R1, R2..., are
regional routers; a small circles with "C" stand for client
hosts; and shaded circles with "S" are the server surro-
gates. In the particular configuration shown in the figure,
we put 64 servers behind regional routers R0, R1, R7,
R8, R9, R10, R15, R19, where each router sits in front
of 8 servers. We distribute 1,000 client hosts evenly be-
hind the other regional routers, yielding a topology of
nearly 1,100 nodes. The redirector algorithms run on the
regional routers that sit in front of the clients.

Figure 4: Network Topology

The latencies of servers to regional routers are set ran-
domly between lms to 3ms; those of clients to regional
routers are between 5ms and 20ms; those of regional
routers to backbone routers are between 1 to 10ms; la-
tencies between backbone routers are set roughly accord-
ing to their geographical distances, ranging from 8ms to
28ms.

To simulate high request volume, we deliberately pro-
vision the network with high link bandwidth by setting
the backbone links at 2,488Mbps, and links between re-
gional routers and backbone routers at 622Mbps. Links
between servers and regional routers are 100Mbps and
those between clients and their regional servers are ran-
domly between 10Mbps and 45Mbps. All the queues at
routers are drop tail, with the backbone routers having
room to buffer 1024 packets, and all other touters able to
buffer 512 packets.

2These can also be thought of as edge/site routers, or the boundary
to an autonomous system

4.3 W o r k l o a d a n d S t a b i l i t y

We determine system capacity using a trace-driven sim-
ulation and gradually increase the aggregate request rate
until the system fails. We use a two month trace of
server logs obtained at Rice University, which contains
2.3 million requests for 37,703 files with a total size of
1,418MB [25], and has properties similar to other pub-
lished traces.

The simulation starts with the clients sharing the trace
and sending requests at a low aggregate rate in an open-
queue model. Each client gets the name of the docu-
ment sequentially from the shared trace when it needs to
send a request, and the timing information in the trace
is ignored. The request rate is increased by 1% every
simulated six seconds, regardless of whether previous re-
quests have completed. This approach gradually warms
the server memory caches and drives the servers to their
limits over time. We configure Logsim to handle at most
512 simultaneous requests and queue the rest. The sim-
ulation is terminated when the offered load overwhelms
the servers.

Flash crowds, or DDoS attacks in bursty legitimate
traffic form, are simulated by randomly selecting some
clients as intensive requesters and randomly picking a
certain number of hot-spot documents. These intensive
requesters randomly request the hot documents at the
same rate as normal clients, making them look no dif-
ferent than other legitimate users. We believe that this
random distribution of intensive requesters and hot doc-
uments is a quite general assumption since we do not
require any special detection or manual intervention to
signal the start of a flash crowd or DDoS attack.

We define a server as being overloaded when it can no
longer satisfy the rate of incoming requests and is un-
likely to recover in the future. This approach is designed
to determine when service is actually being denied to
clients, and to ignore any short-term behavior which may
be only undesirable, rather than fatal. Through exper-
imentation, we find that when a server's request queue
grows beyond 4 to 5 times the number of simultane-
ous connections it can handle, throughput drops and the
server is unlikely to recover. Thus, we define the thresh-
old for a server failure to be when the request queue
length exceeds five times the simultaneous connection
parameter. Since we increase the offered load 1% every
6 seconds, we record the request load exactly 30 seconds
before the first server fails, and declare this to be the sys-
tem's maximum capacity.

Although we regard any single server failure as a sys-
tem failure in our simulation, the strategies we evalu-
ate all exhibit similar behavior--significant numbers of
servers fail at the same time, implying that our approach
to deciding system capacity is not biased toward any par-
ticular scheme.

USENIX Association 5th Symposium on Operating Systems Design and Implementation 351

4o0o0] 2 ~ 2~

Random R-CHash R-HRW LR-eHash LR-HRW CDR FDR i:DR-Global
Schemes

Figure 5: Capacity Comparison under Normal Load

5 Results

This section evaluates how the different strategies in Ta-
ble 1 perform, both under normal conditions and under
flash crowds or DDoS attacks. Network proximity and
other factors that affect the performance of these strate-
gies are also addressed.

5.1 Normal Workload

Before evaluating these strategies under flash crowds or
other attack, we first measure their behavior under nor-
mal workloads. In these simulations, all clients gener-
ate traffic similar to normal users and gradually increase
their request rates as discussed in Section 4.3. We com-
pare aggregate system capacity and user-perceived la-
tency under the different strategies, using the topology
shown in Figure 4.

5.1.1 O p t i m a l Sla t ic Replication

The static replication schemes (R-CHash, R-HRW, and
their variants) use a configurable (but fixed) number of
replicas, and this parameter's value influences their per-
formance. Using a single replica per URL perfectly par-
titions the file set, but can lead to early failure of servers
hosting popular URLs. Using as many replicas as avail-
able servers degenerates to the Random strategy. To de-
termine an appropriate value, we varied this parameter
between 2 and 64 replicas for R-CHash when there are
64 servers available. Increasing the number of replicas
per URL initially helps to improve the system's through-
put as the load gets more evenly distributed. Beyond a
certain point, throughput starts decreasing due to the fact
that each server is presented with a larger working set,
causing more disk activity. In the 64-server case--the
scenario we use throughout the rest of this section--10
server replicas for each URL achieves the optimal sys-
tem capacity. For all of the remaining experiments, we
use this value in the R-CHash and R-HRW schemes and
their variants.

5.1.2 Sys t em C a p a c i t y

The maximum aggregate throughput of the various
strategies with 64 servers are shown in Figure 5. Here
we do not plot all the strategies and variants, but fo-
cus on those impacting throughput substantially. Ran-
dom shows the lowest throughput at 9,300 req/s before
overload. The static replication schemes, R-CHash and
R-FIRW, outperform Random by 119% and 99%, respec-
tively. Our approximation of static schemes' best behav-
iors, LR-CHash and LR-HRW, yields 173% better ca-
pacity than Random. The dynamic replication schemes,
CDR and FDR, show over 250% higher throughput than
Random, or more than a 60% improvement over the
static approaches and 28% over static schemes with fine-
grained load control.

