Piggybacking Related Domain Names to Improve DNS
Performance

Hao Shang and Craig E. Wills

Computer Science Department

Worcester Polytechnic Institute
Worcester, MA 01609

Email: {hao,cew@cs.wpi.edu

Abstract

In this paper, we present a novel approach to exploit théeekhips among domain names
to improve the cache hit rate for a local DNS server. Usingetrelationships, an authoritative
DNS server (ADNS) can piggyback resolutions for future éggeas part of the response mes-
sage for an initial query. The approach improves the cadiratei as well as reducing the total
queries and responses. The approach is particularly ttgdiecause it can be implemented
with no changes to the existing DNS protocol.

Trace-based simulations show more than 50% of cache miasdsecreduced in the best
case while straightforward policies, using frequency axevancy data for an ADNS, reduce
cache misses by 25-40% and DNS traffic by 20-35%. These gageshimprove if we focus
the policies on resource records with smaller authorgafiiLs. We also show improved
performance for hybrid approaches that combine the appnab renewal-based approaches.

In conjunction with this work we also did a study on current ®derformance for 20
locations in the United States. The outcome of this studyas the current average DNS
latency is generally in the range of 200-300ms, but ranga B00ms to multiple seconds if
we look at the 95% response time. Approaches, such as whatopege, that reduce the
amount of DNS traffic will improve the overall response time &pplications.

Keywords: DNS, Network Applications and Services, Caching

*This work is partially supported by a WPI Research Developrfgrant.

1 Introduction

As part of work on studying the correlations among networladi@ws we find many flows have
a temporal relationship with each other [16]. They happemcuaently or sequentially within
a short period of time. Many application flows such as stregmiVeb or Instant Messaging
are preceded by a DNS (Domain Name System) flow. Applicatiesthe Web also generate
many concurrent HTTP flows between a client and server. Témselations exist due to inherent
behavior of applications, content organization by a prekidr user access patterns.

Our overall work seeks to exploit relationships between $léov improved performance [16].
Some relationships have been exploited to improve apmitgerformance. The persistent con-
nection mechanism specified in HTTP/1.1 [6] is motivatedh®y abservation of many short con-
current or sequential connections existing between twdests. Motivated by the same problem,
a previous study uses an approach that bundles multipletshje one response [20]. Krishna-
murthy et al. proposed a DNS-enabled Web approach that us8sniessages to piggyback Web
content [10], which seeks to exploit the relationship bemwBNS and HTTP flows. Another study
[18] presents the methodology to use DNS queries to inferdladive popularity of any Internet
server that can be identified by a name. It exploits the aiatip that DNS lookups foreshadow
the access of those Internet servers. Unlike these prewotlss the work presented in this paper
is focused on exploiting the relationships that exist withiDNS flow.

As part of our work, we found that a local domain name serv@NB) frequently sends
more than one query to the same authoritative domain namers&DNS) for different names
within a short period of time. Using network flow data obtairi;om the WPI campus network in
early December 2003, we observed that 42% of flows involviegINS protocol for name server
lookups result in multiple packet exchanges between céadtserver.

As a means to reduce multiple-packet DNS flows between a D& server and an author-
itative DNS server, we hypothesize that in many cases theodtdtive DNS server can predict
subsequent requests by a local DNS server based on knowdédife usage and history of its
DNS accesses. For example, the content of Web pages at bissité&is often served by multiple
servers at the site, each with distinct names. Similangashing or Instant Messaging applications

use their own servers and are often combined with access lis@reers.

If an ADNS can piggyback resolutions of those related namésd response to the first query,
it will save the LDNS from sending further queries. We calktapproachPiggybacking Related
Names (PRN). It benefits end-users as they experience less latenDNS lookups. It also bene-
fits ADNSs as they receive fewer DNS requests. Assuming tiegtiggybacked resolutions do not
require additional packets, then the approach reducesutimder of packets needing to be routed
through the Internet.

In order to better understand the PRN approach, we brieflyvaxg the DNS mechanism.
DNS is a distributed database providing mappings betwedneades and names [12, 13]. The
domain name space is a hierarchical structure, where eatehhras a label. Associated with each
node is a set of resource records (RRs) that comprise theida@i@base. The database is divided
into non-overlapping zones that are distributed among nseneers with a group of root name
servers at the top of the hierarchy. Below the root serverganeric Top Level Domain (gTLD)
servers, which have NS RRs about delegated name serversries avithin a domain such as
.com . These delegated name servers, called authoritative domaane servers (ADNSs), have
complete information for the zone. There are many types af.RFhe most common type at an
ADNS is an “A’ RR that gives the mapping from a domain name téRwaddress. For each RR,
there is an associated time-to-live (TTL) parameter thdicates how long the RR can be cached.

The most important function of DNS is to return IP addressesfgiven domain name. The
process is typically initiated by a local application thatle an underlying resolver routine and
passes the name as a parameter. The resolver sends a quleeyldaal domain name server
(LDNS), which in turn sends queries to responsible domameaervers if RRs for the name are
not cached locally. As needed, the LDNS iteratively comroatgs with a root server then to a
gTLD server then the authoritative domain name server ®ndme. Once the LDNS obtains the
resolution, it returns the result to the caller application

A domain name lookup is required for any application thahtdes servers by names instead
of IP addresses. The latency incurred by the lookup proeedan influence the application’s
performance as a whole. In a previous study [19] we foundttfetmedian and mean lookup time
for non-cached domain names is on the order of several hdmditéseconds. About 20% of the
lookups took more than one second. Cohen et al. [4] indi¢he#gONS lookup time exceeds three

seconds for over 10% of Web servers. This result is congistiéth the measurement conducted

by Chandranmenon and Varghese [2]. Jung et al. found thaD¥-of DNS lookups take more
than one second based on traces collected in MIT and KAISTA®hore recent study shows the
average latency for resolving non-cached domain namegsdngm 0.95 seconds to 2.31 seconds
for a variety of clients [11]. All of these measurements sgighat the DNS lookup time for
non-cached domain names can influence the performancescdative applications.

