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Abstract. Publishing social network data for research purposes has raised serious concerns for in-
dividual privacy. There exist many privacy-preserving works that can deal with different attack
models. In this paper, we introduce a novel privacy attack model and refer it as a mutual friend
attack. In this model, the adversary can re-identify a pair of friends by using their number of mutual
friends. To address this issue, we propose a new anonymity concept, called k-NMF anonymity, i.e.,
k-anonymity on the number of mutual friends, which ensures that there exist at least k-1 other friend
pairs in the graph that share the same number of mutual friends. We devise algorithms to achieve the
k-NMF anonymity while preserving the original vertex set in the sense that we allow the occasional
addition but no deletion of vertices. Further we give an algorithm to ensure the k-degree anonymity
in addition to the k-NMF anonymity. The experimental results on real-word datasets demonstrate
that our approach can preserve the privacy and utility of social networks effectively against mutual
friend attacks.
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1 Introduction

With the advance on mobile and Internet technology, more and more information is recorded
by social network applications, such as Facebook and Twitter. The relationship information
in social networks attracts researchers from different academic fields. As a consequence,
more and more social network datasets were published for research purposes [1]. The
published social network datasets may incur the privacy invasion of some individuals or
groups. With the increasing concerns on the privacy, many works have been proposed for
the privacy-preserving social network publication [2, 3].

Tai and Yu proposed the friendship attack model [4], which addressed the issue that an
attacker can find out not only the degree of a person, but also the degree of his friend.
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Figure 1: Friend lists on Facebook

It solves the attacks based on the degrees of two connected vertices. But it is not suffi-
cient to just protect against the friendship attack as there are more information available on
the social network. For example, the graph in Fig. 3(a) is a k2-degree anonymized graph
with k = 2. The number around each vertex represents the degree of this vertex. If an
attacker can obtain the number of mutual friends between two connected vertices, he still
can identify (D,F ) from other friend pairs, as only (D,F ) has 2 mutual friends. This will be
explained in more details later. In most social networking sites, such as Facebook, Twitter,
and LinkedIn, the adversary can easily get the number of mutual friends of two individ-
uals linked by a relationship. As shown in Figure 1, one can directly see mutual friend
list shared with one of his friends on Facebook. Usually, the adversary can get the friend
lists of two individuals from Facebook, such as the friend list in Figure 1, and then get the
number of mutual friends by intersecting their friend lists.

In this paper, we introduce a new relationship attack model based on the number of mu-
tual friends of two connected individuals, and refer it as a mutual friend attack. Figure 3
shows an example of the mutual friend attack. The original social network G with vertex
identities is shown in Figure 3(b), and can be naively anonymized as the network G’ shown
in Figure 3(c) by removing all individuals’ names. The number on each edge in G’ repre-
sents the number of mutual friends of the two end vertices. Alice and Bob are friends, and
their mutual friends are Carl, Dell, Ed and Frank. So the number of mutual friends of Alice
and Bob is 4. After obtaining this information, the adversary can uniquely re-identify the
edge (D,H) is (Alice,Bob). Also, (Alice, Carl) can be uniquely re-identified in G’. By com-
bining (Alice,Bob) and (Alice, Carl), the adversary can uniquely re-identify individuals
Alice, Bob and Carl. This simple example illustrates that it is possible for the adversary
to re-identify an edge between two individuals and maybe indeed identify the individuals
when he can get the number of mutual friends of individuals. Note that we do not consider
the mutual friend number of two nodes if they are not connected. For convenience, we say
the number of mutual friends of two nodes connected by an edge e as the number of mutual
friends of e.

In order to commit a mutual friend attack, the adversary only need to acquire the number
of mutual friends of two victims. Based on this kind of simple background knowledge, an
adversary can issue the attack on published social network to re-identify the edge corre-
sponding to the relationship between two victims as well as associated edge information,
such as email content, the weight reflecting sensitive transaction expenses [20]. From the
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Figure 2: Examples of the k-NMF anonymization

above example, we can see that the adversary may indeed re-identify an individual by
combing some mutual friend attacks. Therefore, the sensitive vertex information associ-
ated with an individual, such as religious beliefs, hobbies, will be disclosed to the attacker.

To protect the privacy of relationship from the mutual friend attack, we introduce a new
privacy-preserving model, k-anonymity on the number of mutual friends (k-NMF Anonymity).
For each edge e, there will be at least k-1 other edges with the same number of mutual
friends as e. It can be guaranteed that the probability of an edge being identified is not
greater than 1/k. We propose algorithms to achieve the k-NMF anonymity for the origi-
nal graph while preserving the original vertex set in the sense that we allow the occasional
addition but no deletion of vertices. As pointed out in [4, 29], by preserving the original ver-
tex set, various analysis on the anonymized graph, such as identifying vertices providing
specific roles like centrality vertex, influential vertex, gateway vertex, outlier vertex, etc.,
will be more meaningful. The experimental results show that our approaches can maintain
much of the utility of social networks evaluated by some commonly used metrics [4, 21–
26, 29] concerning the network characteristics, such as the clustering coefficient, average
path length, and betweenness centrality.
Challenges. As the k-NMF anonymity model is more complicated than the k-degree anonymity
model, more challenges need to be handled. First, adding or removing a different edge
may affect a different number of edges on their mutual friends. In the k-degree anonymity
model, the adversary attacks using the degree of the vertex. Adding an edge only increase
the degrees of the two end vertices of this edge. In the k-NMF anonymity model, the adver-
sary attacks using the number of mutual friends. Adding an edge can increase the numbers
of mutual friends of many edges. In Figure 3(b), adding an edge between Dell and Frank
will affect the NMFs of (Dell, Alice), (Frank, Alice), (Dell, Bob), (Frank, Bob), and (Dell,
Frank). Second, we need to provide a criterion on choosing where to add or delete the
edge while considering the utility of the graph. In fact, we map the k-NMF anonymiza-
tion problem into an edge anonymization problem in contrast to the vertex anonymization
problem in the k-degree anonymization. Edges are anonymized one by one. Adding or
deleting an edge should not destroy the anonymization of the already anonymized edges.
To anonymize an edge, we can get many candidate edge operations and need to choose the
best one. Besides, we need to consider the impact of the newly added edges on the number
of mutual friends.
Contributions. Our contributions can be summarized as follows. (1) We introduce the
k-NMF problem and formulate it as an edge weight anonymization problem where the
edge weight is the NMF of the two end vertices. (2) We explore the geometry property of
the graph to devise effective anonymization algorithms while preserving the vertex set to
achieve better utility. We introduce the principle of preserving anonymized triangles in the
graph to avoid the problem of repeatedly re-anonymizing edges during the anonymiza-
tion process. (3) For the edge addition, we use the breadth-first manner to preserve util-
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ity. We also introduce the maximum mutual friend criterion to break the tie on select-
ing candidate vertex to connect. (4) For the edge deletion, we explore the triangle link-
ing property to delete edges between vertices already belonging to a triangle connection
in the network to avoid repeated re-anonymization of edges. (5) We devise an algorithm
which can anonymize the k-NMF anonymized graph to simultaneously satisfy the k-degree
anonymity, while preserving the vertex set. (6)The empirical results on real datasets show
that our algorithms perform well in anonymizing the real social networks.

The rest of the paper is organized as follows. We firstly introduce the related work in
Section 2. Then we define the problem and design algorithms to solve it in Section 3 and 4.
We conduct the experiments on real data sets and conclude in Section 5 and 6.