The difference between Random and the static ap-
proaches stems from the locality benefits of the hash-
ing in the static schemes. By partitioning the working
set, more documents are served from memory by the
servers. Note, however, that absolute minimal replication
can be detrimental, and in fact, the throughput for only
two replicas in in Section 5.1.1 is actually lower than the
throughput for Random. The difference in throughput
between R-CHash and R-HRW is 10% in our simulation.
However, this difference should not be over emphasized,
because changes in the number of servers or workload
can cause their relative ordering to change. Consider-
ing load helps the static schemes gain about 25% better
throughput, but they still do not exceed the dynamic ap-
proaches.

The performance difference between the static (in-
cluding with load control) and dynamic schemes stems
from the adjustment of the number of replicas for the
documents. FDR also shows 2% better capacity than
CDR.

Interestingly, the difference between our dynamic
schemes (with only local knowledge) and the FDR-
Global policy (with perfect global knowledge) is mini-
mal. These results suggest that request distribution poli-
cies not only fare well with only local information, but
that adding more global information may not gain much
in system capacity.

Examination of what ultimately causes overload in
these systems reveals that, under normal load, the
server's behavior is the factor that determines the perfor-
mance limit of the system. None of the schemes suffers
from saturated network links in these non-attack simu-
lations. For Random, due to the large working set, the
disk performance is the limit of the system, and before
system failure, the disks exhibit almost 100% activity
while the CPU remains largely idle. The R-CHash, R-
HRW and LR-CHash and LR-HRW exhibit much lower
disk utilization at comparable request rates; but by the
time the system becomes overloaded, their bottleneck

352 5th Symposium on Operating Systems Design and Implementation USENIX Association

Pg

&

g

8

1 oo

90

80

70

60

5o

40 J

2O

lO --"~ d
0 I '-~"~"'~'~"~1"~
0.1

E~
. E l ' "

LR-HRW+
LR-CHash -.-.-~

R-HRW ----e
R-CHash ---×

FDR 'e
CDR -~

Random -----E~

I 10

Response Latency (seconds) in Log Scale

(a) Random's limit: 9,300 req/s

100

~o 1 0 0

90

~- 80

7o

60

50

4O
O_
.~ 30

20

o 0
0.1

. , , . . •

j LR-HRW ._..+.....~
,~" LR-OHash - -...e-

, ~ l ~ - C H a s h ---x
FDR - '"~
CDR -~

1 10 100

Response Latency (seconds) in Log Scale

(b) R-HRW's limit: 18,478 req/s

,~ 100

pg 90

oc 70

N 6o
E 5o

~' 40
.~ 30

N 2O

8 o
0.1

. +

, ~ LR-CHash -.-.~
~..-'" FDR 'e-.-

. ~ COB

1 10 100

Response Latency (seconds) in Log Scale

100

g 9o
~1. 8o

~: 7o
g 6o

'~ 5o
P.

2

4O

30

20

10

0
0.1

. C D R , , "

1 10 100

Response Latency (seconds) in Log Scale

(c) LR-HRW's limit: 25,407 req/s (d) CDR's limit: 32,582 req/s

Figure 6: Response Latency Distribution under Normal Load

Utilization CPU (%) DISK (%)
Scheme Mean Stddev Mean Stddev
Random 21.03 1.36 100.00 0.00
R-CHash 57.88 18.36 99.15 3.89
R-HRW 47.88 15.33 99.74 1.26

LR-CHash 59.48 18.85 97.83 12.51
LR-HRW 58.43 16.56 99.00 5.94

CDR 90.07 11.78 36.10 25.18
FDR 93.86 7.58 33.96 20.38

FDR-Global 91.93 11.81 17.60 15.43

Table 2: Server Resource Utilization at Overload

also becomes the disk and the CPU is roughly 50-60%
utilized on average. In the CDR and FDR cases, at sys-
tem overload, the average CPU is over 90% busy, while
most of the disks are only 10-70% utilized. Table 2 sum-
marizes resource utilization of different schemes before
server failures (not at the same time point).

These results suggest that the CDR and FDR schemes
are the best suited for technology trends, and can most

benefit from upgrading server capacities. The throughput
of our simulated machines is lower than what can be ex-
pected from state-of-the-art machines, but this decision
to scale down resources was made to keep the simula-
tion time manageable. With faster simulated machines,
we expect the gap between the dynamic schemes and the
others to grow even larger.

5.1.3 Response Latency
Along with system capacity, the other metric of interest is
user-perceived latency, and we find that our schemes also
perform well in this regard. To understand the latency
behavior of these systems, we use the capacity measure-
ments from Figure 5 and analyze the latency of all of the
schemes whenever one category reaches its performance
limit. For schemes with similar performance in the same
category, we pick the lower limit for the analysis so
that we can include numbers for the higher-performing
scheme. In all cases, we present the cumulative distri-
bution of all request latencies as well as some statistics

USENIX Association 5th Symposium on Operating Systems Design and Implementation 353

Req Rate 9,300 req/s 18,478twq/s 25,407 req/s 32,582 req~
Latency # 50% 90% 50% 90% 50% 90% 50% 90%

Random
R-CHash
R*HRW

LR-CHash
LR-HRW

CDR
FDR

FDR-Global

3.95 1.78 11.32
0.79 0.53 1.46
0.81 0.53 1.49
0.68 0.44 1,17
0.68 0.44 1.18
1.16 0.52 1.47
1.10 0.52 1,48
0.78 0.50 1.42

cr #

6.99
2.67 1.01
2.83 1.07
2.50 0.87
2,50 0.90
5.96 1.35
5.49 1.35
2.88 0.97

0.57 1.98
0.57 2.28
0.51 1.82
0.5l 1.89
0.55 1.75
0,54 1.64
0.54 1.58

o- tz

3.58
3.22
2.74 1.19
3.13 1.27
6.63 1.86
6.70 1.87
5.69 1.11

0.60 2.47
0.64 2.84
0.63 4.49
0,62 3.49
0.56 1.86

3.79
3,76
6.62 2.37
6.78 2.22
5.70 1.35

1.12 5.19 7.21
0.87 4.88 7.12
0.66 2.35 6.29

Table 3: Response Latency of Different Strategies under Normal Load. # - - Mean, ~ - - Standard Deviation.

about the distribution.