Caching is effective for reducing user perceived latenay isncommonly adopted by DNS
implementations. Previous studies [19, 9, 8, 3, 2] have shtache hit rate varies from 50-90%.
However with the increasing number of networked applicetjadhere are many DNS requests
generated for a single application and many of the cachegsa@b DNS mappings have a short
time-to-live value in the cache. The result is that many estmi for non-cached or stale DNS
entries still exist. For example, in one day of WPI network/ftitata we observed over 40,000 DNS
flows per hour. Thus further reduction of cache misses isn&dessary for improving application
performance.

The PRN mechanism reduces the cache miss rate by ADNSs fmgdand piggybacking
DNS resolutions. Previous work has also examined appreacheduce the cache miss rate. We
compare our PRN approach with these approaches [3, 8]. lii@idve examine how the PRN
approach can be used in combination with these other appeeac

The remainder of the paper begins in Section 2 with a studysieks to better understand
current DNS latency performance. We then move on to a dismus$ the PRN approach in Sec-
tion 3 and how it compares with other works in Section 4. Wegtigate the potential usefulness
of PRN in Section 5. Implementation and policy issues areusised in Section 6. We evaluate
the performance of different PRN policies in Section 7. Bec8 compares performance among
PRN, other related approaches, and hybrid ones. We conglitidle summary of our findings and

directions for future work in Section 9.

2 DNSLatency

A central question about any proposal to improve DNS peréme is to understand to what
extent DNS performance is an issue. Recent work on DNS pedioce found that the average

time to resolve non-cached domain names ranged from 0.@mded¢o 2.31 seconds for a variety

of clients [11]. Previous studies had also found 10-20% ofSDNsolution times greater than one
second [19, 4, 2, 9]. These collective results indicate IiN$ latency performance is an issue for
applications.

In conjunction with our primary work on improving DNS perfoance, we performed a study
in June 2004 and again in February 2005 to better understareht DNS performance for a subset
of locations. We used 20 LDNSs that we identified as part ofiptes work [18]. These servers are
all located in the United States and comprise four categpndemmercial sites, educational sites,
Internet Server Providers (ISPs) serving commercial cangsaand ISPs serving home customers.
Servers in the first three categories were found by usinglidpetool to obtain the ADNS for an
institution and then using directed DNS “A’ record querieslétermine if these authoritative name
servers also played the role of LDNS for the institution.v@es in the last category were found by
using published addresses for DNS servers of ISPs knowmte Beme customers.

For testing DNS performance, we used a list of just over 500Que names randomly drawn
from 164,000 domain names from the logs discussed in Sestidhis list initially contained only
valid names that were successfully resolved by using a [deit, although in the second study
about 100 of the names were no longer valid. Each test indalgeng thedig DNS tool to direct
a DNS query for each domain name to each of the 20 LDNSs. Thereva possible situations.
First, a LDNS could have the resolution for a domain name edchn which case the total time
is simply the round-trip time (RTT) between tlgg client and the LDNS. Second, the LDNS
needs to recursively perform a DNS lookup before returnimggresolution. As part of the study
we repeatedly measured the time for an entry known to be daaha LDNS for establishing a
baseline RTT measure between dig client and each LDNS. We subtracted the mean of these
RTT measures from all resolution times to determine the D&Blution time by the LDNS for a
given name. This is a similar approach as used in [7] of usiNg Do measure the RTT between
arbitrary points in the Internet, but we use valid domain eamather than randomly generated
names.

To distinguish between cached and uncached entries dunadgsas of the results, we first ex-
amined the distribution of resolution times from our sepasiudy of entries known to be cached.
For most LDNSs, the difference between the minimum and 95% Wilue was within 10ms and

we used the 95% RTT value to determine cached/uncacheagsnfor LDNSs with more varia-

tion in RTT values, we used the mean RTT value as the thresh@é&confirmed the validity of
these time-based thresholds by comparing results agaiestvbere we checked for the presence
of the authoritative Time-to-Live (ATTL) value in the rehed entry to determine non-cached en-
tries. We had independently found the ATTL value for eaciyeim/e were able to make this check
for the latter timeframe in our study. We applied these tlmased thresholds for cached/uncached
entries for both timeframes in the study.

We used results for completed requests only with Mean, Med@% and 95% values for the
20 LDNSs in rank order shown in Figure 1. More than 5% of therigsedid time out for six of
the 20 LDNSs. We determined an effective timeout rate foh@dNS by subtracting the timeout
rate to the LDNS itself from the overall timeout rate. The 8%0” values in Figure 1 show the
rank order 95% levels if the effective timeout rates areuded for each LDNS.

3000

3000

2500 2500

2000 2000
1500 - 1500 -
1000 - 1000 -

500 500 ¢

Response Time Non-Cached Results (ms)
Response Time Non-Cached Results (ms)

O t : O - 77"‘ 77‘77 77\77 _7\‘7 7__7 77\

16 18 20

a. June 2004 b. February 2005

Figure 1: DNS Response Time for Non-Cached Results

An observation about the results is that the average respims is generally between 200
and 300ms for both timeframes, which is consistent with [b8} less than the average times on
the order of a second reported in [11]. This difference mayuobecause the tested LDNSs are
all in the relatively well-connected United States as welttee vast majority of the server names,
SO better average results than [11] are not surprising. &helts do show that over half of the
tested LDNSs exhibit a 95th percentile response time of avalf-second and 25% of the LDNSs
yield a 95% response time over one second. If we include tediout responses for valid server

names, then the majority of the LDNSs have a 95% responseofigreater than one second with

5

about half over three seconds.

The outcome of this study is that the current average DN®dgtes generally in the range of
200-300ms, but poor DNS performance is still a problem. ¥hie do not know the source of
all latency problems, potential causes are packet RTT megiand loss combined with relatively
long timeouts typically used by DNS clients. In addition5]found that request overload and
competition from periodic tasks can cause response prablenDNS servers. Approaches that
reduce the amount of DNS traffic will improve the overall reispe time for applications. A clear
direction for future work is to consider extending this nuthlogy to a wider range of LDNSs
with more work on the methodology to better understand holatalle the effects of caching and

timeouts.