2 Related Work

The data sharing or publishing leads to the privacy protection issues. Early works mainly
focus on privacy-preserving data publishing on relational data. The attack models can be
divided into three categories, record linkage, attribute linkage, and table linkage. In the
attack of record linkage, an adversary try to re-identify the owner of a record based on
the quasi-identifers QID. The records with the same QID value forms a group. If the
number of records in a group is very small, the attacker could identify the victim’s record
from this group with high probability. To prevent such kind of attacks, the k-anonymity
was proposed by Samarati and Sweeney [5]. In this privacy model, there are at least k
records in each qid group. Then the probability of a record be re-identified is not greater
than 1/k. The k-anonymity model cannot provide protection under the attack of attribute
linkage. If all the records in a qid group have the same sensitive attribute value v, then the
owner of record in this group has value v with probability as 100%. The l-diversity model
[6] ensures that there exist l distinct sensitive values in each qid group. But this privacy
model does not consider the distribution of sensitive values in a qid group. The t-closeness
model [7] requires that the distribution of sensitive attribute in each group is similar to each
other among the whole dataset. In the attack of table linkage, an attacker try to make sure
whether the record of an individual exist in a released data table, and the corresponding
privacy model is δ-presence [8], which limit the probability of the presence be no more than
δ. A comprehensive survey on the privacy-preserving data publishing can be found in [9].

In the past few years, the privacy preservation is extended to the social network publi-
cation with the blooming research on the social network analysis. The privacy-preserving
approaches can be divided into two categories, the clustering-based approaches and graph-
editing-based approaches. The clustering-based approaches firstly design method to clus-
ter the vertices into different groups, and then replace each group with a super vertex. The
edges between two groups are represented by a super edge. If each super vertex in the clus-
tered graph contains at least k original vertices, the probability of re-identify a user is no
more than 1/k. Hay et al. [10] were the first to put forward the clustering-based approach to
defend the attacks based on the vertex refinement, subgraph queries, and hub fingerprints.
Further, Campan and Truta [11] designed algorithms to cluster the vertices while consider-
ing the information lost on the vertex label and graph structure. Zheleva and Getoor [12]
proposed the clustering-based approach to preserve the sensitive link. Cormode et al. [13]
and Bhagat et al. [14] put forward the (k, l)-clustering model based on the bipartite graph.
Campan et al. [15] devised a p-Sensitive k-Anonymity model to ensure that each cluster
contains at least p distinct sensitive values. The clustering-based approaches only publish
the clustered graph with super vertices and edges. It significantly reduce the utility of the
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Figure 3: Mutual friend attack in a social network

original network.
The graph-editing-based approaches can be divided into two categories, the randomization-

based approaches and k-anonymity-based approaches. Hay et al. [16] proposed a Rand
Add/Del method, which randomly deletes k edges from the network and then randomly
adds k new edges into the network. In addition to using the Rand Add/Del method, Ying
and Wu [17] applied the Rand Switch method to randomize the original graph. It switch
the existed edges (u, v) and (t, w) as non-existed edges (t, v) and (u,w). Ying and Wu [17]
designed Spctr Rand Add/Del and Spctr Rand Switch methods to maintain most of the
spectral characteristics of original networks. Hanhijarvi et al. [18] and Ying et al. [19] ap-
plied the Rand Switch method to keep the degree sequence unchanged while preserving
the privacy. They constructed the Markov chain based on the edge switched graphs, and
used the Metropolis-Hastings sampling to find a randomized graph which can maintain
the clustering coefficient or average path length of original networks. These methods can-
not provide a quantifiable guarantee on the privacy protection such as the k-anonymity
provided.

The k-anonymity-based approaches implement k-anonymity on different background knowl-
edge, and these approaches are the most related to our work. Backstorm et al. [21] pointed
out that simply removing identities of vertices cannot guarantee privacy. Many works have
been done to prevent the vertex re-identification with the vertex degree. Liu et al. [22] stud-
ied the k-degree anonymization which ensures that for any node v there exist at least k-1
other vertices in the published graph with the same degree as v. Tai et al. [4] introduced a
friendship attack, in which the adversary uses the degrees of two end vertices of an edge to
re-identify victims. Associated with community identity for each vertex, in [29] they pro-
posed the k-structural diversity anonymization, which guarantees the existence of at least
k communities containing vertices with the same degree for each vertex. As these works
only focus on the vertex degree, they cannot achieve the k-NMF anonymity, which focuses
on the number of common neighbors of two vertices.

Many works have also been done to prevent the vertex re-identification based on the sub-
graph structural information. Zhou and Pei [23] proposed a solution to battle the adver-
sary’s 1-neighborhood attacks. Cheng et al. [24] proposed the k-isomorphism model, which
disconnects the original graph into k-isomorphic subgraph. To protect against multiple
structural attacks, Zou et al. [25] proposed the k-automorphism model, which converts
the original network into a k-automorphic network. But it does not prevent the mutual
friend attack. The network in Figure 2(a) satisfies the 2-automorphism, but the edge (3, 4)
is not protected under the mutual friend attack. This is because the edge (3, 4) does not
have mutual friends while all the others have one. Wu et al. [26] proposed the k-symmetry
model, which gets a k-automorphic network by orbit copying. All these algorithms need
to introduce many new vertices and adjust many edges to achieve their targets. Therefore,
the utility of the original graph will be decreased too much. In any case, these works are
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aimed at different types of attack model from ours as illustrated in Figure 2(a).
Considering the sensitive labels of vertices, Zhou et al. [28] and Tai et al. [29] proposed the
l-diversity model, which ensure that the vertices in each group satisfying k-anonymity con-
tains at least l distinct sensitive labels. Other works focus on the problem of link disclosure
[30, 31], which decides whether there exists a link between two individuals. It is different
from the relationship re-identification introduced in this section. Besides, the differential
privacy is attempted to enforce on the social network data [32–39].

3 Problem definition

In this paper, we model a social network as an undirected simple graphG(V,E), where V is
a set of vertices representing the individuals, andE ⊆ V ×V is the set of edges representing
the relationship of individuals.

Definition 1. The NMF of an edge. For an edge e between two vertices v1 and v2 in a graph
G(V,E), i.e., v1, v2 ∈ V , e ∈ E and e = (v1, v2), the number of mutual friends of the edge e
is the number of mutual friends of v1 and v2.

Let f be the number sequence of mutual friends for G, in which entries are sorted in de-
scending order, i.e., f1 ≥ f2 ≥ ... ≥ fm. Let l be the list of edges corresponding to f ,
i.e., fi is the NMF of the edge li. For example, in Figure 4(c), f = {2, 2, 2, 2, 1, 1, 1, 1},
and l = {(v1, v3), (v2, v3), (v3, v4), (v3, v5), (v3, v4), (v3, v5), (v1, v2), (v1, v4), (v2, v5), (v4, v5)}.
Similar to the power law distribution of the vertex degree [40], the NMF also has the same
property [41].

Property 2. Scale free distribution of NMFs [41]. The NMFs of edges in the large social
network often have a scale-free distribution, which means that the distribution follows a power law
or at least asymptotically.

Definition 3. Mutual friend attack. Given a social network G(V,E) and the anonymized
network G′(V ′, E′) for publishing. For an edge e ∈ E, the adversary can get the number fe

of mutual friends of e. Mutual Friend Attack will identify all candidate edges e′ ∈ E′ with
the number fe′ of mutual friends as fe.

Suppose that the candidate edge set of an edge e is E′
e = {e′|e′ ∈ E′,fe′ = fe}. An

adversary re-identifies the edge e with high confidence if the number of candidate edges is
too small. Hence, we set a threshold k to make sure that for each edge e ∈ E, the number
of candidate edges is no less than k, i.e., |E′

fe
| ≥ k. We define the k-anonymous sequence

before defining the k-NMF anonymous graph.