Figure 6 plots the cumulative distribution of latencies
at four request rates: the maximums for Random, R-
HRW, LR-HRW, and CDR (the algorithm in each cate-
gory with the smallest maximum throughput). The z-
axis is in log scale and shows the time needed to com-
plete requests. The y-axis shows what fraction of all re-
quests finished in that time. The data in Table 3 gives
mean, median, 90th percentile and standard deviation de-
tails of response latencies at our comparison points.

The response time improvement from exploiting lo-
cality is most clearly seen in Figure 6a. At Random's
capacity, most responses complete under 4 seconds, but
a few responses take longer than 40 seconds. In contrast,
all other strategies have median times almost one-fourth
that of Random, and even their 90th percentile results
are less than Random's median. These results, coupled
with the disk utilization information, suggest that most
requests in the Random scheme are suffering from disk
delays, and that the locality improvement techniques in
the other schemes are a significant benefit.

The benefit of FDR over CDR is visible in Figure 6d,
where the plot for FDR lies to the left of CDR. The statis-
tics also show a much better median response time, in ad-
dition to better mean and 90th percentile numbers. FDR-
Global has better numbers in all cases than CDR and
FDR, due to its perfect knowledge of server load status.

An interesting observation is that when compared to
the static schemes, dynamic schemes have worse mean
times but comparable/better medians and 90th percentile
results. We believe this behavior stems from the time
required to serve the largest files. Since these files are
less popular, the dynamic schemes replicate them less
than the static schemes do. As a result, these files are
served from a smaller set o f servers, causing them to be
served more slowly than if they were replicated more
widely. We do not consider this behavior to be a sig-
nificant drawback, and note that some research explicitly
aims to achieve this effect [10, 11]. We will revisit large
file issues in section 5.4.2.

8 0 0 0 0

7 0 0 0 0

6 0 0 0 0

~_ 5 0 0 0 0

4 0 0 0 0

.~. 3 O 0 0 0

20000

1 0 0 0 0

F D R ~" -'-'e'
C D R . . ~

L R - H R W "-'- +-'-"
L R - C H a s h -'- G-.-

Random ----E}"" ..~-

. .S" .--"S~

_ . . ~ -- :...__.,.-l~ ~ " O
0 .-.__E/ ,

0 8 16 32 6 4 1 2 8

N u m b e r of S e r v e r s

Figure 7: System Scalability under Normal Load

5.1.4 Sca labi l i ty

Robustness not only comes from resilience with certain
resources, but also from good scalability with increasing
resources. We repeat similar experiments with different
number of servers, from 8 to 128, to test how well these
strategies scale. The number of server-side routers is not
changed, but instead, more servers are attached to each
server router as the total number of servers increases.

We plot system capacity against the number of servers
in Figure 7. They all display near-linear scalability, im-
plying all of them are reasonably good strategies when
the system becomes larger. Note, for CDR and FDR
with 128 servers, our original network provision is a
little small. The bottleneck in that case is the link be-
tween the server router and backbone router, which is
622Mbps. In this scenario, each server router is handling
16 servers, giving each server on average only 39Mbps
of traffic. At 600 reqs/s, even an average size of 10KB
requires 48Mbps. Under this bandwidth setup, CDR and
FDR yield similar system capacity as LR-CHash and LR-
HRW, and all these 4 strategies saturate server-router-to-
backbone links. To remedy this situation, we run sim-
ulations of 128 servers for all strategies with doubled
bandwidth on both the router-to-backbone and backbone
links. Performance numbers of 128 servers under these
faster links are plotted in the graph instead. This problem
can also be solved by placing fewer servers behind each
pipe and instead spreading them across more locations.

354 5th Symposium on Operating Systems Design and Implementation USENIX Association

5.2 Behavior Under Flash Crowds

Having established that our new algorithms perform well
under normal workloads, we now evaluate how they be-
have when the system is under a flash crowd or DDoS
attack. To simulate a flash crowd, we randomly select
25% of the 1,000 clients to be intensive requesters, where
each of these requesters repeatedly issues requests from
a small set of pre-selected URLs with an average size of
about 6KB.

5.2.1 S y s t e m C a p a c i t y

Figure 8 depicts the system capacity of 64 servers un-
der a flash crowd with a set of lO URLs. In general,
it exhibits similar trends as the no-attack case shown in
Figure 5. Importantly, the CDR and FDR schemes still
yield the best throughput, making them most robust to
flash crowds or attacks. Two additional points deserve
more attention.

First, FDR now has a similar capacity with CDR, but
still is more desirable as it provides noticeably better la-
tency, as we will see later. FDR's benefit over R-CHash
and R-HRW has grown to 91% from 60% and still out-
performs LR-CHash and LR-HRW by 22%.

401)O01] ~7827 37827 38587

R FDR Global
Schemes

Figure 8: Capacity Comparison Under Flash Crowds

Second, the absolute throughput numbers tend to be
larger than the no-attack case, because the workload is
also different. Here, 25% of the traffic is now concen-
trated on 10 URLs, and these attack URLs are relatively
small, with an average size of 6KB. Therefore, relative
difference among different strategies within each sce-
nario yields more useful information than simply com-
paring performance numbers across these two scenarios.