3 ThePiggybacking Related Names Approach

As a means to improve DNS performance, Bhggybacking Related Names (PRN) approach is
motivated by the observation that many applications aratedlapplications generate a sequence
of DNS requests for “A” resource records to the same ADNS tondin names within the same
DNS zone of authority. The approach exploits the obsermdtiat most DNS packets are smaller
than the allowed size of the UDP packet in which they are edraind hence there is potential for
ADNS:s to include “Additional Records” in response to a dienequest. In RFC1034, it says the
“Additional Records” response field “carries RRs which mayhelpful in using the RRs in the
other sections.” In our work we propose that this field cao ks used to contain additional RRs
that the ADNS expects the client to subsequently requestthason the current request. As long
as including the additional records does not exceed thermanri allowed size of a DNS packet
then these additional records are delivered to the clietit no additional packets and minimal
cost on the packet-switched Internet.

Figure 2 illustrates the approach with the query/resporaegle between a LDNS client and
an ADNS for resolution of multiple server names. In this epannames from al.b.c to a5.b.c
belong to zone b.c. The first query (in this example is alibigyers a response that includes
resolutions for the additional names in the zone. Once diobtthe response, the LDNS caches all

included entries. Queries for names a2.b.c, a3.b.c, alo@4.b.c will be cache hits. We assume

the interval between T6 and T1 is bigger than the authoréaliTL (ATTL) for a2.b.c. So at T6,
the entry for a2.b.c is stale and a query for it causes a cad®e Wcache miss causes a new query

to be sent to the ADNS by the LDNS.

User Queries LDNS ADNS for zoneb.c

[T1- albc , cachemiss alb.c
<«1€2aLDb.C.ache all entries—resolutions for all

names in zonb.c
T2 @2bec o ache hit
«€ea2b.c
T3] abec , cachehit
€adb.c

< T4 a2.b,_c'_, cache hit Legend:
<Lea2b.c —> query
<+——response
TS| adbec : cache hit

T6- 32bC __» entry expired a2b.c
4—&32*D*Ccache all entries/—/resolutions for all

names in zonb.c

774 @bec 5 ache hit
< <« re:ab.b.c

alb.c 5 entry expired M’
<«€aLlb.C.ache all entrie—resolutions for all

names in zonb.c

Vs
—
oo

1

Interval between two queries to the ADNS for zone b.c Interval between two queries to the ADNS for zone b.c
Timeline

Figure 2: lllustration of the Piggybacking Mechanism

It is obviously not practical for an ADNS to piggyback resadns for all the names in a zone.
In reality, an ADNS only needs to piggyback resolutions pi@sts to be used in the interval before
the next query is needed. In the example both “T1 to T6” and td@8” are such intervals.

In Section 6 we study the expected number of these additirecalds as well as the amount of

available room in a DNS response.

A clear advantage of theiggybacking Related Names (PRN) approach is that it requires no
changes to the existing DNS protocol while reducing the amaf DNS traffic for local and
authoritative DNS servers. However the approach doesneghanges to the implementation of
LDNSs and ADNSs. An ADNS must determine which names to beyliggked and add them
to the Additional Records section of a response messages determination can be based on
existing DNS queries as well as from knowledge of the sitaemis. A LDNS must extract the
additional records and store them in its cache, which coald problem in unnecessarily filling
up the DNS cache, but in practice DNS cache records are snthlache space is not expected as
a limitation. In our experiments, we assume all piggybacdkedrds can be cached and will not be
evicted before they expire. In the situation when cacheespdanited, those piggybacked records
can be tagged and be the first to be replaced if the cache.is full

One potential security issue with including resource rdson the additional records field is
a DNS-based attack called “cache poisoning” that is caugeallbwing non-authoritative RRs
to be cached by LDNSs [1]. Our approach does not lead to toislgm because a ADNS only

piggybacks RRs for which it is the authoritative server.

4 Related Approaches

Previous research has examined other approaches formgdheicache miss rate at a LDNS. This
section discusses three proposed approaches and contparewith the PRN approach.

One approach to improve DNS performance is for clients tereselve server names [4]. This
approach requires applications such as Web browsers t@piealsed on Web content, which DNS
lookups will be required and to issue those lookups befaetntent is retrieved. While this type
of predictive policy is similar to the server-side predicts of our PRN approach it requires changes
in applications and allows predictions to be made basedambgtient-available information.

A second approach is to use separate DNS queries to renenDdt& cache entries [3]. This
approach has the advantage that these queries are dorgeamfttie critical path of an application
and will improve the performance of an application. The peobwith this approach is that it can

generate many DNS queries for which the result is never used.

The third approach is to piggyback requests for stale entio a needed request to an
ADNS [8]. This “renewal using piggybacking” (RUP) approamduses no additional DNS pack-
ets to be generated, but requires each LDNS to organizesalliree records according to their
zone. As in previous methods it also causes resolutionsrmérdhat may not be used again. This
approach also requires that the DNS protocol support maredhe request in a message.

To compare these approaches we examine the types of cackesrthat they avoid. Using the
terminology of [3], cache misses can be divided into two $ypérst-seen” (FS) misses, indicating
the first lookup of a DNS name; and “previously-seen” (PS)sess indicating entries that have
been previously seen, but expired. The two renewal appesachly reduce PS misses because
they can only renew entries that have been seen before. Eheegolving approach of [4] can
reduce both FS and PS misses, but will only do so based on thedimate needs of the application.
The PRN approach not only reduces FS misses based on seovdekige, but if those entries are
already cached, it can be used to restore these entriesitéulh&TL duration, thus reducing PS

misses.