Definition 4. k-anonymous sequence[22]. A sequence vector f is k-anonymous, if for any
entry with value as v, there exist at least k − 1 other entries with value as v.

Definition 5. k-NMF. A graph G′(V ′, E′) is k-NMF anonymous if the number sequence f ′

of mutual friends of edges in G′ is a k-anonymous sequence.

Definition 5 states that for each edge e ∈ E, the number of candidate edges in G′ is
no less than k. Consider the graphs in Figure 5 as an example. There are three edges
in Figure 4(a), and the NMFs of all these edges are equal to 1. Hence, this graph is a
3-NMF anonymous graph. As the six edges in the graph of Figure 4(b) have 2 mutual
friends, this graph is a 6-NMF anonymous graph. The graph in Figure 4(c) has four edges

TRANSACTIONS ON DATA PRIVACY 7 (2014)



Privacy Preserving Social Network Publication Against Mutual Friend Attacks 77

(a) 3-NMF (b) 6-NMF (c) 4-NMF

Figure 4: Examples of k-NMF anonymous graph

(v1, v3), (v2, v3), (v3, v4), (v3, v5) with the NMF as 2, and the NMFs of other four edges are
equal to 1. Hence, this graph is a 4-NMF anonymous graph. Some properties on the num-
ber of mutual friends are described as follows.

Proposition 6. Given a graph G(V,E), the number of mutual friends of an edge e ∈ E is equal to
the number of triangles containing e in G .

Take the graph in Figure 4(c) as an example. The mutual friends of vertices v2 and v3 are
v1 and v5, so the number of mutual friends of the edge e = (v2, v3) is 2. It is equal to the
number of triangles containing e. These triangles are (v1, v2, v3) and (v2, v3, v5).

Proposition 7. Let G(V,E) be a graph and f be the number sequence of mutual friends of edges
in G, where |E| = m. Then

∑m
i=1 fi = 3nM, where nM is the number of triangles in G and fi is

the number of mutual friends of the i-th edge.

Different from the degree sequence in previous work [22], which can maintain the number
of entries in the sequence, the number sequence of mutual friends will have more entries
added into it when new edges are added into the graph. Besides, according to Propositions
6 and 7, the number of mutual friends is related to the number of triangles in the graph.
Therefore, adding one edge will affect the NMF of many edges, and adding a different edge
may affect the NMF of a different number of edges. This can be illustrated by an example
shown in Figure 2(b). After we add the edge (1, 2), the NMFs of all ten edges increase by
one. If we add the edge (4, 7), only the NMFs of edges (1, 4), (1, 7), (2, 4), and (2, 7) increase
by one. Therefore, one cannot anonymize a graph by simply minimizing the number of
changed edges.
Anonymized Triangle Preservation Principle (ATPP). In our algorithms, we anonymize
the edges in the graph one by one. An anonymized triangle is a triangle with some edges
already anonymized in the process of the graph anonymizing. The Anonymized Trian-
gle Preservation Principle aims to preserve the anonymized triangles containing already
anonymized edges. It means that we neither create some additional anonymized triangles
via edge addition nor destroy any via edge deletion.

Creating (destroying) a triangle containing an already anonymized edge by edge addition
(deletion) will increase (decrease) the NMF of this edge, indeed destroy the anonymiza-
tion of this edge. This leads to repeatedly anonymization of this edge. By preserving the
anonymized triangles, we can avoid this problem during the anonymization process.

Definition 8. k-NMF anonymization problem. Given a graph G(V,E) and an integer k,
the problem is to anonymize the graph G to a k-NMF anonymous graph G′ with edge
addition and deletion, such that the vertex set of the original graph G is preserved.

For example, in the original social network G in Figure 5(a), both edges (A,D) and (D,H)
can be uniquely identified by their NMFs. Hence,G does not satisfy the 2-NMF anonymous

TRANSACTIONS ON DATA PRIVACY 7 (2014)



78 Chongjing Sun, Philip S Yu, Xiangnan Kong, Yan Fu

CCBBA 2
2 11

CCBBA 2
2 11

2

HD
1

2

3

4

1
1

2
HD

1 4

4

1
1

2

JJFF
11 1

JJFF
11 2

(a) Original network G

CCBBA 2
2 11

CCBBA 2
2 11

2

HD
1

2

3

4

1
1

2
HD

1 4

4

1
1

2

JJFF
11 1

JJFF
11 2

(b) 2-NMF anonymous G′

Figure 5: An example of k-NMF anonymization

condition. In order to make the original social networkG satisfying the 2-NMF anonymous,
we can have many edge operations. In these operations, we can add an edge between
vertices A and J , and transform G into a 2-NMF anonymous network G′ in Figure 5(b).
Therefore, only by an edge addition, we can finish the 2-NMF anonymization problem. The
k-NMF anonymization problem will try to find a solution which can transform the original
social network G into a new network G′ satisfying the k-NMF anonymous condition and
change the original social network G as little as possible.

4 k-NMF anonymization approach

In the above section, we have shown that changing one edge may affect the NMFs of other
edges. To handle this challenge, we utilize the scala free distribution property shown in
Property 2, and introduce the principle of preserving the anonymized triangles. By explor-
ing the geometry property of the graph, we devise two effective anonymization algorithms
to preserve the utility while satisfying the k-NMF anonymity.

4.1 Algorithm ADD

In this subsection, we aim to anonymize the original graph only by edge addition. We
organize edges into groups, and anonymize the edges in the same group to have the same
NMF. The k-anonymity requires there exist at least k edges in a group. The main process of
k-NMF anonymization is shown in Figure 6. First, more than k edges are put into an edge
group, and each edge of this group is anonymized by the proposed BFSEA method in the
following section. Then the edges in the social network are gradually put into some edge
group and anonymized by the BFSEA. The edges in the edge list are dynamically updated
as some new edges are added into the network while some are removed. Hence, the k-
NMF anonymization mainly focuses on two problems, “how to group edges“ and “how
to anonymize edges in a group“. Property 2 states that the NMFs of edges in large social
networks follow a scala free distribution. Hence, only a small number of edges have a high
NMF. We first anonymize these edges, and many edges with low NMF do not need to be
processed. Next, we consider how to group edges.

4.1.1 Group edges

Suppose the original graph is G(V,E) and the gradually anonymized graph is G′(V ′, E′).
Initially, we sort the NMF sequence f in descending order and construct the corresponding
edge list l as described in Section 3. We mark all edges as “unanonymized”, and then
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anonymize the edges one by one. Iteratively, we start a new group GP with the group
NMF, gf , equal to the NMF of the first unanonymized edge in l. Then we select the edges
with NMF equal to gf and mark them as “anonymized”. We iteratively select the first
unanonymized edge in l and anonymize it by adding edges to increase its NMF to gf .
After anonymizing this edge, we mark it as “anonymized” and put it into GP . Adding
new edges affects the NMF of some other edges, and these new edges will be added into f
and l. Hence we resort the sequences f and L after each edge is anonymized. Algorithm
1 shows the detailed description of the ADD algorithm. Next, we consider when we start
another new group.

An intuitive method, named IntuitGroup, starts another group when the number of
edges in the group GP is equal to k. Alternatively, to consider the anonymization cost,
we propose a greedy method to decide when we start another group after |GP | ≥ k,
named GreedyGroup. Suppose that f (u) ⊆ f is the NMF sequence corresponding to the
unanonymized edge list l(u) ⊆ l. Notice that f (u) and l(u) are dynamically updated with
f and l after anonymizing each edge. Similar to the consideration in [22], after putting k
edges into GP , GreedyGroup iteratively checks whether it should merge the edge l

(u)
1 into

GP or start another group. The decision is made according to the following two costs based
on the number of added mutual friends.