5.2.2 R e s p o n s e L a t e n c y

The cumulative distribution of response latencies for all
seven algorithms under attack are shown in Figure 9.
Also, the statistics for all seven algorithms and FDR-
Global are given in Table 4. As seen from the figure and
table, R-CHash, R-HRW, LR-CHash, LR-HRW CDR
and FDR still have far better latency than Random, and
static schemes are a little better than CDR and FDR at

Random, R-HRW's and LR-HRW's failure points; and
LR-CHash and LR-HRW yields slightly better latency
than R-CHash and R-HRW.

As we explained earlier, CDR and FDR adjust the
server replica set in response to request volume. The
number of replicas that serve attack URLs increases as
the attack ramps up, which may adversely affect serving
non-attack URLs. However, the differences in the mean,
median, and 90-percentile are not large, and all are prob-
ably acceptable to users. The small price paid in response
time for CDR and FDR brings us higher system capacity,
and thus, stronger resilience to various loads.

5.2.3 Scalability

We also repeat the scalability test under flash crowd or
attack, where 250 clients are intensive requesters that
repeatedly request 10 URLs. As shown in Figure 10,
all strategies scale linearly with the number of servers.
Again, in the 128-server cases, we use doubled band-
width on the router-to-backbone and backbone links.

80000

7 0 O 0 0

,~ 6 0 0 0 0
co
c~ 50000

4 0 0 0 0

.~ 30000

20000

0
10000

0
0

F D R -....~--
C D R ~

L R - H R W "" +--.. /
L R - C H a s h --- ~-.-

R - H R W - ' 0 " - ~ ' ~ .,-I-

8 16 32 6 4 1 2 8

N u m b e r of S e r v e r s

Figure 10: System Scalability under Flash Crowds

5.2.4 Various Flash Crowds

Throughout our simulations, we have seen that a differ-
ent number of intensive requesters, and a different num-
ber of hot or attacked URLs, have an impact on system
performance. To further investigate this issue, we carry
out a series of simulations by varying both the number of
intensive requesters and the number of hot URLs. Since
it is impractical to exhaust all possible combinations, we
choose two classes of flash crowds. One class has a sin-
gle hot URL of size 1KB. This represents a small home
page o fa website. The other class has I0 hot URLs aver-
aging 6KB, as before. In both cases, we vary the percent-
age of the 1000 clients that are intensive requesters from
10% to 80%. The results of these two experiments with
32 servers are shown in Figures 11 and 12, respectively.

In the first experiment, as the portion of intensive re-
questers increases, more traffic is concentrated on this
one URL, and the request load becomes more unbal-
anced. Random, CDR and FDR adapt to this change

USENIX Association 5th Symposium on Operating Systems Design and Implementation 355

¢ o

8

£E
"5

L2
O _

. _ >

8

100

90

8O

70

60

50

40

30

20

10

0.1

fig/:~ LR=CHash -.--.e-
/~ R-HRW o

/ (~. ' R-CHash x
/,~i~ FDR ~

./.a?,,,~ CDR - A
. Rand?m, ..-:-~,].-,.,

1 10 100
Response Latency (seconds) in Log Scale

(a) Random's limit: 11,235 req/s

c o

o

a)

cC
`5
&

8

1 0 0

90

8o

70

60

5O

40

3o

20

10

0
0.1

/ ~ , ~R.,.H.RW t

.&./~ LR-CHash -.-.-e-
/~ / R-HaW O

R-CHash x
/~.~" FDR ~

CDR
• . . , , , , i ,

1 10 100

Response Latency (seconds) in Leg Scale

(b) R-HRW's finfit: 19,811 req/s

100

9 0

8O

~ 7o
g 6O

5o

4 °
g_
.~ ao

~ 2o

2 lo

0.1

. , . , ¢ : : : ~ ~.

/ . LF~H.RW +
,/~/ LR-CHash -.--~

_~/'~" FDR - - w - - -
. CpR,-.A

1 10 100
Response Latency (seconds) in Log Scale

100
(D

~ 90
~- 80
~ 70

g 6O

~ 50
o ~ 40

~ 3 0
._~
.N. 20

0 ~
0.1

. , m _

. CDR: .-t:...
I 10 100

Response Latency (seconds) in Log Scale

(c) LR-HRW's limit: 31,000 req/s (d) CDR's limit: 37,827 req/s

Figure 9: Response Latency Distribution under Flash Crowds

well and yield increasing throughput. This benefit comes
from their ability to spread load across more servers.
However, CDR and FDR behave better than Random
because they not only adjust the server replica set on
demand, but also maintain server locality for less pop-
ular URLs. In contrast, R-HRW, R-CHash, LR-HRW
and LR-CHash suffer with more intensive requesters or
attackers, since their fixed number of replicas for each
URL cannot handle the high volume of requests for one
URL. In the 10-URL case, the change in system ca-
pacity looks similar to the 1-URL case, except that due
to more URLs being intensively requested or attacked,
FDR, CDR and Random cannot sustain the same high
throughput. We continue to investigate the effects of
more attack URLs and other strategies.

Another possible DDoS attack scenario is to randomly
select a wide range of URLs. In the case that these URLs
are valid, the dynamic schemes "degenerate" into one
server for each URL. This is the desirable behavior for
this attack as it increases the cache hit rates for all the

servers. In the event that the URLs are invalid, and the
servers are actually reverse proxies (as is typically the
case in a CDN), then these invalid URLs are forwarded
to the server-of-origin, effectively overloading it. Servers
must address this possibility by throttling the number of
URL-misses they forward.

To summarize, under flash crowds or attacks, CDR
and FDR sustain very high request volumes, making
overloading the whole system significantly harder and
thereby greatly improving the CDN system's overall ro-
bustness.