5 Potential Impact

Before looking at the details of implementing the PRN appho@n important question is to ex-
amine its potential impact in terms of miss rates. It is kndiat LDNS caches satisfy over 50%
of DNS requests received from local applications. With ¢hlei$ rates, an argument can be made
that DNS performance is not a problem. However, a numberabbia justify the need to further
reduce the number of non-cached lookups. First, despitbigtehit rates, a substantial number
of DNS queries must still be satisfied by contacting the appate ADNS and as previously men-
tioned 40% of the DNS traffic in WPI flow data indicate multijd&lS requests. Second, our own
study in Section 2 along with recent studies have shown #iahty is an issue for a portion of
requests. Third, in the presence of a dropped packet thg detauch larger as LDNSs use a three
or five second timeout. Fourth, more applications leads teerdomain names at a site that must
be looked up and many of these names carry shorter ATTLsdw dliéxible load balancing.

We used three logs summarized in Table 1 to study the perfuzenaf DNS and examine

the potential impact of improvements. The first log is of daten WPI's primary DNS server,

which serves as both a LDNS and ADNS for the campus. For oynrgseas the log was filtered to
only consider queries from WPI clients that are handled leysirver in its role as a LDNS. We

augmented these data by fetching the ATTL and the ADNS(s9doh unique name in the log.

Table 1. Summary of Trace Logs Used

Name| Queries | Date Dur. From

WPI | 1169569| Apr’'03 | 28 hrs| WPI DNS
RTP | 1041275| Oct’'03 | 7 days| NLANR
SJ 457070 | Oct’'03 | 7 days| NLANR

The other two logs are generated from two NLANR Web tracesd$4lone in [3]. Each entry
of the Web trace is a request to an object identified by a umifessource locator (URL). We extract
the host name part from a URL as a query in a DNS trace. Becaasg browsers themselves
cache name-to-IP address mappings for a short time, we rhaksatne assumption as in [3] that
there is no DNS lookup incurred if the same name is requesfait avithin a 60-second window.

We used these three logs along with the augmented data tondieésthe miss rate performance
of DNS using a trace-driven simulation assuming the cacleenigty at the beginning of the sim-
ulation. The simulation mimics the regular behavior of a Ddé8he as well as an ideal behavior
where whenever an ADNS receives a query, it returns resolsitior all the names in its zone.
Subsequent queries that belong to this zone are satisfiallylas long as these entries are still
fresh.

Results in Figure 3 show that 26% of requests in the WPI DNSdsglt in misses and this
percentage can be potentially reduced to 10% for a relatiygavement of over 60%. Similar
results are shown in Figure 4 for the RTP log where the peagenof total misses is over 45%
with a potential reduction to under 25% for a relative imgment of about 50%. Similar results
were obtained for the SJ log and are not shown.

The collective results show significant reductions are ipés$n reducing both first-seen and
previously-seen misses. Prediction of first-seen requastsiot possible in renewal-based ap-
proaches while prediction of previously-seen requestsnekthe lifetime of the corresponding

cached entries.

10

For All Entries in WPI Log

30 T L
FS Miss £Exxx1
PS Miss rzz71
25 L Total Miss Exxx1 |
20 q
[}
j=2)
8
g 15 i
2
[5)
o
10
5
0 N
Regular PRN-Ideal
Approaches

Figure 3: Potential Performance Improvement for Ideal PRNc? with WPI Log

For All Entries in RTP Log

50 T T

FS Miss £Exxx1
45 + PS Miss rzz71 4
Total Miss Exxx]
40 -

35 b
30 b
25 b

Percentage

20
15
10 ¢

Regular PRN-Ideal

Approaches

Figure 4: Potential Performance Improvement for Ideal PRNcl? with RTP Log

11

6 Implementation and Policy | ssues

Having established the potential usefulness of the PRNaagpr; in this section we discuss spe-
cific implementation issues regarding the number of resoregcords that need to and can be pig-
gybacked on a DNS response. We also describe specific molai@n ADNS to make decisions

on what records to piggyback and what information the ADNStmuaintain for these policies.

6.1 Piggybacked Responses

We used the data from the WPI DNS log to determine the numbeaspionses that would ideally
be piggybacked on a response. We used the request intenFitgure 2 to define DNS “bundles”
for a zone. A DNS bundle includes all unique server nameshierzbne that occur in a request
interval. The size of this bundle determines the number ocSD&6ponses that would be useful for
the ADNS of the zone to return.

Using this definition, we found about 20,000 DNS bundles ex@NS log. Figure 5 shows the
cumulative distribution function (CDF) for the number ofrmes inside each bundle. As shown,
about half of bundles have only one name—the response-tsgdiile the other half have two or
more names. The results show that only 5% of bundles have timanel5 entries and only 15% of
the bundles have more than 5 entries. These results areragaogifor the PRN approach as they
indicate it is useful for half of the bundles and the numbenarhes that need to be piggybacked

is not large.

6.2 DNS Response M essage Capacity

DNS messages are limited to 512 bytes in size when sent over[UB], however DNS extension
mechanisms [17] extend the limit to 1280 bytes. These mesmasmare supported in the latest 9.0
version of the widely-used BIND software [5]. We checkeddires of DNS response packets for
the 164K unique domain names collected from the three logjalite 1. The CDF for the response
message size for the unique names as well as for messagbasaeson access patterns are shown
in Figure 6. With respect to the trace-based statistic, mestonses are 100-300 bytes, which
affords 200-400 remaining bytes if we use the tradition@B1limit and many more bytes if we

use the limit for extended DNS.

12

0.95 |-
0.9
0.85 |
0.8
W 075
[a]
O o7th
0.65 |-
0.6
0.55 |
05
DNS Bundle —+—
0.45 ‘ ‘ ‘ ‘ . :
0 2 4 6 8 10 12 14 16
Names
Figure 5: CDF of Size of DNS Bundles
&
(@]

'
unig names ——
traqe-based names -—------

0 100 200 300 400 500 600
Bytes

Figure 6: CDF of Sizes for DNS Response Packets on a Uniquesauch a Trace-Based Set

13

Given the available room, we examined the number of addititype “A’ records that can be
piggybacked on a response. If we consider type “A” RRs in |Rd size of all its fields are fixed
except the name. While a domain name can be long, it is nossageto put the full name in that
field. DNS provides a mechanism that enables domain namésite their common suffix. Using
the same trace-based statistics, we observe that over 90&brafs have a first distinguishing label
(excluding “www") less than 10 characters while the mediad average are between 4 and 5.
Putting those statistics together, the length for a piggled record is likely between 18 and 27
bytes (14 bytes for all fields with fixed length, 2 bytes for goénter to the common suffix, 1 byte
for the length count for the first label, and 1-10 bytes forftrst label itself). With available space
of 200-400 bytes, the total RRs that can be piggybacked dvecka 7 (200/27) and 22 (400/18).
For extended DNS, the range is between 36 and 65.