Cmerge = (gf − f
(u)
1 ) + I(f

(u)
2 ,f

(u)
k+1) (1)

Cnew = I(f
(u)
1 ,f

(u)
k ) (2)

where I(f (u)
i ,f

(u)
j ) =

∑j
l=i(f

(u)
i − f

(u)
l ).

For Eq.(1), we put l(u)1 into GP . l(u)1 has f
(u)
1 mutual friends, so we need to add gf − f

(u)
1

mutual friends for anonymizing l
(u)
1 . To satisfy k-anonymity, we need to put at least k edges

into a new groupGP ′. Hence we put edges l(u)2 , ..., l
(u)
k+1 intoGP ′. As we only adding edges,

the group NMF ofGP ′ is the maximum NMF among f
(u)
2 , ...,f

(u)
k+1, i.e., f (u)

2 . To anonymize
l
(u)
i , f (u)

2 − f
(u)
i mutual friends need to be added. For Eq.(2), we put l(u)1 , ..., l

(u)
k into a new

group GP ′, and the group NMF of GP is f
(u)
1 . Hence Cmerge is the cost for anonymizing

k + 1 edges while Cnew is for k edges. So if Cmerge is less than Cnew, we anonymize L(u)
1
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Algorithm 1 The ADD Algorithm (GreedyGroup)

Input: Original graph G(V,E), k
Output: k-NMF anonymized graph G′(V ′, E′)
Initialization: G′ = G, and mark all edges as “unanonymized”. Compute

and sort the sequences f and l. f (u) = f , l(u) = l, Gf = ∅
1: while l(u) 6= ∅ do
2: if |l(u)| < 2k then do cleanup-operation and break.

3: GP = {e|e ∈ l(u) and f
(u)
e = f

(u)
1 }; gf = f

(u)
1 ; Gf = Gf ∪ gf .

4: Mark any e ∈ GP as “anonymized”; update f (u) and l(u).
5: while |GP | < k or (|GP | ≥ k and Cmerge ≤ Cnew) do

6: Anoymize l
(u)
1 by BFSEA. GP = GP ∪ l

(u)
1 , update l(u) and f (u).

7: end while
8: end while
9: return G′(V ′, E′).

Algorithm 2 The ADD&DEL Algorithm

Input: Original graph G(V,E), k
Output: k-NMF anonymized graph G′(V ′, E′)
Initialization: G′ = G, and mark all edges as “unanonymized”. Compute

and sort the sequences f and l. f (u) = f , l(u) = l, Gf = ∅
1: while l(u) 6= ∅ do
2: if |l(u)| < 2k then do cleanup-operation and break.

3: EE = {e|e ∈ l(u) and f
(u)
e = f

(u)
1 };

4: if |EE| ≥ k, then new group GP = EE, and mark any e ∈ GP as

anonymized, Gf = Gf ∪ f
(u)
1 , update l(u) and f (u) and continue.

5: GP = ∅, gf = round(mean(f
(u)
1 , ...,f

(u)
k )). Record all initial info.

6: while f
(u)
1 ≥ gf do

7: Anonymize l
(u)
1 by edge-deletion.

8: if anonymize failed, then roll back to initial info, and gf = gf +1;

else mark l
(u)
1 as anonymized and GP = GP ∪ l

(u)
1 ; update f (u)

and l(u).
9: end while

10: Gf = Gf ∪ gf .
11: while |GP | < k do

12: Anoymize l
(u)
1 by BFSEA. GP = GP ∪ l

(u)
1 , update l(u) and f (u).

13: end while
14: end while
15: return G′(V ′, E′).

1

A

B

C

D

E F

G

H

Figure 7: An example of cleanup operation

and merge it into GP , and check the next unanonymized edge. Otherwise we start another
new group with l

(u)
1 .

For each edge e, GreedyGroup looks ahead atO(k) other edges to decide whether merging
e with this group or starting a new group. Therefore, the time complexity of GreedyGroup
is O(k|E|).

4.1.2 Cleanup-operation

In each iteration of the ADD algorithm, it checks the number of unanonymized edges, nu.
If nu < 2k, the remaining edges are put into a group; and if nu < k, k − nu edges needed
to be added following the ATPP, so these k edges can form a group. New vertices will be
added into the graph if the ATPP cannot be satisfied. Finally, we have an unanonymized
edge set Eu, and need to anonymize them to have the same NMF.

Next, we anonymize the edges Eu in this group. Usually, we set the group NMF as the
largest NMF among unanoymized edges, denoted as gf . Then we sum the difference as
sd =

∑
e∈Eu

(gf − fe), where fe is the number of mutual friends of the edge e, and gf =
maxe∈Eu

fe. If sd >= k/2, then we add sd nodes and 2 ·sd edges into the graph. That means
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that for each unanonymized edge e, we add gf − fe vertices and link them with the two
end vertices of e. As all the newly added (2 · sd >= k) edges have only one mutual friend,
they can form a new group. Then we mark the new edges as “anonymized” and achieve
the task. If sd < k/2, then we enlarge the group NMF gf = gf + 1, and repeat the above
process.

Take the social network in Figure 7 as an example. We suppose that k is set as 3, and
(A,B), (E,F ) and (F,G) are the remaining unanonymized edges. Then we put these edges
Eu into a group, and gf is the NMF of edge (E,F ), i.e., 3. As nmf(E,F ) = 3, the edge
(E,F ) can be marked as “anonymized” directly. The NMF of edge (F,G) is 2, hence we
add gf −f(F,G) = 1 vertexH into the network, and linkH with both F andG. Similarly, for
the edge (A,B), we need to add 2 vertices and link them with A and B as Figure 7. Then
all the edges (A,B), (E,F ) and (F,G) have 3 mutual friends. Beside, as all the new edges
(F,H),(G,H),(A,C), (A,D), (B,C) and (B,D) have only one mutual friend, they can be
put into a new group. As k = 3, these edges can be marked as “anonymized”.

4.2 BFS-based Edge Anonymization(BFSEA)

In this section, we consider how to anonymize an edge by edge addition while preserving
the utility. There are three challenges to increase the NMF of an edge via adding edges.
First, the added edge should not affect the NMF of already anonymized edges. Secondly,
the added edge should minimize the effect on the utility of the graph. Thirdly, the NMF
of the newly added edges should not disrupt the current anonymization process which is
progressing in descending order of the NMF value.

Before anonymizing an edge (u, v), the ADD algorithm has created some anonymized
groups and got a set Gf containing the group NMFs of these groups. Let gf be the NMF
of the current group GP , and we put gf into Gf . Anonymizing the edge (u, v) means that
we need to increase the NMF of (u, v) to the current group NMF gf , i.e. we need to create
some new triangles containing this edge. Then we try to find some candidate vertices and
add new edges to create new triangles. Considering the utility of the graph, we find the
candidate vertices based on the Breadth First Search (BFS).

From the nodes u and v, BFS-based Edge Anonymization traverses the graph in a breadth-
first manner. For the i-hop neighbors of u and v, represented by neigi(u) and neigi(v), edge
anonymization finds the candidate vertices from neigi(u) ∪ neigi(v) and iteratively link the
best one with u or v to create a new triangle. We formulize the NMF of the edge (u, v) as
nmf(u, v).