5.3 Proximity

The previous experiments focus on system capacity un-
der different loads. We now compare the strategies that
factor network closeness into server selection--Static
(NPR-CHash), Static+Load (NPLR-CHash), and Dy-
namic (NP-FDR)--with their counterparts that ignore
proximity. We test the 64-server cases in the same sce-
narios as in Section 5.1 and 5.2.

356 5th Symposium on Operating Systems Design and Implementation USENIX Association

Req Rate
Latency
Random
R-CHash
R-HRW

LR-CHash
LR-HRW

CDR
FDR

FDR-Global

11,235 req/s
50% 90%

2.37 0.64 8.57
0.73 0.53 1.45
0.73 0,52 1.45
0.62 0.45 1. i5
0.63 0.45 1.18
1.19 0.55 1.72
1.22 0.55 1.81
0.91 0.55 1.66

o" /u
5.29
2.10 0.81
2.11 0.76
1.70 0.67
1,80 0.67
5.40 1.25
5.71 1.18
4.09 0.90

19 811 reqZ~
50% 90%

0,53 1.57
0,52 1.51
0.45 1.23
0,46 1.26
0.55 1.86
0,55 1.83
0.53 1.60

~L

2.59
2.51
2.42 0.96
2.65 1.07
5.51 1.80
5.27 1.64
4.59 0.98

31,000 req/s
50% 90%

0.52 1.86
0.53 2.19
0.76 4.35
0.66 3.57
0.54 1.74

o" #

3.55
3.52
6.08 2.29
5.95 2.18
5.08 1.20

37.827 req/s
50% 90% c~

1.50 4.20 6.41
1.14 4.15 6.63
0,56 1.99 5.53

Table 4: Response Latency of Different Strategies under Flash Crowds. # - - Mean, (r - - Standard Deviation.

40000

35000

30000

25000

20000

15000

;q 10000

5000

FDR ---'e
CDR ~

LR-HRW ----.4---- / -
L R - C H a s h - - - ~ j~C/-

R-HRW ---~D--- xr...., j " ~ ,
R-CHash ---)~ v /
R a n ~

~=~::z-.O. • ~ ...~'~~~'~"~..-.~.

............. El" tel Lt

0 r i ~ i , i
0,1 0.2 0 .3 0 .4 0.5 0.6 0 .7 0 .8

Fraction of Intensive Requesters

Figure 11:1 Hot URL, 32 Servers, 1000 Clients

40000
I FDR .-...~

CDR
35000 - LR-HRW .-..+--..

LR-CHash -,-,~
R-HRW ---.~---

R-OHash - ' -~--
Random ----O---

30000
09
~_ 25000

20000

15000, """~....-N ~" ~ -N

~ e 1 0 o 0 0 ~ ~ ~ t~"
o 5000 I 123- tE] Et

O
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fraction of Intensive Requesters

Figure 12:10 Hot URL, 32 Servers, 1000 Clients

Category
Static

Static
+Load

Dynamic

System Capacity (reqs/sec)
Scheme Normal Flash Crowds
NPR-CHash 14409 1 4 4 0 9

R - C H a s h 20411 19811

NPLR-CHash 24173 30090

LR - C t t a s h 25407 31000

N P - F D R 31000 34933

F D R 33237 37827

Table 5: Proximity's Impact on Capacity

Table 5 shows the capacity numbers of these strate-
gies under both normal load and flash crowds of 250 in-
tensive requesters with 10 hot URLs. As we can see,
adding network proximity into server selection slightly
decreases systems capacity in the case of NPLR-CHash
and NP-FDR. However, the throughput drop of NPR-
CHash compared with R-CHash is considerably large.
Part of reason is that in LR-CHash and FDR, server
load information already conveys the distance of a server.
However, in the R-CHash case, the redirector randomly
choosing among all replicas causes the load to be evenly
distributed, while NPR-CHash puts more burden on
closer servers, resulting in unbalanced server load.

We further investigate the impact of network prox-
imity on response latency. In Table 6 and 7, we show
the latency statistics under both normal load and flash
crowds. As before, we choose to show numbers at
the capacity limits of Random, NPR-CHash, NPLR-
CHash and NP-FDR. We can see that when servers

are not loaded, all schemes with network proximity
taken into consideration--NPR-CHash, NPLR-CHash
and NP-FDR--yield better latency. When these schemes
reach their limit, NPR-CHash and NP-FDR still demon-
strate significant latency advantage over R-CHash and
FDR, respectively.

Interestingly, NPLR-CHash underperforms LR-
CHash in response latency at its limit of 24,173 req/s
and 30,090 req/s. NPLR-CHash is basically LR-CHash
using effective load. When all the servers are not
loaded, it redirects more requests to nearby servers,
thus shortening the response time. However, as the load
increases, in order for a remote server to get a share of
load, a local server has to be much more overloaded than
the remote one, inversely proportional to their distance
ratio. Unlike NP-FDR, there is no load threshold
control in NPLR-CHash, so it is possible that some
close servers get significantly more requests, resulting
in slow processing and longer responses. In a summary,
considering proximity may benefit latency, but it can
also impact capacity. NP-FDR, however, achieves a
good balance of both.