We considered the situation when one domain name maps topraulP addresses, which
requires multiple RRs for one name. We find that over 90% ofalomames have less than five
associated IP addresses while 72% have only one or two. g #kig factor into account, the total
names that can be piggybacked are 1-22 for the tradition@® [@Ngth and 7-65 for the extended
DNS length.

6.3 Piggyback Policies

The previous two sets of results indicate that a sizeableepéage of the records that could be
piggybacked will fit in the additional space of a DNS responsecases where there are more
potential names than can be piggybacked, an ADNS needs ¢cdhaolicy to decide which names
to include. In addition to thadeal policy, which we described in Section 5, we define two pradttic
policies: Most Frequently Queried (MFQ) First andMost Related Query (MRQ) First. The former
policy gives preference to piggybacking names that are lpopo the zone independent of the
current request, while the latter policy gives preferennqaggybacking names that are most related

to the current query. These policies are described in mdeal @es follows.

MFQ(n): The ADNS selects up ta names in the order of their requested frequencies.
For this policy, the ADNS needs to track query frequenciesfch name in its zone

and maintain them in a Frequency Ordered List (FOL).

14

MRQ(n,r): The ADNS selects names in the order of their relevancy ¢éoctirrent
guery. A Relevancy Ordered List (ROL) is maintained for eaaime. ROL(a) denotes
the relevancy list for domain name “a”. The MRQ policy chansames from the
ROL list with a relevancy greater tharfor the current query up to the bound-af If

there is still remaining space then names from the FOL arechdd

Figure 7: FOL and ROLs for zone “cnn.com.”

Figure 7 shows an example of a FOL and ROLs for the zone “cnmi.b@ased on queries from
the WPI DNS log. The first line contains the name of first ADN$ gorted order) for the zone
“cnn.com.” The second line is the FOL for the zone and hasaties in the order of their query
frequency. All subsequent lines are the ROLSs for each narhe fifst element on each line is the

name and the remaining elements are its related names imdbead their relevancy values.

6.4 Maintenance of | nfor mation

Each ADNS must maintain data structures as shown in Figuesdgport piggybacking of related
names. In the combination of the logs in Table 1, we obselvedrtaximal number of names in a
zone is 1650 and the maximal number of ROLs is 627.

The FOL and ROLs can either be set up manually by adminisgatho know the internal
connections among names, or by tracking query patterns. example shown in Figure 7 is
generated by analyzing the query patterns for the zoneonm’ The FOL is created by counting
gueries to each name. For generating ROLS, we group queoiesthe same client to the same
ADNS that occur within a short period of time (5 minutes in edperiment). Whenever a name
happens to be the first query in a group, the counter for iteesponding ROL is increased by
1. For all other names (after removing duplicates) in theigr@ach is counted once in the ROL
for the first query. The relevancy value from name “a” to narn&i$ calculated by dividing the
counter of “b” in ROL(*a”") by the counter of ROL(“a”). For itance, in Figure 7, line 3 is the ROL
for query “www.cnn.com”. The following number “723” is th@gnt for the ROL and indicates

there are 723 times “www.cnn.com” is the first query in a grotlipe number “0.78” following

15

“i.cnn.net” is the relevancy value from “www.cnn.com” ta¢nn.net”, which indicates out of 723,
78% of times “i.cnn.net” follows “www.cnn.com”. The relatiship table is created based only on
the WPI DNS trace. In general, it is expected that a serveldameate more accurate lists based
on a larger number of client users. The internal relatigmslaind access patterns between these
domain names are not expected to change in the time scaleitf o these relevancy tables can

be computed offline or when the ADNS server is not busy.

7 Evaluation

7.1 Methodology

We evaluate the PRN approach by trace-drive simulationseoideal policy as described in Sec-
tion 5 as well as the MRQ and MFQ policies described in Sedi8nWe use the relative decrease
in the cache miss percentage as the metric to evaluate eéici pikne regular policy is used as
the baseline to compare effects of other policies with alls shown as the relative decrease in
misses compared to the total number of first-seen (FS) andopdy-seen (PS) misses for the
regular DNS policy. Results for the ideal policy from Sent®are shown for reference.

We studied the MFQ and MRQ policies with fixed upper bounds.ctMmse 5 and 15 as two
upper bounds based on results from Section 6. In additiohdset bounds, the MRQ policy is
tested with relevancy values of 0.5 and O for a total of four@pblicy combinations. Note that
relevancy bound equal to 0 means the relevancy value sheutbigiger than 0, hence a qualified

name must have some relevancy, even if weak.

7.2 Resaults

We used the first half of a log to generate relevancy tablescanducted the simulation on the
second half of the log beginning with an empty DNS cache. €Balts are shown in Figure 8 and
Figure 9 for the WPI and RTP logs respectively. SimulatioritenSJ log produced similar results
as the RTP log and they are not shown here. In the figures, edohlsars corresponds to a policy.
The first bar in a set shows the relative (to the total missethéoregular DNS approach) decrease

of first-seen misses, the second bar indicates the relatimeedse of previously-seen misses, and

16

the third bar is the relative decrease of the total misses.