4.2.1 Candidates generation

We search the candidate vertices for edge (u, v) in a BFS manner. In the i-hop neighbors of
u and v, many vertices cannot be the candidate vertices as violating the ATPP. The vertices
w need to satisfy the following conditions to be the candidates in the set CVi.

a. w ∈ neigi(u) ∪ neigi(v).

b. (w, u, v) 6= 4.

c. ∀x ∈ {u, v} and z ∈ V ′, if (w, x) 6∈ E′, (w, z) ∈ E′ and (x, z) ∈ E′, then (x, z) and
(w, z) must be unanonymized.
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PADM 2013BFS-based Edge Anonymization(BFSEA)

Candidates generation CVi

anonymized

u v

w1

w2

w3

Only w1 is the candidate 
of edge (u,v)

Figure 8: An example of candidates generation

Condition b) states that (u, v, w) is not a complete triangle, which needs to add edges to
create a new triangle. This mainly focus on the case when i = 1, where w may links with
both u and v. Condition c) follows the ATPP, which guarantees that there will be no effect
on the already anonymized edges.

We suppose that the graph in Figure 8 is a small part of a social network. During the
network anonymiztion, the edge (w2, w3) is anonymized. To anonymize the edge (u, v),
some new triangles need to be created. As the edge (w2, w3) is anonymized, the vertex
w2 cannot be the candidate vertex. This is because if we link the vertices w2 and v, the
anonymization of edge (w2, w3) will be destroyed. Hence, only the vertex w1 can be the
candidate vertex for the edge (u, v).

4.2.2 Candidates selection

After getting all the candidate vertices satisfying the conditions, we can add new edges
between u,v and w ∈ CVi to increase the NMF of (u, v). We iteratively select a vertex from
CVi to increase the NMF of (u, v) until nmf(u, v) reaches gf or CVi is empty. If nmf(u, v) =
gf , this edge is anonymized successfully.

In each iteration, we need to select the best one which can preserve the most utility of the
graph. Based on the link prediction theory [42], we select the candidate vertex wmax which
guarantees that nmf ′(wmax, u) +nmf ′(wmax, v) is maximum, where nmf ′(w, x) is defined
in Eq.3.

nmf ′(w, x) =

{
0 (x,w) ∈ E′

nmf(w, x) otherwise
(3)

Where x ∈ {u, v}. This is referred to as the maximum mutual friend criterion for adding edges.
The more mutual friends between the two vertices, the less impact the edge addition will
have on the utility of the graph.

Figure 9 shows two examples of candidates selection. In Figure 9(a), we try to select the
best one from the candidate vertices in the neig1(u) ∪ neig1(v), i.e., from w1, w2, w3 and
w4. As the number of mutual friends of w2 and v is maximum, the best candidate for edge
(u, v) in G1 is w2. The Figure 9(a) shows the example of candidates selection in the 1-hop
neighbors while Figure 9(b) in the 2-hop neighbors. In Figure 9(b), the candidate vertices
of edge (u, v) are w2 and w4. As nmf(u,w2) + nmf(v, w2) = 1 + 0 = 1 and nmf(u,w4) +
nmf(v, w4) = 1 + 2 = 3, the best candidate for edge (u, v) in Figure 9(b) is w4.
The selection criteria described in the Eq.3 only can be used for the candidates in the 1-hop

and 2-hop neighbors. For all the candidates w in the i-hop neighbors with i ≥ 3, the NMF
of (x,w) is 0. In this situation, we randomly select a candidate vertex wmax from CVi.
As we anonymize edges in descending order of NMF, we must consider the different

situations on the NMF of the new edge (x,wmax). In the situation nmf(x,wmax) >= gf , if
nmf(x,wmax) is not equal to any g

′

f ∈ Gf , (x,wmax) cannot be added into the graph. This
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Candidates selection

select a vertex from CVi guarantees that

u v

w1

w2

w3

w4

wmax = w2 u v

w1
w3

w4

wmax = w4

w2

w5

(a) A simple network G1
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u v

w1

w2

w3

w4

wmax = w2 u v

w1
w3

w4

wmax = w4

w2

w5

(b) A simple network G2

Figure 9: Examples of candidates selection
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Candidates selection

u v (x)

w1 (wmax) w2

wmax=w1

anonymized

w3 w4 (w)

anonymized

Figure 10: An example of candidate dynamic removal

is because we cannot anonymize this edge in descending order anonymization. Otherwise,
we add (x,wmax) and mark it as “anonymized”. We put this edge into the group with NMF
equal to g

′

f . If nmf(x,wmax) < gf , add (x,wmax) and mark it as “unanonymized”.

4.2.3 Candidates dynamic removal

After a new triangle was created with the vertex wmax ∈ CVi, we need to consider the
effect of this triangle on the other candidate vertices in CVi. To ensure the linking u or v
with vertices in CVi follows the ATPP, some vertices will be dynamically removed from
CVi.

If w ∈ CVi connected with wmax and the edge (w,wmax) is anonymized, then we remove
w from CVi. This is because adding either (w, u) or (w, v) creates a new triangle containing
(w,wmax), and destroys the anonymization of (w,wmax).

For any vertex w ∈ CVi with (w,wmax) is unanonymized, if (wmax, x) is anonymized and
(w, x) 6∈ E′, here x ∈ {u, v}, then we remove w from CVi. This is because if we select this w
as a new maximum vertex, we need to add (w, x) to create a new triangle containing (u, v),
meanwhile we created a triangle containing (wmax, x). This destroyed the anonymization
of (wmax, x).

Take the simple network in Figure 10 as an example. To anonymize the edge (u, v), there
are 4 candidate vertices w1, w2, w3 and w4, and they are put into the candidate set CV1.
Supposed that w1 is the best candidate wmax, and the edge (w1, w2) is anonymized. Then
after linking the vertices w1 and v, the vertex w2 should be removed from the set CV1.
This is because if we link w2 and v, the anonymiztion of edge (w1, w2) will be destroyed,
resulting to repeatedly anonymizing edge (w1, w2). As the situation in the last part of
Section 4.2.2, we suppose that the new edge (w1, v) is marked as “anonymized”. Then
we need to remove vertex w4 from CV1. This is because if we select w4 as the next best
candidate, we need to link the vertices w4 and v, which creates a new triangle containing
the already anonymized edge w1, v; this destroys the anonymization of edge (w1, v).
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4.2.4 Edge anonymization

From the nodes u and v, BFS-based Edge Anonymization traverses the graph in a breadth-first
manner. The BFSEA iteratively generates a candidate set CVi from the i-hop neighbors of u
and v, where i increases from 1 to∞. After getting the candidate set CVi, BFSEA iteratively
selects the best one from CVi by candidates selection and creates a triangle to increase the
NMF of (u, v), then updates the CVi by the candidates dynamic removal. These operations
will break when the NMF of (u, v) reaches the current group NMF gf or no more candidate
vertex can be found from the whole graph.

If nmf(u, v) reaches the current gf , i.e. (u, v) is anonymized successfully, we mark it as
”anonymized”. If the BFSEA cannot successfully anonymize this edge, adding new vertices
can achieve the task. Linking one new vertex with the end vertices of this edge can increase
the NMF of this edge by 1. The newly added edges have only one mutual friend, and will
be anonymized at the last step of the anonymization algorithm. The above scenario is a
pathological case that rarely occurs as in our experiments, no new vertices were added in
all cases.

By the breadth-first manner, the BFSEA first link u or v with w from the 1-hop neighbors.
Thus after (x,w) is added, the shortest path length (SPL) between x ∈ {u, v} and w will
only decrease to 1 from 2 with little effect to the utility. Then we gradually increase the
value of i, and link u and v with w from the i-hop neighbors, which decreases the SPL
between x and w from i to 1. Hence, we prefer the candidates from i-hop neighbors with
smaller i value, i.e. breadth-first manner, which can have less effect to the utility.