5.4 Other Factors
5.4.1 Heterogeneity
To determine the impact of network heterogeneity on
our schemes, we explore the impact of non-uniform
server network bandwidth. In our original setup, all first-
mile links from the server have bandwidths of 100Mbps.
We now randomly select some of the servers and re-

USENIX Association 5th Symposium on Operating Systems Design and Implementation 357

Req Rate
Latency
Random

NPR-CItash
R-CHash

NPLR-CHash
LR-CHash

NP-FDR
FDR

9,300 req/s
50% 90%

3.95 1.78 11.32
0.66 0.42 1.21
0.79 0.53 1.46
0.57 0.36 0.93
0.68 0.44 1.17
0.70 0.50 1.42
1, I0 0.52 1.48

o" #
6.99
2.20 0.76
2.67 0.82
2.00 0,68
2.50 0.71
1.63 0.67
5.49 1.25

14,409 reqZs"
50% 90%

0.44 1.51
0.56 1.63
0.39 1.33
0.48 1.43
0.49 1.33
0.54 1.71

2.30
2.50
2.34 1.34
2.19 1.04
1.56 0,80
5.87 1.60

24,173 req/s
50% 90%

0.55 2.63
0.50 1.95
0.49 1.55
0.57 2.10

cr t ~

4.73
3.44
2.82 1.08
6.84 1.88

31,000 re(t/s
50% 90% cr

0.53 1.96 3.54
0.59 3.72 7.25

Table 6: Proximity's Impact on Response Latency under Normal Load. # - - Mean, cr - - Standard Deviation.

Req Rate 11,235 req/s 14, 409 req/s 30, 090 req/s 34, 933 req/s
Latency # 50% 90% o" # 50% 90% a /z 50% 90% rr /.~ 50% 90% o-
Random

NPR-CHash
R-CHash

NPLR-CHash
LR-CHash
NP-FDR

FDR

2.37 0.64 8.57
0.61 0.42 1.15
0.73 0.53 1.45
0,53 0.36 0.90
0.62 0.45 1.15
0.70 0.50 1.45
1.22 0.55 1.81

5.29
1.76 0.63
2.10 0.73
1,75 0.55
1.70 0.64
t.68 0.66
5.71 1.07

0.41 1.08
0.52 1.38
0.35 0.91
0.44 1.13
0.45 1.34
0.54 1.67

2.34
2.50
2.29 1.29
2.56 0.90
1.63 0.81
5.47 1.60

0.61 2.65
0.49 1.73
0.47 1.64
0.66 3.49

3.94
3.44
2.55 0.99
5.90 1.84

0.51 1.92 3.26
0.78 4.15 6.31

Table 7: Proximity's Impact on Response Latency under Flash Crowds. # - - Mean, ~r - - Standard Deviation.

duce their link bandwidth by an order of magnitude, to
10Mbps. We want to test how different strategies re-
spond to this heterogeneous environment. We pick rep-
resentative schemes from each category: Random, R-
CHash, LR-CHash and FDR and stress them under both
normal load and flash crowd similar to network proxim-
ity case. Table 8 summarizes our findings on system ca-
pacities with 64 servers.

Portion of Slower Links
Redirection Normal Load Flash Crowds

Schemes 0% 10% 30% 0% 10% 30%

Random 9300 8010 8010 11235 8449 8449

R-CHash 20411 7471 7471 19811 7110 7110

LR-CHash 25407 23697 1 9 4 2 1 31000 26703 22547

FDR 33237 31000 25407 37827 34933 29496

Table 8: Capacity (reqs/sec) with Heterogeneous Server
Bandwidth,

From the table we can see, under both normal load
and flash crowds, Random and R-CHash are hurt badly
because they are load oblivious and keep assigning re-
quests to servers with slower links thereby overload them
early. In contrast, LR-CHash and FDR only suffer slight
performance downgrade. However, FDR still maintains
advantage over LR-CHash, due to its dynamic expanding
of server set for hot URLs.

5.4.2 L a r g e File Ef fec t s

As we discussed at the end of section 5.1.3, the worse
mean response times of dynamic schemes come from
serving large files with a small server set. Our first at-
tempt to remedy this situation is to handle the largest
files specially. Analysis of our request trace indicates that

99% of the files are smaller than 530KB, so we use this
value as a threshold to trigger special large file treatment.
For these large files, there are two simple ways to redi-
rect requests for them. One is to redirect these requests
to a random server, which we call T-R (tail-random). The
other is to redirect these requests to a least loaded mem-
ber in a server set o f fixed size (larger than one), which
we call T-S (tail-static). Both of these approaches enlarge
the server set serving large files. We repeat experiments
of 64 server cases in Section 5.1 and 5.2 using these two
new approaches, where T-S employs a 10-replica server
set for large files in the distribution tail. Handling the
tail specially yields slightly better capacity than standard
CDR or FDR, but the latency improves significantly. Ta-
ble 9 summarizes latency results under normal load. As
we can see, the T-R and T-S versions of CDR and FDR
usually generate better latency numbers than LR-CHash
and LR-HRW. Results under flash crowds are similar.
This confirms our assertion about large file effects.

6 R e l a t e d W o r k a n d D i s c u s s i o n

Cluster Schemes: Approaches for request distribution
in clusters [8, 12, 17] generally use a switch/router
through which all requests for the cluster pass. As a re-
suit, they can use various forms of feedback and load
information from servers in the cluster to improve sys-
tem performance. In these environments, the delay be-
tween the redirector and the servers is minimal, so they
can have tighter coordination [2] than in schemes like
ours, which are developed for wide-area environments.
We do, however, adapt the fine-grained server set ac-
counting from the LARD/R approach [25] for our Fine
Dynamic Replication approach.