For All Entries in WPI Log
0.7

F‘S Miss R
PS Miss tzzzZ1

0.6 Total Miss kxxx3 |

05
04

0.

w

L7

0.2

relative decrease in cache misses

0.1

o

ideal MRQ(15,0) MRQ(15,5) MFQ(15) MRQ(5,0) MRQ(5,5) MFQ(5)

policies

Figure 8: Relative Decrease in Cache Misses Over Differehties on WPI Log

The results show that both the FS misses and PS misses aifecaigty reduced when any
piggyback policy is in use. The MRQ and MFQ policies reducettital misses in the range from
25% to close to 40%. The results are significant because tieegtdained by also reducing the
number of queries by the same amount.

In terms of the policies, MRQ policies consistently outperi MFQ policies when they have
same bound constraints. Among MRQ policies, those havingaler relevancy bound perform
better. As MFQ{) is similar to MRQ(, 1), we can summarize the performance relationship
among the policies a8/ FQ(n) < MRQ(n,.5) < MRQ(n,0). These results indicate names
with relevancy, even weak, should be given higher prefer¢han simply piggybacking popular
names. Increasing the bound helps reduce cache missewveputhe smaller bound results in a
25% reduction in cache misses.

The same methodology is used for the RTP log with the reshili&/s in Figure 9. The relative
decrease in cache misses for this log varies between 25%58adv&h similar variation between

the policies as we found with the WPI log.

17

For All Entries in RTP Log
0.5

Fé Miss e~
PS Miss rzz71 |

045 Total Miss &xxxa

0.4 |
0.35 74
03
0.25
0.2 |

0.15

relative decrease in cache misses

0.1

0.05

NZ:IINZ N

Ideal MRQ(15,0) MRQ(15,5) MFQ(15) MRQ(5,0) MRQ(5,5) MFQ(5)

policies

Figure 9: Relative Decrease in Cache Misses over Differehtieés on RTP Log

7.3 Resultsfor Short ATTLs

As a means to test the PRN approach for resource records eldtively short ATTLs, we fil-
tered the log for queries to servers whose resolution havdADbf 30 minutes or less. This filter
removed roughly half of the original DNS requests. Thesends must be requested more fre-
guently by a LDNS and we hypothesize that the PRN approachdimurelatively more effective
at reducing the number of cache misses. Results for thiysiedbr the WPI log are shown in
Figure 10 where the total miss rate for regular DNS is 32% asgpewed to 26% in Figure 3. The
results in Figure 10 show relative decreases in cache nfissasearly 30% to over 40%.

We pushed this analysis further and filtered the log to inelodly entries with an ATTL of 5
minutes or less. This filter removed roughly 80% of the logiestwith 46% of requests for these
entries resulting in a cache miss. As shown in Figure 11, B Policies reduce the cache miss
rate by over 40%. We found a similar tone of results when wetlttddsame analysis for the RTP

log. The results indicate this approach is more useful a&ifid.s grow shorter in duration.

7.4 Resultsfor Total DNS Queries

Another direction we explored was the total number of DNSrigisereduced by our approach.
This avenue of exploration is relevant because while the BRNoach reduces DNS query traffic

to ADNSs, it has little effect on traffic to root and gTLD serse The previous results treat all

18

For All Entries Whose ATTL <= 30min in WPI Log

0.6 T T T T T L— T
FS Miss i==<1
PS Miss tzzzZ1
Total Miss ExXxx3
0.5 4
n
i
2
£ ot
2 04 B
g 2 7
£ v
o 03 F 4
(%}
©
o
=3
L7}
° 02
Q
=
k<t
[
0.1 N

ideal MRQ(15,0) MRQ(15,5) MFQ(15) MRQ(5,0) MRQ(5,5) MFQ(5)

policies

Figure 10: Relative Decrease in Cache Misses over DiffePatities on WPI Log Entries with
ATTL < 30min.

For All Entries Whose ATTL <= 5min in WPI Log

0.5 T T T T T I T
FS Miss i==<1
045 PS Miss rzz71 |

Total Miss ExXxx3

04 1
0.35 1
03 -
0.25
02

0.15

relative decrease in cache misses

01}
0.05 N

N N N N N N
Ideal MRQ(15,0) MRQ(15,.5) MFQ(15) MRQ(5,0) MRQ(5,5) MFQ(5)

policies

Figure 11: Relative Decrease in Cache Misses over DiffePatities on WPI Log Entries with
ATTL < 5min.

19

cache misses as incurring the same cost when in fact theirfivstat LDNS encounters a domain
name such ag.foo.com it must first find the ADNS forfoo.com, which may involve contacting
a root server as well as.aom gTLD server before the query is sent to the ADNS foo.com.

A subsequent access ydoo.com would only require a query be sent to the ADNS foo.com
assuming the information about the ADNS is still fresh.

To model the situation where multiple DNS queries may be edéd resolve a domain name
we obtained the ATTL for all ADNSs in the WPI log. We then rexar simulation on the WPI
log to determine the relative decrease of not only requestiset ADNS, but the decrease for all
DNS requests, which include those to obtain the authoritpafmone. We did ignore queries to root

name servers, which are relatively small in number. Thelt®ave shown in Figure 12.

For All Entries in WPI Log

0.7 T T
ADNS FS Miss £xxX31
ADNS PS Miss rzz71

ADNS FS+PS Miss Exxx1 |
Total DNS Miss

o2

%%

£

0

Yote!
LXX52

20%6%
o4
!

22

relative decrease in cache misses
o

K
&9
%
%
’»‘
K

Dot
%
XX

22

X2
S
XX

%

e

X%
22

X2

o%e%!

,...,.
2

X

policies

Figure 12: Relative Decrease in All DNS Cache Misses Ovdeght Policies on WPI Log

The results show that the additional DNS queries generatedithin the authority for a zone
lower the relative decrease in cache misses by less than Bi%small reduction indicates that the
number of queries generated to gTLD servers is much lesshiearumber of queries sent directly
to the ADNSs (about 20%) because the ATTLs for “A’ records geaerally smaller than those
for records of ADNSs. Figure 12 shows that the PRN approadhoes the total number of DNS
requests by 20-35%.