To get the neigi(u) and neigi(v) for every i, we execute the Breadth-First Search with the
time complexity as O(|V |+ |E|). When i = 1, we need to compute the neigi(u)∩neigi(v) to
ensure (w, u, v) 6= 4 stated in the candidates generation, and the time complexity is O(|V |).
When i ≤ 2, to get the best candidate from CVi, we compute the nmf(w, x), x ∈ {u, v},
with the time complexity asO(|V |). Hence, for each candidate set, the total running time of
the NMF computation is O(|V |2). When i ≥ 3, we randomly select a candidate from CVi to
create a triangle, and the time complexity is O(1). Hence, the time complexity of candidates
selection is O(|V |2). Therefore, the time complexity of BFSEA is O(|V |2).

As there are O(|E|) edges need to be anonymized, the time complexity of the ADD algo-
rithm is O(|E||V |2).

4.3 Algorithm ADD&DEL

In this subsection, we consider the graph anonymization by edge addition and deletion.
Usually, anonymization combining edge deletion with addition will remove or add fewer
edges than only applying edge addition. Indeed, it can improve the utility of the anonymized
graph. Before introducing the ADD&DEL algorithm, we discuss the method on anonymiz-
ing an edge by edge deletion.
Edge-deletion. For an unanonymized edge (u, v), the algorithm finds any candidate edge
(x,w), where x is u or v, which satisfies the following conditions.

a. Both (u,w) and (v, w) exist and are unanonymized.

b. For any vertex z linked with x and w, edges (x, z) and (w, z) are still unanonymized.

c. If both (u,w) and (v, w) satisfy condition b), we choose the one with fewer mutual
friends.
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Edge-deletion
For an unanonymized edge (u,v), find candidate edge (x,w), x is u or v

a) Both (u,w) and (v,w) exist and are unanonymized
b) For any vertex z linked with x and w, edges (x,z) and (w, 
z) are still unanonymized.
c) If both (u,w) and (v,w) satisfy condition b), we choose 
the one with fewer mutual friends.

u v

w1

w2

w3
(u,w3) cannot be, as (w2,w3) is anonymized;

We choose (w1,v), as (w1,u) has more 
friends than (w1,v).w4

anonymized

anonymized

Figure 11: An example of edge-deletion

Condition c) is the reverse of the maximum mutual friend criterion for adding edge. The
fewer the mutual friends, the weaker the relationship. Hence dropping the edge has less
impact to the utility. After (x,w) is deleted, the shortest path length between x and w will
only increase to 2 from 1 with little effect to the utility. Condition a) and b) follows the
anonymized triangle preservation principle to guarantee that there will be no effect on the
already anonymized edges.

Take the simple networkG in Figure 11 as an example.In this network, we suppose that the
edges (w2, w3) and (w2, v) are already anonymized. For the edge (u, v), the edges (u,w2),
(u,w3) and (v, w3) cannot be the candidate edges. These edges do not satisfy the condition
a) or b). For the edges (u,w1) and (v, w1), we choose (w1, v) as the candidate edge according
to the condition c).

For an unanonymized edge (u, v), edge-deletion initially finds all candidate edges satisfying
the edge-deletion conditions, and then puts them into the set CE. During each iteration,
the edge emin ∈ CE with the least mutual friends will be removed from the graph and
the set CE. The algorithm stops when the NMF of (u, v) reaches the group NMF gf or
CE becomes an empty set. If CE is empty and the NMF of (u, v) is not equal to gf , the
anonymization of (u, v) is unsuccessful; Otherwise, we mark (u, v) as “anonymized”.

The edge-deletion is the reverse of the methods in ADD algorithms. The running time
mainly costs on the computing of mutual friends, so the complexity of edge-deletion is
O(|V |2).
The ADD&DEL Algorithm. This algorithm is shown in Algorithm 2, which anonymizes
the graph by edge addition and deletion. Similar to the ADD algorithm, ADD&DEL checks
the number of unanonymized edges with NMF equal to the NMF of the first unanonymized
edge in sorted sequence L(u). If there are more than k edges, we put them into this group
and start another group. Otherwise, we need to anonymize edges to form this group. To
gradually anonymize edges and create this group, we initially set the group NMF, gf , as
the mean value of NMFs of the first k unanonymized edges. We record all initial information
before anonymizing this group. For the unanonymized edge with NMF greater than gf ,
we use edge-deletion to anonymize it. If we cannot successfully anonymize this edge, we
set gf = gf + 1 and roll back to all initial information. For the unanonymized edge with
NMF less than gf , we apply the ADD algorithm to anonymize it. We gradually anonymize
unanonymized edges in sorted sequenceL(u) until this group has k edges, and start another
group.

In the ADD&DEL algorithm, an edge will be anonymized by either Edge-deletion or
methods of the ADD algorithm. Therefore, the time complexity of anonymizing an edge is
O(|V |2), and the time complexity of the ADD&DEL algorithm is O(|E||V |2).
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Algorithm 1 The ADD Algorithm (GreedyGroup)

Input: Original graph G(V,E), k
Output: k-NMF anonymized graph G′(V ′, E′)
Initialization: G′ = G, and mark all edges as “unanonymized”. Compute

and sort the sequences f and l. f (u) = f , l(u) = l, Gf = ∅
1: while l(u) 6= ∅ do
2: if |l(u)| < 2k then do cleanup-operation and break.

3: GP = {e|e ∈ l(u) and f
(u)
e = f

(u)
1 }; gf = f

(u)
1 ; Gf = Gf ∪ gf .

4: Mark any e ∈ GP as “anonymized”; update f (u) and l(u).
5: if |GP | ≥ k then continue.
6: while |GP | < k or (|GP | ≥ k and Cmerge ≤ Cnew) do

7: Anoymize l
(u)
1 by BFSEA. GP = GP ∪ l

(u)
1 , update l(u) and f (u).

8: end while
9: end while

10: return G′(V ′, E′).

Algorithm 2 The ADD&DEL Algorithm

Input: Original graph G(V,E), k
Output: k-NMF anonymized graph G′(V ′, E′)
Initialization: G′ = G, and mark all edges as “unanonymized”. Compute

and sort the sequences f and l. f (u) = f , l(u) = l, Gf = ∅
1: while l(u) 6= ∅ do
2: if |l(u)| < 2k then do cleanup-operation and break.

3: EE = {e|e ∈ l(u) and f
(u)
e = f

(u)
1 };

4: if |EE| ≥ k, then new group GP = EE, and mark any e ∈ GP as

anonymized, Gf = Gf ∪ f
(u)
1 , update l(u) and f (u) and continue.

5: GP = ∅, gf = round(mean(f
(u)
1 , ...,f

(u)
k )). Record all initial info.

6: while f
(u)
1 ≥ gf do

7: Anonymize l
(u)
1 by edge-deletion.

8: if anonymize failed, then roll back to initial info, and gf = gf +1;

else mark l
(u)
1 as anonymized and GP = GP ∪ l

(u)
1 ; update f (u)

and l(u).
9: end while

10: Gf = Gf ∪ gf .
11: while |GP | < k do

12: Anoymize l
(u)
1 by BFSEA. GP = GP ∪ l

(u)
1 , update l(u) and f (u).

13: end while
14: end while
15: return G′(V ′, E′).

1

4.4 k1-degree Anonymization Based on k2-NMF Anonymization

In this subsection, we propose the KDA algorithm on anonymizing the k2-NMF anonymized
graph G′ to satisfy k1-degree anonymity. To maintain the k2-NMF anonymity of G′, the
KDA algorithm does not change the NMF of edges in G′ when performing anonymization.
Proposition 6 stated that the NMF of an edge is related on the number of triangles in which
this edge participate, so we anonymize the graph G′ without adding new triangles, i.e.,
the anonymized triangle preservation principle. We can connect two vertices with shortest
path length (SPL) no less than three to guarantee that no new triangles will be introduced.
Then the NMF of newly added edge is zero. As the degree distribution of the social net-
work follows the power law [40], we only need to anonymize these vertices with large
degrees.