358 5th Symposium on Operating Systems Design and Implementation USENIX Association

Req Rate 9,300 req/s 18,478 req/s 25,407 req/s 32,582 req/s
Latency /t 50% 90% a /z 50% 90% ~r # 50% 90% ~r /z 50% 90% ~r

LR-CHash
LR-HRW

CDR
CDR-T-R
CDR-T-S

FDR
FDR-T-R
FDR-T-S

0.68 0.44 t.17
0.68 0.44 1.18
1.16 0.52 1.47
0.78 0.52 1.43
0.74 0.52 1.43
1.10 0.52 1.48
0.78 0.52 1.43
0,74 0.52 1.43

2.50 0.87
2.50 0.90
5.96 1.35
2.77 0.76
2.17 0.72
5.49 1.35
2.77 0.75
2.17 0.72

0.51 1.82
0.51 1.89
0.55 1.75
0.52 1.40
0.52 1.38
0.54 1.64
0.52 1.40
0.52 1.37

2.74
3.13
6,63
2.80
2.44
6.70
2.82
2.55 0.98

1.19 0.60 2.47
1.27 0,64 2.84
1.86 0.63 4:49
1.05 0.57 1.90
1.01 0.56 1.93
1.87 0.62 3.49
1.01 0.57 1.87

0.56 1.84

3.79
3.76
6.62 2.37
3.06 1.58
2.96 1.53
6.78 2.22
2.98 1.39
2.95 1.41

1.12 5.19 7.21
0.94 3.01 3.55
0.68 3.69 4.18
0.87 4.88 7.12
0.77 2.82 3.68
0.63 2.88 3.88

Table 9: Response Latency with Special Large File Handling, Normal Load. # - - Mean, o- - - Standard Deviation.

Distributed Servers: In the case of geographically
distributed caches and servers, DNS-based systems can
be used to obliviously spread load among a set of servers,
as in the case of round-robin DNS [4], or it can be used to
take advantage of geographically dispersed server repli-
cas [6]. More active approaches [9, 14, 16] attempt to
use load/latency information to improve overall perfor-
mance. We are primarily focused on balancing load, lo-
cality and latency, meanwhile, we also demonstrate a fea-
sible way to incorporate network proximity into server
selection explicitly.

Web Caches: We have discussed proxy caches as
one deployment vehicle for redirectors, and these plat-
forms are also used in other content distribution schemes.
The simplest approach, the static cache hierarchy [7],
performs well in small environments but fails to scale
to much larger populations [32]. Other schemes in-
volve overlapping meshes [33] or networks of caches in a
content distribution network [19], presumably including
commercial CDNs such as Akamai.

DDoS Detection and Protection: DDoS attacks have
become an increasingly serious problem on the Inter-
net [22]. Researchers have recently developed tech-
niques to identify the source of attacks using various
traceback techniques, such as probabilistic packet mark-
ing [28] and SPIE [29]. These approaches are effec-
tive in detecting and confining attack traffic. With their
success in deterring spoofing and suspicious traffic, at-
tackers have to use more disguised attacks, for example
by taking control of large number of slave hosts and in-
structing them to attack victims with legitimate requests.
Our new redirection strategy is effective in providing
protection against exactly such difficult-to-detect attacks.

Peer-to-Peer Networks: Peer-to-peer systems pro-
vide an alternative infrastructure for content distribution.
Typical peer-to-peer systems involve a large number of
participants acting as both clients and servers, and they
have the responsibility of forwarding traffic on behalf
of others. Given their very large scale and massive re-
sources, peer-to-peer networks could provide a poten-
tial robust means of information dissemination or ex-
change. Many peer-to-peer systems, such as CAN [26],
Chord [30], and Pastry [27] have been proposed and they

can serve as a substrate to build other services. Most of
these peer-to-peer networks use a distributed hash-based
scheme to combine object location and request routing
and are designed for extreme scalability up to hundreds
of thousands of nodes and beyond. We also use a hash-
based approach, but we are dealing one to two orders of
magnitude fewer servers than the peers in these systems,
and we expect relatively stable servers. As a result, much
of the effort that peer-to-peer networks spend in discov-
ery and membership issues is not needed for our work.
Also, we require fewer intermediaries between the client
and server, which may translate to lower latency and less
aggregate network traffic.

7 Conclusions

This paper demonstrates that improved request redirec-
tion strategies can effectively improve CDN robustness
by balancing locality, load and proximity. Detailed end-
to-end simulations show that even when redirectors have
imperfect information about server load, algorithms that
dynamically adjust the number of servers selected for a
given object, such as FDR, allow the system to support a
60-91% greater load than best published CDN systems.
Moreover, this gain in capacity does not come at the ex-
pense of response time, which is essentially the same
both when the system is under flash crowds and when
operating under normal conditions.

These results demonstrate that the proposed algorithm
results in a system with significantly greater capacity
than published CDNs, which should improve the sys-
tem's ability to handle legitimate flash crowds. The re-
sults also suggest a new strategy in defending against
DDoS attacks: each server added to the system multi-
plicatively increases the number of resources an attacker
must marshal in order to have a noticeable affect on the
system.

Although we believe this paper identifies important
trends, much work remains to be done. We have con-
ducted the largest detailed simulations as current simu-
lation environment allows. We also find that approxi-
mate load information works well. We expect our new
algorithms scale to very large systems with thousands
of servers, but it requires a lot more resources and time

USENIX Association 5th Symposium on Operating Systems Design and Implementation 359

to evaluate . We would l ike to r un s i m u l a t i ons at an

even larger scale, w i th faster, m o r e power fu l s i m u l a t e d

servers . We would a lso l ike to e x p e r i m e n t wi th m o r e

topo log ie s such as t hose gene ra t ed b y p o w e r - l a w b a s e d

t opo logy genera tors , u se m o r e t races , rea l or syn the t i c

(such as S P E C w e b 9 9) . Final ly , we p l an to dep loy our

new a l g o r i t h m s on a t e s tbed and exp lo re o the r i m p l e m e n -

t a t ion issues.

Acknowledgments
This r e sea rch is s u p p o r t e d in par t by C o m p a q a n d

D A R P A con t r ac t F 3 0 6 0 2 - 0 0 - 2 - 0 5 6 1 . W e t h a n k ou r

s h e p h e r d , D a v i d Wethera l l , fo r his g u i d a n c e a n d he lp-

ful inputs . We also t h a n k ou r a n o n y m o u s r ev iewers for

the i r va luab l e c o m m e n t s on i m p r o v i n g th i s paper .

8 REFERENCES
[1] Akamai. Akamai content delivery network.

http://www.akamai.com
[2] D. Andresen, T. Yang, V. Holmedahl, and O. lbarra. Sweb:

Towards a scalable world wide web server on multicomputers,
1996.