To better understand the costs of query to a gTLD server seasUADNS we used theig
DNS client from WPI to measure the respective times. Usimgrtames from the WPI log we

found a mean response time of 47ms for queries to gTLD seavelss mean of 145ms for queries

20

to the ADNSs. For queries from a home DSL client we found cpsetd gTLD servers take 63ms
on average versus an average of 142ms for queries to the ADNf&se results, along with the
simulation results, indicate that the requests to ADNSstlaedominant DNS costs so that an

approach such as PRN does yield significant cost savings.

8 Comparison and Combination with Other Approaches

Our final analysis was to compare the performance betweemmpnoach and others proposed
to reduce cache misses. Because our approach is compaiiblthesothers, a combination with
these approaches is possible. We evaluate these hybriokaghy@s on all the three logs with results

for the WPI log shown.

8.1 Performance Comparison Among Approaches

The proactive caching approach proposed in [3] has sevelialgs. Among them, R-LFU is one
of the better and more straightforward policies. We impleted R-LFU(r) for comparison pur-
poses. The renewal using piggyback (RUP) approach propo$8also has several policies. We
implemented RUP-MFU, which performs best among all prat@pproaches. Among our PRN
policies, MRQ performs better than MFQ. We choose MRQ(1&0}the comparisons between
approaches. We refer it as PRN-MRQ(15,0).

Figure 13 shows the relative decrease in cache miss pegasntar the three approaches rel-
ative to normal DNS. The reduction in total cache missesaselffor all the three approaches.
When considering FS misses and PS misses separately, RWPaWé R-LFU policies behave
almost the same, where FS misses are untouched and theioedates for PS misses are close.
While PRN-MRQ does not reduce PS misses as much as the othdatsweduction on FS misses
compensates for the difference. Despite the fact that tHempeance gains among the three ap-
proaches are similar, their costs are different. For thatran of the R-LFU policy we studied,
it introduces 56% more queries and responses than normal DINSPRN-MRQ and RUP-MFU
policies do not produce additional queries. Instead, byced) the total misses, the total queries

and responses are reduced as well.

21

For All Entries in WPI Log

0.4 T
FS Miss £Exxx1
PS Miss rzz71
0.35 | Total Miss kxxx1]|

0.3

0.25 22

02

0.15

01

0.05 E

0
PRN-MRQ(15,0) RUP-MFU R-LFU(1)

relative decrease in cache misses

Approaches

Figure 13: Performance Comparison among Approaches on \&(pI L

8.2 Combination of PRN and RUP

In Figure 13 we observe that PRN-MRQ reduces more FS missiés RUP-MFU reduces more
PS misses. This result encourages us to consider the ginggsibcombining the two approaches.
Both approaches use piggybacking, but one makes the decisithe server side while the other
does on the LDNS client side.

To combine these policies we define a new policy called “piggk related names with client
hint first” (PRN-CHF), where the client DNS server piggybads stale names in the query mes-
sage and the ADNS uses these hints as well as its own relevabley The policy is described

as:

PRN-CHF, r): The total number of names that can be piggybacked is balibge
n, but instead of first looking at the corresponding ROL, theNDgives priority to
the names piggybacked in the query message. If there isstill space left, the ROL

and FOL are checked in turn.

We show the performance of PRN-CHF and its two componentoaggpes in Figure 14. As
we expected, PRN-CHF has the same FS miss rate as PRN-MRQ@esdrhe PS miss rate as
RUP-MFU, so it performs the best among the three.

22

For All Entries in WPI Log

0.45 —
FS Miss £Exxx1
04 PS Miss £zzZ1 |
2 Total Miss Exxx]
3 035}
IS
2 o3} Z
Q
8 7
c 025F
?
© 0.2
[
5]
g 015
g
£ 01f
°
0.05
PRN-CHF(15,0) PRN-MRQ(15,0) RUP-MFU

Approaches

Figure 14: Performance Comparison among PRN-CHF and itsdamponent Approaches on
WPI log

8.3 Combination of PRN and R-LFU

We also studied the combination of these policies with aatenewal. As the R-LFU approach is
initiated by the LDNS cache and the PRN approach is initiateedn ADNS, the two approaches
can complement each other.

We show performance of the various hybrid approaches alatigRvLFU in Figure 15. In
order to distinguish our original PRN approaches from thgbrid versions with R-LFU, we refer
to those three hybrid approaches with a prefix “R-" to theigioal names. As with the R-LFU
approach, each approach is tested with different aggesssss in prefetching. As aggressiveness
increases, the cache misses are further reduced, but meniegjare generated.

The hybrid approaches show significant performance gaiRggure 15 compared with either
R-LFU or their original PRN approaches. With about the sanmaler of queries, R-PRN-MRQ
performs much better than R-LFU. For instance, having ingsiqueries as the regular approach,
R-PRN-MRQ reduces 54% of total misses while R-LFU reduceé®.2&R-PRN-CHF performs
slightly better than R-PRN-MRQ as it is the combination & BRN, RUP and R-LFU approaches.

Renewal also benefits the original PRN approach at the egpemaore queries.

23

0.9

0.8 |

0.7 |

SRS ST Y

0.6
05
04

03 |

relative decrease in cache misses

02

R-PRN-Ideal —+—
R-PRN-CHF(15,0) - 1
R-PRN-MRQ(15,0) &
R-LFU &
L L L L 1
15 2 25 3 35 4

relative increase in queries

01

Figure 15: Performance for Hybrid Approaches on WPI Log

9 Summary and Future Work

This work is motivated by research on studying the relatigggsamong network data flows. We
found many cases where a local DNS server sends multiple Rig6as to the same authoritative
DNS server within a short period of time. If the ADNS can poedihese near-future queries once
it receives the first one then it can send answers for all ehtiwith the first response. We call this
the piggybacking related names (PRN) approach. It helpsceebbcal cache misses and therefore
reduces user-perceived DNS lookup latency. By piggybackinltiple answers in one response
packet, the total queries and responses are also reducesh alteviates the workload on both
LDNSs and ADNSs.