The KDA algorithm is similar to the ADD algorithm. The unanonymized vertices are
sorted in descending order of their degrees. We gradually group and anonymize them
only by edge addition. The vertices in the same group have same degree. To start a new
group, KDA set the group degree gd as the greatest degree of unanonymized vertices. If
there are less than k vertices in this group, we anonymize the unanonymized vertices in
descending order of their degrees. If this group has more than k vertices, we compute the
Cmerge and Cnew for the next unanonymized vertex, and decide whether put it into this
group or start a new group.

Suppose that the i-hop neighbors of vertex u is neigi(u). To anonymize the unanonymized
vertex u,KDA iteratively and randomly select an unanonymized vertexwmax from neig3(u)
and connect u and wmax. If the vertex u cannot be anonymized, KDA update the neig3(u)
based on the newly added edges and repeat the above process. If u still cannot be anonymized,
we select the candidate vertex from neig4(u), neig5(u) and so on until u is anonymized.
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When anonymizing a vertex, the KDA algorithm searches the graph in a breadth-first
manner to get the candidate vertices. In the worst case, the KDA searches the whole
graph and the time complexity is O(|E| + |V |). As there are O(V ) vertices needed to be
anonymized, the time complexity of the KDA algorithm is O(|E||V | + |V |2) in the worst
case.

5 Experimental Results

In this section, we conduct experiments on real data sets to evaluate the performance of
the proposed graph anonymization algorithms. We evaluate the utility of the anonymized
graphs by computing their clustering coefficients, average path lengths and betweenness
centrality, etc.

5.1 Datasets

We conduct our experiments on four datasets: ACM, Cora, Brightkite, and Gowalla. All
datasets are preprocessed into simple undirected graphs without self-loop and multiple
edges.

ACM: This dataset was extracted from ACM digital library. We extracted papers pub-
lished in 12 conference proceedings on computer science before the year 2011. These con-
ferences are ACM Multimedia, OSDI, GECCO, POPL, PODS, PODC, ICCAD, ICSE, ICS,
ISCA, ISSAC and PLDI. We derive a graph describing the citations between papers. If one
paper cites another paper, an undirected edge will connect both corresponding vertices.
The graph includes 7,315 vertices and 16,203 edges after removing the isolated vertices.

Cora: This dataset is composed of a number of scientific papers on computer science [43].
We extract the collaborations between authors to derive the graph. If two authors had co-
authored some papers they would be connected. After we removed the authors without
any collaboration, the graph contains 14,076 vertices and 72,871 edges.

Brightkite: This dataset shows the friendships between users in the social network Brightkite
over the period of April 2008 to October 2010. The graph consists of 58,228 nodes and
214,078 edges, and is available at the SNAP [1].

Gowalla: This dataset contains a friendship network collected from a location-based so-
cial networking website. The graph consists of 196,591 nodes and 950,327 edges, and is
available at the SNAP [1].

5.2 Evaluation Metrics

In order to measure how well our methods preserving the social network utility, we adopt
some common metrics used in [4, 22–25, 29]. Assume we have an original social network
G(V,E), and the anonymized social network G′(V ′, E′). We have the following evaluation
metrics:

• Average Clustering Coefficient(ACC): evaluates the degree of vertices in a graph
tending to cluster together. It is calculated as the average of local clustering coeffi-
cients of all the vertices:

ACCG(V,E) =
1

|V |
∑
v∈V

Cv (4)
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where the local clustering coefficient of the vertex vi is calculated as follows:

Ci =
2|{ejk : vj , vk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
(5)

where Ni represents the neighbors of vertex vi, and ki is the degree of vertex vi.

• Average Path Length(APL): evaluates the efficiency of information or mass transport
on a network. It is defined as the average of shortest path length of all the vertex
pairs:

APLG(V,E) =
1

|V |(|V | − 1)

∑
u,v∈V,u6=v

d(u, v) (6)

where d(u, v) is the shortest path length of vertices u and v.

• Betweenness Centrality(BC): evaluates the load or importance of a vertex in a net-
work. The betweenness centrality of a vertex v can be calculated as follows:

g(v) =
∑

s6=v 6=t

σst(v)

σst
(7)

where σst is the number of shortest paths from vertex s to vertex t and σst(v) is the
number of those paths that pass through vertex v. In this paper, we normalize the
betweenness centrality as follows:

norm(g(v)) =
g(v)−min(g)

max(g)−min(g) (8)

• Percentage of Changed Edges(PCE): evaluates the change on the number of edges
in the network. It includes the percentage of add edges (PAE) and percentage of
removed edges (PRE). These metrics are computed as follows:

PCEG,G′ =
|E − E′|+ |E′ − E|

|E| (9)

PAEG,G′ =
|E′ − E|
|E| (10)

PREG,G′ =
|E − E′|
|E| (11)

These metrics are wildly used in the privacy-preserving social network publication to
evaluate the performance of privacy-preserving algorithms, and they evaluate the utility
of social networks from different aspects. For the first three metrics, we compare the metric
value of original social network with the value of anonymized social network, and the
closer the value of anonymized network get to the value of original network, the more
utility of the original network is maintained, indicating better performances. Under the last
metric, percentage of changed edges, smaller values are indicating better performances.
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Figure 12: The distribution of NMF

5.3 The Distribution of NMF

The Property 2 in Section 3 states that the distribution of NMF follows a power law or at
least asymptotically, i.e., scale free distribution. In Section 4, we use the scale free distribu-
tion to design our algorithms. Therefore, we check the distribution of NMF on four dataset
in Subsection 5.1. For each pair of friends(an edge between them), we compute their num-
ber of mutual friends. Then for each value s of NMFs, we count the number of friend pairs
having s mutual friends, indeed get the ratio of friend pairs having s mutual friends. We
take the log of ratios and NMFs, and plot the results in Figure 12.

The dataset ACM describes the citation between papers. The mutual friend of two papers
means that they have the citing relationship with the same paper. Hence, the number
of mutual friends of two papers will be small, and maximum value is 28. The dataset
Cora contains a social network representing the collaboration between authors of papers.
Some authors may have many common co-authors, i.e., mutual friends, and the maximum
number of mutual friends of two authors is 208. The social network Brightkite shows the
friendship between users, and the maximum number of mutual friends of two users is 272.
The maximum number of mutual friends of two users in the social network Gowalla is
1297. From Figure 12, we can see that the distribution of NMF on four datasets follows the
scale free distribution.

5.4 Mutual Friend Attack in Real Data

In the k-degree anonymization model, the adversary re-identifies a vertex using the degree
of this vertex. In the k-NMF anonymization model, the adversary re-identifies an edge us-
ing the NMF of this edge. We compare both attacks on the real datasets listed in Subsection
5.1, and show the results in Table 1. We removed all labels in four datasets. From Table 1,
we can see that the number of edges violating k-NMF anonymity can be sizable when we
set k from 5 to 100. It is a very easy way for an adversary to take the mutual friend attack.
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Table 1: The numbers of vertices violating k-degree anonymization and edges violating
k-NMF anonymization

ACM Cora Brightkite Gowalla
k k-deg k-NMF k-deg k-NMF k-deg k-NMF k-deg k-NMF
5 54 28 141 106 266 93 467 322

10 75 28 267 179 533 129 721 612
15 103 43 408 277 705 285 1028 858
20 137 62 446 349 795 393 1301 1100
25 162 62 584 488 891 598 1454 1229
30 221 62 752 575 1088 762 1588 1498
50 262 99 1142 733 1425 1297 2504 2108
100 526 226 1472 1350 2326 2578 3799 3511

k-NMF anonymization problem can be seen as a parallel of the k-degree anonymization
problem.