[3] A. Barbir, B. Cain, F. Douglis, M. Green, M. Hofmann, R. Nair,
D. Potter, and O. Spatscheck. Known CN Request-Routing
Mechanisms, Feb. 2002. Work in Progress,
draft-ietf-cdi-known-request-routing-00.txt.

[4] T. Bnsco. DNS support for load balancing. Request for
Comments 1794, Rutgers University, New Brunswick, New
Jersey, Apr. 1995.

[5l P. Cao and S. Irani. Cost-aware WWW proxy caching
algorithms. In Proceedings of the USENIX Symposium on
Internet Technologies an d Systems (USITS), Monterey, CA,
Dec. 1997.

[6] V. Cardellini, M. Colajanni, and P. Yu. Geographic load
balancing for scalable distributed web systems. In Proceedings
of the International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems
(MASCOTS), Aug. 2000.

[7] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. E Schwartz,
and K. J. Wolrrell. A hierarchical interact object cache. In
USENIX Annual Technical Conference, pages 153-164, 1996.

[8] J. Cohen, N. Phadnis, V. Valloppillil, and K. W. Ross. Cache
array routing protocol v 1.1.
http://ds 1.internic.net/internet-drafts/draft-vinod-carp-v 1-01.txt,
September 1997.

[9] M. Colajanni, P. S. Yu, and V. Cardellini. Dynamic load
balancing in geographically distributed heterogeneous web
servers. In International Conference on Distributed Computing
Systems, pages 295-302, 1998.

[10] M. Crovella, R. Frangioso, and M. Harchol-Balter. Connection
scheduling in web servers. In USENIX Symposium on Internet
Technologies and Systems', 1999.

[11] M. Crovella, M. Harchol-Balter, and C. D. Murta. Task
assignment in a distributed system: Improving performance by
unbalancing load (extended abstract). In Measurement and
Modeling of Computer Systems, pages 268-269, 1998.

[12] O. Damani, P. Y. Chung, Y. Huang, C. M. R. Kintala, and Y. M.
Wang. ONE-IP: Techniques for hosting a service on a cluster of
machines. In Proceedings" of the Sixth International World-Wide
Web Conference, 1997.

[13] Digital Island. http://www.digitalisland.com.

[14] Z. Fei, S. Bhattacharjee, E. W. Zegura, and M. H. Ammar. A
novel server selection technique for improving the response time
of a replicated service. In 1NFOCOM (2), pages 783-791, 1998.

[15] L. Garber. Technology news: Denial-of-service attacks rip the
Internet. Computer, 33(4):12-17, Apr. 2000.

[16] J.D. Guyton and M. E Schwartz. Locating nearby copies of
replicated internet servers. In S1GCOMM, pages 288-298, 1995.

[17] G. Hunt, E. Nahum, and J. Tracey. Enabling content-based load
distribution for scalable services. Technical report, IBM T.J.
Watson Research Center, May 1997.

[18] K.L. Johnson, J. E Cam M. S. Day, and M. E Kaashoek. The
measured performance of content distribution networks. In
Proceedings of The 5th International Web Caching and Content
Delivery Workshop, Lisbon, Portugal, May 2000.

[19] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad,
R. Dhanidina, K. Iwamoto, B. Kim, L. Matkins, and
Y. Yerushalmi. Web caching with consistent hashing. In
Proceedings of the Eighth International World-Wide Web
Conference, 1999.

[20] D.R. Karger, E. Lehman, E T. Leighton, R. Panigrahy, M. S.
Levine, and D. Lewin. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
world wide web. In ACM Symposium on Theory of Computing,
pages 654-663, 1997.

[211 Mirror Image. http://www.mirror-image.com.
[22] D. Moore, G. Voelker, and S. Savage. Inferring internet denial of

service activity. In Proceedings of 2001 USENIX Security
Symposium, Aug. 2001.

[23] NS. (Network Simulator). http://www.isi.edu/nsnarn/ns/.
[24] V. Pal, E Druschel, and W. Zwaenepoel. Flash: An efficient and

portable web server. In USEN1X Annual Technical Conference,
June 1999.

[25] V. S. Pai, M. Aron, G. Banga, M. Svendsen, R Druschel,
W. Zwaenepoel, and E. M. Nahum. Locality-aware request
distribution in cluster-based network servers. In Architectural
Support for Prograraraing Languages and Operating Systems,
pages 205-216, 1998.

[261 S. Ratnasamy, E Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network. In Proceedings of ACM
S1GCOMM'01, Aug. 2001.

[27] A. Rowstron and R Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In
IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), pages 329-350, Nov. 2001.

[28] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical
network support for IP traceback. In Proceedings of the 2000
ACM SIGCOMM Conference, Aug. 2000.

[291 A.C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones,
E Tchakountio, S. T. Kent, and W. T. Strayer. Hash-based ip
traceback. In Proceedings ofACM SIGCOMM'01, Aug. 2001.

[30] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet appfications. In Proceedings ofACM SIGCOMM'O1,
Aug. 2001.

[31] D.G. Thaler and C. V. Ravishankar. Using name-based
mappings to increase hit rates. IEEE/ACM Transactions on
Networking, 6(1):1-14, Feb. 1998.

[32] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. R.
Karlin, and H. M. Levy. On the scale and performance of
cooperative web proxy caching. In Symposium on Operating
Systems Principles, pages 16-31, 1999.

[33] L. Zhang, S. Floyd, and V. Jacobson. Adaptive web caching. In
Proceedings of the 1997 NLANR Web Cache Workshop, June
1997.

3 6 0 5 th S y m p o s i u m on O p e r a t i n g S y s t e m s D e s i g n a n d I m p l e m e n t a t i o n U S E N I X A s s o c i a t i o n