Compared with other approaches that also address imprtngagcache hit rate, our approach
is novel. We explictly use the relationships among quenesalow an ADNS to push resolutions
for predicted names to the LDNS. The PRN approach reducdsfiost-seen misses as well as
previously-seen misses while other approaches reducthpittter. The cost of PRN is also low
as it reduces the number of query and response packets whiliéring no changes to the DNS
protocol.

Trace-base simulations show more than 50% of cache misedseceeduced if prediction is
perfect and response packet space is plentiful. Realisticiges, using frequency and relevancy
data for an ADNS, reduce cache misses by 25-40% and all DNf& thy 20-35%. These per-

24

centages improve if we focus the policies on resource reowith smaller ATTLs. We also show
improved performance by combining the PRN approach witkweh-based approaches to create
hybrid approaches that perform significantly better thairttomponent approaches.

In conjunction with this work we also did a study on current®performance for 20 locations
in the United States. The outcome of this study is that theeatiaverage DNS latency is generally
in the range of 200-300ms, but range from 500ms to multiptosés if we look at the 95%
response time. The reduced cache misses for the PRN approlddde reflected in improved
response latency and timeout performance.

An obvious direction for future work on the PRN approach iek@amine alternate policies
such as ones to consider the ATTL for an entry. Policies shalgb be tested with additional logs.
Another direction of future work is to deploy the PRN apptoatan ADNS. We expect it should
perform better than our simulation because an ADNS has mmrglete knowledge of its site
contents and it can also aggregate reference patterns fgyeater number of clients. An ADNS
will not know if predicted names are actually used, but it datect and modify its piggybacked
list as it learns new access patterns that could have bedita@. A final direction to explore with
the approach is the different types of sites and contentaficch it is most useful. Sites with few
servers and long authoritative TTLs likely do not need invpraent in DNS performance while we
expect more dynamic sites would be the first to benefit frosdpproach. Another clear direction
for future work is to extend the DNS latency performance rmétogy to a wider range of LDNSs
with more work on the methodology to better understand hoatalle the effects of caching and

timeouts.

10 Acknowledgments

We thank the National Laboratory for Applied Network Resbdor making proxy logs available.
Data collection at the NLANR is supported by National SceeRoundation grants NCR-9616602
and NCR-9521745.

25

References

[1] CERT/CC. Vulnerability Note VU109475.
http://www.kb.cert.org/vuls/id/109475

[2] Girish P. Chandranmenon and George Varghese. Redu@bdatency using reference point
caching. InProceedings of IEEE Infocom 2001, pages 1607-1616, 2001.

[3] Edith Cohen and Haim Kaplan. Proactive caching of DN®rds: Addressing a performance
bottleneck. InProceedings of the Symposium on Applications and the Internet, pages 85-94,
San Diego-Mission Valley, CA, USA, January 2001. IEEE-TCI.

[4] Edith Cohen and Haim Kaplan. Prefetching the means faudeent transfer: A new ap-
proach for reducing web latencgomputer Networks, 39(4):437-455, July 2002.

[5] Internet Software Consortium. BIND DNS Server.
http://www.isc.org/products/BIND/

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinté. Leach, and T. Berners-Lee.
Hypertext Transfer Protocol — HTTP/1.1, June 1999. RFC 2616

[7] Krishna P. Gummadi, Stefan Saroiu, and Steven D. GribKleg: Estimating latency be-
tween arbitrary internet end hosts. Pnoceedings of the Second ACM SGCOMM Inter net
Measur ment Workshop, Marseille, France, 2002.

[8] Baekcheol Jang and Kilnam Chon. DNS resolution with vesleusing piggyback. IrPro-
ceedings of the Twelfth International World Wide Web Conference (Poster), Budapest, Hun-
gary, May 2003.

[9] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robertrido Dns performance and the
effectiveness of caching EEE/ACM Transactions on Networking, 10(5):589-603, October
2002.

[10] Balachander Krishnamurthy, Richard Liston, and Meh&abinovich. DEW: DNS-
enhanced web for faster content delivery.Piroceedings of the Twelfth International World
Wide Web Conference, Budapest, Hungary, May 2003.

[11] Richard Liston, Sridhar Srinivasan, and Ellen Zeguraversity in DNS performance mea-
sures. InProceedings of the Second ACM SSGCOMM Internet Measur ment Wor kshop, pages
19-31, Marseille, France, 2002.

[12] P. Mockapetris. Domain Names - Concepts and FaciliNesember 1987. RFC 1034.

[13] P. Mockapetris. Domain Names - Implementation and Bigation, November 1987. RFC
1035.

[14] NLANR. network traffic packet header traces.
http://pma.nlanr.net/Traces/

26

[15] KyoungSoo Park, Vivek S. Pai, Larry Peterson, and Zhe§VaCoDNS: Improving DNS
performance and reliability via cooperative lookups. S/imposium on Operating Systems
Design and Implementation, San Francisco, CA, December 2004.

[16] Hao Shang and Craig E. Wills. Exploiting flow relationshto improve performance of net-
worked applications. Technical Report WPI-CS-TR-04-18mputer Science Department,
Worcester Polytechnic Institute, May 2004.
http://www.cs.wpi.edu/"hao/tech-rep/use_relation.pd f.

[17] P. Vixie. Extension Mechanisms for DNS (EDNSO0), Augli899. RFC 2671.

[18] Craig E. Wills, Mikhail Mikhailov, and Hao Shang. Infémg relative popularity of Inter-
net applications by actively querying DNS caches.Ptoceedings of the ACM SGCOMM
Internet Measurement Conference, Miami, Florida, November 2003.

[19] Craig E. Wills and Hao Shang. The contribution of DNSKap costs to web object retrieval.
Technical Report WPI-CS-TR-00-12, Worcester Polytechmstitute, July 2000.
http://www.cs.wpi.edu/"cew/papers/tr00-12.ps.gz :

[20] Craig E. Wills, Gregory Trott, and Mikhail Mikhailov. &ing bundles for web content deliv-
ery. Computer Networks, 42(6):797—817, August 2003.

27