5.5 Evaluating k-NMF Anonymization Algorithms

We evaluate the performance of the Greedy and Intuitive ADD algorithms and the ADD&DEL
algorithm by measuring the average clustering coefficient, average path length, between-
ness centrality and the percentage of changed edges. Figures 13-16 show the results, where
ADD-Int and ADD-Gre stand for the ADD algorithm with IntuitGroup and GreedyGroup
respectively. ADD&DEL stands for the ADD&DEL algorithm.
Average Clustering Coefficient (ACC): We first compare the average clustering coefficients
of the anonymized graphs with the original graph, and the results are shown in Figure 13.
The CC values on datasets ACM, Brightkite and Gowalla increase when k increases, but
decreased on dataset Cora when k increases. Hence no clear trend on ACC change can
be concluded. The analysis on the trend is not our research point. We only focus on the
difference of ACC values between original graphs and anonymized graphs. The average
clustering coefficients derived by our three methods deviate slightly from the original val-
ues on four datasets. The ADD&DEL performs better than the two ADD algorithms in
Figure 13, and the ADD algorithm with GreedyGroup looks slightly better than the algo-
rithm with IntuitGroup.
Average Path Length (APL): Figure 14 shows the average path lengths for the anonymized
graphs and the original graphs on four datasets. The APL of the graph anonymized by the
ADD&DEL algorithm is very close to the APL of the original graph. By adding and delet-
ing edges, the ADD&DEL algorithm can preserve more utility than the ADD algorithm.
Besides, the differences of APL between the graphs anonymized by our methods and the
original graphs are very small, and the largest difference value is 0.8 when k is set as 100
on the dataset Cora.
Betweenness Centrality (BC): All the plots of the average betweenness centralities are very
similar to the plots of the APL. Hence we show the distribution of betweenness centralities
of all vertices in Figure 15. The sub-figures in Figures 15(a), 15(b) and 15(c) enlarge the de-
tails on the frequency varied from 0 to 100. Clearly, in Figures 15(a) and 15(b), ADD&DEL
performs better than the ADD algorithm with GreedyGroup, and shows little sensitivity to
the value of k while ADD with GreedyGroup degrades as k increases. Also Figure 15(c)
shows that ADD&DEL performs better than the ADD algorithms. Figure 15 shows that the
difference of BC between the anonymized graph and the original graph is very small.
Percentage of changed edges (PCE): As there is no vertex addition occurred in all cases
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Figure 13: Clustering coefficients
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Figure 14: Average path lengths
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Figure 15: Betweenness centrality distributions on Cora
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Figure 16: Edge changes

considered under ADD and ADD&DEL which do not perform node deletion operations,
we consider the edge changes. Figure 16 shows the edge changes on the original graphs.
The changes on ADD&DEL includes the percentages of added edges (PAE) and removed
edges (PRE). The ADD&DEL algorithm changed fewest edges, and the ADD algorithm
with GreedyGroup added fewer edges than the algorithm with IntuitGroup.

From the above evaluation, we can see that our algorithms can preserve the utility of
the original graph effectively. Among them, ADD&DEL performs better than the ADD
algorithm, and GreedyGroup performs better than IntuitGroup.

5.6 Verifying the Candidate Vertex Selection

In the ADD algorithm, a vertex v tends to link the candidate vertex wmax which has the
most mutual friends with v among all the candidate vertices. In order to validate why we
select wmax, we compare the results of the ADD algorithm with the ADD-min algorithm,
which tends to link the vertexwmin having the fewest mutual friends with v. Figures 17 and
18 show the results on the datasets ACM and Cora. Similar trend is observed on Brightkite
and Gowalla.

In Figures 17(a) and 18(a), we show the CC values of the graphs anonymized by the ADD
algorithm and the ADD-min algorithm. The ADD-max and ADD-min curves represent
the results of the ADD algorithm and the ADD-min algorithm respectively. The ADD-max
curve is closer to the original curve than the ADD-min curve on dataset Cora. As the trend
of CC value changes is not clear, the ADD-min curve may sometime be more closer than
ADD-max. The ADD-max curve is closer to the original curve than the ADD-min curve
on the datasets ACM and Cora in Figures 17(b) and 18(b). Finally we compare the results
on the distribution of betweenness centrality in Figures 17(c) and 18(c). The solid lines
and dashed lines represent the results of the ADD algorithm and the ADD-min algorithm
respectively. The solid lines are closer to the lines of the original graphs than dashed lines
in the both figures. These results reflect that choosing the vertex wmax is reasonable for
anonymizing the original graphs.
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Figure 17: Utility preservation of dataset ACM
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Figure 18: Utility preservation of dataset Cora

5.7 Evaluating the KDA Algorithm

In this subsection, we evaluate the performance of the KDA algorithm in Section 4.4 , and
compare it with the classic k-degree anonymization algorithm in [22].

Since there are no new triangles formed after the KDA algorithm adds new edges, the
clustering coefficient decreases a little bit as k increases as shown in Figures 19(a), 20(a)
and 21(a). Our algorithm performs better than the classic k-degree anonymization on this
measure. Since new edges are added into the graph, the APL value decreases a little bit as k
increases as shown in Figures 19(b), 20(b), and 21(b). As we consider the k-NMF anonymity,
the classic k-degree anonymization performs a little better than our algorithm on the APL
measure. But when the APL of the graph is large, our algorithm can perform better than
the classic k-degree anonymization as shown in Figure 19(b). The results show that our
algorithm performs well on preserving the utility while protecting the privacy by carefully
exploring the graph property. The classic k-degree anonymization makes less effort on
this except minimizing the number of edges added. Figures 19(c), 20(c) and 21(c) show the
distributions of betweenness centrality of graphs anonymized by the KDA algorithm when
we set kdeg as 10, 20 and 30. The distributions of the anonymized graphs are very similar to
the distributions of the original graphs especially for the ACM and Brightkite datasets. It
shows that the KDA algorithm can preserve much of the utility of the graph anonymized
by the k-NMF algorithms.

6 Conclusions

In this paper, we have identified a new problem of k-anonymity on the number of mutual
friends, which protects against the mutual friend attack in the social network publication.
To solve this problem, we designed two heuristic algorithms which consider the utility of

TRANSACTIONS ON DATA PRIVACY 7 (2014)



94 Chongjing Sun, Philip S Yu, Xiangnan Kong, Yan Fu

5 10 15 20 25 30
0.165

0.170

0.175

0.180

k

C
C

 

 

original
ADD&DEL
KDA
k−degree

(a) CC

5 10 15 20 25 30
4

6

8

10

12

k

A
P

L

 

 

original
ADD&DEL
KDA
k−degree

(b) APL

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

BC

F
re

qu
en

cy

 

 

0.2 0.4 0.6 0.8 1
0

5

10

15

20

 

 

original
ADD&DEL k=20
KDA k=10
KDA k=20
KDA k=30

(c) BC

Figure 19: k-degree anonymization on 20-NMF anonymized graph of ACM
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Figure 20: k-degree anonymization on 25-NMF anonymized graph of Cora

the graph. We also devised an algorithm to ensure the k-degree anonymity based on the
k-NMF anonymity. The experimental results demonstrate that our approaches can ensure
the k-NMF anonymity while preserve much of the utility in the original social networks.
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